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Crystal structure of A-site deficient La0.2Sr0.7−x-
CaxTiO3 perovskite at ambient conditions and high
temperatures: a neutron powder diffraction study

Ahmed D. Aljaberia,b and John T. S. Irvine*b

The crystal structures of several members of the solid solution perovskite La0.2Sr0.7−xCaxTiO3 were investi-

gated using the Rietveld analysis of neutron powder diffraction patterns collected in ambient conditions

and high temperatures. At room temperature, samples showed a tetragonal I4/mcm symmetry for com-

positions with 0.1 ≤ x ≤ 0.35 followed by a phase transition to the orthorhombic Pbnm symmetry for

compositions with 0.4 ≤ x ≤ 0.7. Samples with the orthorhombic symmetry showed two reversible phase

transitions in the temperature range 20 °C–900 °C. The first phase transition was a discontinuous Pbnm–

I4/mcm around 300 °C and the second was a continuous I4/mcm–Pm3̄m transition around 900 °C. The

lower symmetries resulted from very small distortions and changes in tilts of the BO6 octahedra of this

perovskite material; which was a direct result from the A-site ionic radius mismatch.

1. Introduction

Solid oxide fuel cells are attracting much attention offering
high conversion efficiency of chemical energy to electricity
with an attractive possibility of using different types of fuel
besides pure hydrogen. For example, methane can be used
without reforming given the high operating temperature of
SOFCs.1–4 With the drawbacks of the widely used Ni-YSZ
cermet anode in SOFCs,2,5 alternative anode materials are
actively being studied. These include perovskite-based
materials which offer good stability during operation and tol-
erance to sulphur poisoning and carbon build up.6

Previous studies on the perovskite system La0.2Sr0.7−x-
CaxTiO3 showed an increase in this compound’s electrical
conductivity with increased calcium substitution at anodic
operational conditions; which was consistent with the decrease
in the unit cell volume of this perovskite.7 However, this trend
was reversed at much higher calcium content; i.e. x > 0.45;
which required further structural investigations of this system.
Since it is widely understood that electronic conduction
involves electrons on the titanium oxygen sublattices, it is
anticipated that local distortions of the TiO6 octahedra

8–10 can
be responsible for the drop in conductivity. Due to the low
scattering power of oxygen in XRD, neutron diffraction can

give a better picture due to the relatively large scattering length
of oxygen ions.11

Therefore, this paper outlines the results obtained using
neutron powder diffraction to characterise the crystal struc-
tures of different compositions of the perovskite system
La0.2Sr0.7−xCaxTiO3 at ambient conditions, as well as, at high
temperatures for the two samples discussed in previous work;7

to investigate the origin of the slight drop in electrical
conductivity.

2. Experimental
2.1 Sample preparation

Samples of La0.2Sr0.7−xCaxTiO3 with x = 0.1, 0.2, 0.3, 0.35, 0.4,
0.45, 0.5, 0.6 and 0.7 were synthesised using conventional
solid state methods. Stoichiometric amount of high purity
starting materials; i.e. La2O3 (Sigma-Aldrich 99.99%), SrCO3

(Alfa Aesar 99%), CaCO3 (Alfa Aesar 99.5%) and TiO2 (Alfa
Aesar 99.5%) were dried prior to weight and mixed using a
mortar and pestle. All mixtures were calcined in air at 1000 °C
for a minimum of 15 hours. This was followed by ball milling
the powders in a planetary ball mill in acetone for 4 hours to
ensure a uniform particle size. These were then dried and
pressed into ∼13 mm pellets using a uniaxial press. All pellets
were sintered in air at 1500 °C for 15 hours. Pellets were
crushed, ball milled for 4 hours and pressed, respectively,
before sintering them for a second time at the same con-
ditions. For La0.2Sr0.25Ca0.45TiO3 which showed the highest
electrical conductivity of this series,7 a pellet was reduced in a
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tube furnace at 1050 °C for 72 hours under a constant flow
rate of 5% H2–95% Ar gas mixture. All resulting pellets were
crushed and ball milled, as above, into fine powders for
neutron diffraction studies.

2.2 Neutron powder diffraction

Neutron powder diffraction patterns were collected using the
D2B powder diffractometer at the Institute Laue-Langevin (ILL)

Table 1 Lattice parameters, atomic positions, thermal parameters and R-factors from Rietveld refinement results of NPD data for the different
samples of La0.2Sr0.7−xCaxTiO3 at ambient conditions

x in La0.2Sr0.7−x-
CaxTiO3 0.1 0.2 0.3 0.35 0.4 0.45 0.5 0.6 0.7
Space group I4/mcm I4/mcm I4/mcm I4/mcm Pbnm Pbnm Pbnm Pbnm Pbnm

a (Å) 5.4918(1) 5.4820(1) 5.4715(1) 5.4696(2) 5.4652(1) 5.4622(1) 5.4505(2) 5.4375(1) 5.4221(2)
b (Å) 5.4918(1) 5.4820(1) 5.4715(1) 5.4696(2) 5.4669(1) 5.4634(1) 5.4535(2) 5.4463(2) 5.4410(1)
c (Å) 7.7810(2) 7.7781(2) 7.7544(2) 7.7492(3) 7.7143(1) 7.7140(1) 7.7013(2) 7.6904(4) 7.6759(3)

V (Å3) 234.683(7) 233.75(1) 232.15(1) 231.83(1) 230.49(1) 230.20(1) 228.92(1) 227.75(2) 226.45(1)

La x 0 0 0 0 −0.01(2) −0.004(2) 0.003(2) 0.005(2) 0.09(1)
Sr y 0.5 0.5 0.5 0.5 0.49(2) 0.508(1) 0.511(1) 0.515(1) 0.520(1)
Ca z 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Biso (Å
2) 0.34(2) 0.52(3) 0.42(3) 0.33(3) 0.16(3) 0.46(3) 0.51(3) 0.42(3) 0.49(3)

Ti x 0 0 0 0 0 0 0 0 0
y 0 0 0 0 0 0 0 0 0
z 0 0 0 0 0 0 0 0 0
Biso (Å

2) 1.051(5) 0.791(5) 0.445(4) 0.790(6) 1.119(5) 0.625(4) 0.488(4) 0.763(5) 0.266(4)

O1 x 0 0 0 0 −0.052(2) −0.054(2) −0.053(2) −0.057(2) −0.061(1)
y 0 0 0 0 0.001(2) −0.006(2) −0.008(2) −0.008(2) −0.009(1)
z 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Biso (Å

2) 0.49(5) 0.96(6) 1.49(5) 1.37(6) 1.19(6) 0.88(5) 0.88(5) 0.39(6) 0.64(8)

O2 x 0.2313(1) 0.2261(2) 0.2206(2) 0.2185(1) 0.2381(1) 0.2329(8) 0.2291(7) 0.2230(5) 0.2184(4)
y 0.7313(1) 0.7261(2) 0.7206(2) 0.7185(1) 0.2626(1) 0.2691(7) 0.2725(6) 0.2781(5) 0.2818(4)
z 0 0 0 0 0.0227(1) 0.0239(2) 0.0268(3) 0.0296(3) 0.0317(2)
Biso (Å

2) 0.981(3) 1.056(3) 1.073(3) 0.872(4) 1.070(4) 1.149(3) 1.157(4) 1.246(5) 0.988(5)

R-Factors Rp 3.48 3.68 3.63 3.75 3.68 3.35 2.77 3.42 3.13
Rwp 4.76 4.98 5.01 5.09 4.96 4.44 3.59 4.52 4.13
Rexp 1.95 1.96 2.02 1.93 1.86 1.77 2.01 1.77 1.92
χ2 5.98 6.42 6.17 6.95 7.07 6.33 3.19 6.48 4.64

Fig. 1 Rietveld refinement patterns for neutron diffraction data of different compositions of La0.2Sr0.7−xCaxTiO3 at ambient conditions fitted to the
indicated symmetries.
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facility in Grenoble, France. Data were collected from powder
samples within vanadium containers over an angular range of
0 < 2θ < 160°, using a 0.05° step size, with a neutron radiation
of λ ≈ 1.594 Å. Data collection; i.e. counting time; varied

between 2 hours for normal resolution and 5 hours for high
resolution runs. High temperature runs were collected at
various temperatures from room temperature up to 900 °C.

All patterns were analysed and refined using the Rietveld
method using the software package Fullprof (version 2.05).
Diffraction peaks were refined using a pseudo-Voigt function

Fig. 2 Phase diagram of the ternary system CaTiO3–La2/3TiO3–SrTiO3.
All numbers represent calcium content. Solid symbols represent the
samples studied in this work and analysed using NPD data; where
shaded ones represent compositions obtained from literature.17–21 ◆

refers to the tetragonal samples and ● refers to the orthorhombic
samples.

Fig. 3 The out-of-phase tilt angle values for the different compositions
of La0.2Sr0.7−xCaxTiO3 at room temperature.

Table 2 Lattice parameters, atomic positions, thermal parameters and R-factors from Rietveld refinement results of NPD data for a reduced sample
of La0.2Sr0.25Ca0.45TiO3 at various temperatures

Temperature 20 °C 100 °C 200 °C 300 °C 500 °C 600 °C 700 °C 800 °C 900 °C
Space group Pbnm Pbnm Pbnm I4/mcm I4/mcm I4/mcm I4/mcm I4/mcm Pm3̄m

a (Å) 5.4656(1) 5.4720(4) 5.4826(2) 5.4752(1) 5.4848(1) 5.4960(1) 5.5033(2) 5.5149(8) 3.90616(4)
b (Å) 5.4664(1) 5.4743(4) 5.4830(2) 5.4752(1) 5.4848(1) 5.4960(1) 5.5033(2) 5.5149(8) 3.90616(4)
c (Å) 7.7203(3) 7.7263(3) 7.7411(5) 7.7591(4) 7.7788(4) 7.7934(3) 7.8001(4) 7.8021(2) 3.90616(4)

V (Å3) 230.656(1) 231.444(3) 232.705(2) 232.601(2) 234.007(1) 235.408(1) 236.239(2) 237.293(8) 59.6007(9)

La x −0.007(3) −0.005(2) −0.007(2) 0 0 0 0 0 0.5
Sr y 0.507(1) 0.506(1) 0.501(2) 0.5 0.5 0.5 0.5 0.5 0.5
Ca z 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.5

Biso (Å
2) 0.56(3) 0.74(3) 0.92(4) 0.99(4) 1.37(4) 1.61(6) 1.87(6) 2.09(7) 2.25(4)

Ti x 0 0 0 0 0 0 0 0 0
y 0 0 0 0 0 0 0 0 0
z 0 0 0 0 0 0 0 0 0
Biso (Å

2) 0.60(4) 0.75(5) 0.68(5) 1.04(6) 1.20(6) 1.40(7) 1.71(8) 1.79(9) 1.48(5)

O1 x −0.0523(7) −0.0547(7) −0.046(1) 0 0 0 0 0 0.5
y −0.008(1) −0.011(1) 0.003(3) 0 0 0 0 0 0
z 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0
Biso (Å

2) 1.38(8) 1.43(8) 1.99(9) 2.27(7) 1.97(7) 1.65(9) 1.48(9) 1.45(8) 3.42(2)

O2 x 0.2305(8) 0.2322(1) 0.2323(2) 0.2174(2) 0.2221(2) 0.2251(2) 0.2290(3) 0.2353(4) —
y 0.2701(8) 0.2705(1) 0.2617(1) 0.7174(2) 0.7221(2) 0.7215(2) 0.7290(3) 0.7353(4) —
z 0.0259(3) 0.0238(3) 0.0237(4) 0 0 0 0 0 —
Biso (Å

2) 0.95(5) 1.06(5) 1.37(6) 1.74(4) 2.46 (5) 2.84(7) 3.35(8) 3.88(9)

R-Factors Rp 2.90 3.68 4.16 3.91 3.85 3.68 3.44 3.93 3.37
Rwp 3.70 4.67 5.38 4.97 4.97 4.71 4.39 5.05 4.65
Rexp 1.98 3.54 3.67 3.57 3.66 3.46 3.42 3.40 2.04
χ2 3.48 1.74 2.14 1.94 1.84 1.86 1.65 2.20 5.18
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and the background was refined with a 6-parameter poly-
nomial. The initial unit cell parameters were set using the
findings obtained from previous XRD studies and the atomic
positions for the different sites were set according to the space
group symmetry.11 B-site (Ti) atomic coordinates were kept
fixed at the origin; while the other sites were allowed to vary.
Occupancies were initially allowed to vary through the refine-
ment process yielding insignificant variations from the initial
stoichiometries, later these were kept fixed to nominal values
to obtain more stable refinements. All models were refined to
convergence with the best fits chosen by the agreement factors
and stability of the refinement profiles.

3. Results and discussion
3.1 Room temperature studies

All patterns were successfully refined using the Rietveld
method resulting in very good fits as shown in Fig. 1.

A significant finding of this work by using neutron diffrac-
tion was the point where the transition from the tetragonal I4/
mcm to the orthorhombic Pbnm, see Table 1, which was pre-
viously reported to be at calcium content of x = 0.45.7 The new
transition point now appears to take place at a calcium content
of x = 0.4; i.e. La0.2Sr0.3Ca0.4TiO3. Hence, the updated phase
map of this system is shown in Fig. 2.

With neutron diffraction, there was not a strong evidence of
the existence of other intermediate phases like the ones
reported for the system Ca1−xSrxTiO3; e.g. Cmmm or Imma.
Since the structure of the perovskite unit cell is highly affected
by the A-site ionic radius mismatch, we believe that since our
system incorporates a fixed stoichiometry of lanthanum; the
variation of Sr/Ca ratio does not induce a severe disruption to
the A-site lattice points. Thus, as it was evident from the
absence of superlattice reflections in our neutron diffraction
patterns that are indicative of the mentioned space groups, the
system La0.2Sr0.7−xCaxTiO3 undergoes a single first order phase
transition with increasing calcium content; i.e. from I4/mcm to
Pbnm symmetries.

Changes in symmetry in perovskites are manifested in
changes to the tilt system of the BO6 octahedra, which was
apparent in this study. These tilt systems were analysed by

having the O2 atomic coordinates as
1
4
� u;

1
4
þ v;w

� �
, hence,

the anti-phase tilt angle along the [001] direction in the I4/
mcm phase is equal to φ = tan−14u. The out-of-phase tilt angles
along the [100] and [010] directions in the Pbnm phase were

calculated using the relation φ ¼ tan�1 4
ffiffiffi
2

p
u.11–13 These tilts

have the Glazer notation a0a0c− and a−a−c+ in the I4/mcm and
Pbnm space groups, respectively.14 The calculated tilt angles
from the refined atomic positions for the system studied here
are plotted against composition in Fig. 3.

Table 3 Lattice parameters, atomic positions, thermal parameters and R-factors from Rietveld refinement results of NPD data for a reduced sample
of La0.2Sr0.2Ca0.5TiO3 at various temperatures

Temperature 20 °C 300 °C 500 °C 600 °C 700 °C 900 °C
Space group Pbnm I4/mcm I4/mcm I4/mcm I4/mcm Pm3̄m

a (Å) 5.4505(2) 5.4674(2) 5.4793(2) 5.4874(1) 5.4942(1) 3.8975(1)
b (Å) 5.4535(2) 5.4674(2) 5.4793(2) 5.4874(1) 5.4942(1) 3.8975(1)
c (Å) 7.7013(3) 7.7447(4) 7.7675(4) 7.7771(3) 7.7835(4) 3.8975(1)

V (Å3) 228.918(4) 231.513(9) 233.196(8) 234.182(9) 234.955(9) 59.205(1)

La x 0.003(2) 0 0 0 0 0.5
Sr y 0.5107(7) 0.5 0.5 0.5 0.5 0.5
Ca z 0.25 0.25 0.25 0.25 0.25 0.5

Biso (Å
2) 0.51(3) 1.29(6) 1.62(6) 1.72 (6) 1.94(6) 2.27(8)

Ti x 0 0 0 0 0 0
y 0 0 0 0 0 0
z 0 0 0 0 0 0
Biso (Å

2) 0.49(4) 1.27(8) 1.48(7) 1.51(8) 1.71(8) 1.70(9)

O1 x −0.0528(7) 0 0 0 0 0.5
y −0.0079(9) 0 0 0 0 0
z 0.25 0.25 0.25 0.25 0.25 0
Biso (Å

2) 0.88(6) 2.3(2) 1.7(1) 1.6(1) 1.6(1) 3.38(5)

O2 x 0.2291(7) 0.2173(2) 0.2216(2) 0.2236(2) 0.2270(3) —
y 0.2725(6) 0.7173(2) 0.7216(2) 0.7236(2) 0.7270(3) —
z 0.0268(3) 0 0 0 0 —
Biso (Å

2) 1.16(4) 1.63(6) 2.52(6) 2.81(7) 3.24(8) —

R-Factors Rp 2.77 3.63 3.66 3.61 3.39 3.22
Rwp 3.59 4.72 4.64 4.67 4.39 4.50
Rexp 2.01 3.48 3.46 3.45 3.44 1.92
χ2 3.19 1.84 1.80 1.83 1.62 5.48
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This result shows that our system distortions are less severe
than the parent perovskite CaTiO3;

12 which can be attributed
to a lower A-site ionic radius mismatch, due to the fixed stoi-
chiometry of lanthanum throughout the range of the studied
compositions. This is more apparent from the almost linear
change of the anti-phase tilt angle with calcium content; indi-
cating a more stable system and re-confirms that intermediate
phases are non-existing in the compositions studied here.

Calcium introduction into SrCrO3 resulted in a similar be-
haviour to that of the system La0.2Sr0.7−xCaxTiO3, in terms of
structural transitions. With more calcium it was found that
transitions occurred from Pm3̄m to I4/mcm to Pbnm.15

3.2 High temperature studies

Two compositions; i.e. La0.2Sr0.25Ca0.45TiO3 and La0.2Sr0.2Ca0.5-
TiO3; were studied at high temperatures with the results of
Rietveld refinement listed in Tables 2 and 3, respectively.

Symmetry changes were evident from the diffraction pat-
terns as shown in Fig. 4, where both compositions showed a
similar behaviour as they were orthorhombic Pbnm at room

temperature and evolved to the ideal cubic Pm3̄m symmetry
around 900 °C through an intermediate tetragonal I4/mcm
phase.

Fig. 5 and 6 show the behaviour of the lattice parameters at
high temperatures of La0.2Sr0.25Ca0.45TiO3 and La0.2Sr0.2Ca0.5-
TiO3, respectively. These lattice parameters can be seen to dis-
continuously change at the Pbnm–I4/mcm transition point,
where at the I4/mcm–Pm3̄m transition point, the lattice para-
meters are changing in a continuous fashion as the samples
were heated. This suggests that the first transition is a first
order one while the latter can be a second order or a higher
phase transition. Another aspect which was observed is that
this system shows the high symmetry space group Pm3̄m at a
much lower temperature compared to that of the parent com-
pound CaTiO3, which according to Ali and Yashima16 was
found at temperatures over 1647 K. This shows that the degree
of the distortion existing in La0.2Sr0.7−xCaxTiO3 are much lower
than those in CaTiO3; which also explains the less severe dis-
tortions compared to Sr1−xCaxTiO3 as was discussed in pre-
vious publication,7 where the A-site ionic radius mismatch is
greatly affected by increasing calcium content.

Comparing between the two compositions behaviour at
high temperatures, not much differences can be seen structu-
rally. As mentioned earlier, a slight drop in electrical conduc-
tivity was seen between the two compositions at 900 °C in
reducing conditions. The results here have shown a significant
difference in the isotropic atomic displacement parameters
between the two samples as shown in Tables 2 and 3.
La0.2Sr0.2Ca0.5TiO3 showed slightly higher values at 900 °C
compared to that of La0.2Sr0.25Ca0.45TiO3 especially on the tita-
nium site. This indicates that at this temperature, the titanium
atoms are less stable; i.e. there is mort short range disorder;
on their respective atomic site within the perovskite lattice.
This must translates to the extent which the conducting d-orbi-
tals overlap; which lowers the overall electrical conductivity of
this oxide. Hence, La0.2Sr0.25Ca0.45TiO3 was chosen as the
optimal candidate of this series for a new type of perovskite

Fig. 4 Rietveld refinement of NPD patterns of a reduced sample of
La0.2Sr0.25Ca0.45TiO3 at different temperatures showing the different
symmetries. Note: pattern at 300 °C was collected with shorter counting
time compared to the other two.

Fig. 5 Reduced lattice parameters of a reduced sample of La0.2Sr0.25-
Ca0.45TiO3 plotted against temperature.

Paper Dalton Transactions

10832 | Dalton Trans., 2015, 44, 10828–10833 This journal is © The Royal Society of Chemistry 2015

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
M

ar
ch

 2
01

5.
 D

ow
nl

oa
de

d 
on

 8
/1

6/
20

24
 2

:1
3:

40
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5dt00238a


based anodes. As an anode backbone, this material is showing
very encouraging performances upon further improvements.22

4. Conclusions

The perovskite La0.2Sr0.7−xCaxTiO3 showed structural changes
with composition and with temperature. Phase pure samples
showed a drop in symmetry from the ideal cubic Pm3̄m of
La0.2Sr0.7TiO3 to the tetragonal I4/mcm phase for 0.1 ≤ x ≤ 0.35
and the orthorhombic Pbnm phase for samples with 0.4 ≤ x ≤
0.7. Orthorhombic samples showed transition to higher sym-
metries with increasing temperature. These transitions were a
discontinuous Orthorhombic Pbnm–Tetragonal I4/mcm tran-
sitions and a continuous Tetragonal I4/mcm–Cubic Pm3̄m
phase transition. These studies have helped greatly in under-
standing some earlier findings regarding the performance of
this material as an anode material for SOFCs.
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Fig. 6 Reduced lattice parameters of La0.2Sr0.2Ca0.5TiO3 plotted against
temperature.
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