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The 2-(2'-aniline)-6-imine-pyridines, 2-(CgH4-2'-NH5)-6-(CMe=NAr)CsHzN (Ar = 4-i-PrCgH, (HL1a),
2,6-i-Pr,CgHs (HL1b)), have been synthesised via sequential Stille cross-coupling, deprotection and con-
densation steps from 6-tributylstannyl-2-(2-methyl-1,3-dioxolan-2-yl)pyridine and 2-bromonitro-
benzene. The palladium(i) acetate N,N,N-pincer complexes, [{2-(CgH4-2'-NH)-6-(CMe=NAr)CsHsN}Pd-
(OAC)] (Ar = 4-i-PrCgH4 (1a), 2,6-i-Pr,CgHs (1b)), can be prepared by reacting HL1 with Pd(OAc), or, in
the case of 1a, more conveniently by the template reaction of ketone 2-(CgH4-2'-NH>)-6-(CMe=0)-
CsH3N, PA(OAc), and 4-isopropylaniline; ready conversion of 1 to their chloride analogues, [{2-(CgH4-2'-
NH)-6-(CMe=NAr)CsH3N}PdCl] (Ar = 4-i-PrCgH, (2a), 2,6-i-Pr,CgHs (2b)), has been demonstrated. The
phenyl-containing complexes, [{2-(CgH4-2'-NH)-6-(CMe=NAr)CsH3sN}PdPh] (Ar = 4-i-PrCgH,4 (3a), 2,6-
i-Pr,CgHs (3b)), can be obtained by treating HL1 with (PPhz),PdPh(Br) in the presence of NaH or with
regard to 3a, by the salt elimination reaction of 2a with phenyllithium. Reaction of 2a with silver tetrafluoro-
borate or triflate in the presence of acetonitrile allows access to cationic [{2-(CgH4-2'-NH)-6-(CMe=
N(4-i-PrCgH4)CsH3sNIPA(NCMe)][X] (X = BF,4 (4), X = O3SCF3 (5)), respectively; the pyridine analogue of 5,
[{2-(CgH4-2'-NH)-6-(CMe=N(4-i-PrCgH4)CsHzN}Pd(NCsHs)I[O3SCF3] (5°), is also reported. Oxidation of
phenyl-containing 3a with one equivalent of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo-[2.2.2]octane
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bis(tetrafluoroborate) (Selectfluor™) in acetonitrile at low temperature leads to a new palladium species
that slowly decomposes to give 4 and biphenyl; biphenyl formation is also observed upon reaction of 3a
with XeF,. However, no such oxidatively induced coupling occurs when using 3b. Single crystal X-ray

www.rsc.org/dalton diffraction studies have been performed on HL1b, 1a, 1b, 2a, 2b, 3a, 3b and 5".

Introduction

Recent years have seen a surge of interest in oxidatively
induced coupling reactions involving Pd(m) and Pd(w) inter-
mediates due, in part, to their potential to promote transform-
ations inaccessible using the conventional low valent Pd(0)/(n)
cycle." For example, the historically challenging arene-fluor-
ide bond forming reaction has become a reality with both
types of high valent intermediate isolated and/or proposed in
reaction pathways derived from Pd(n) species.® Central to these
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developments have been reagents such as Selectfluor™
[1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane  bis-
(tetrafluoroborate)] and xenon difluoride that can oxidise the
metal centre as a two electron oxidant (from Pd(u) to Pd(iv))*®
or as a one electron oxidant (from Pd(n) to Pd(m))*’” and more-
over provide a source of F (e.g., as F" or F"). In cases where
these types of oxidant deliver a fluorine atom direct to the
metal centre, selective C-F reductive elimination from the
high valent organo-metal intermediate can be challenging as
alternative (and potentially desirable) degradation pathways
can prove competitive.’ Sanford, for example, has reported
that the Pd(v) mono-aryl complex, [(4,4-t-Bu,bipy)Pd(Ar)-
(F)o(FHF)] (Ar = 4-FCgH,), only undergoes selective Cgry—F
reductive elimination when heated in the presence of excess
oxidant, otherwise competitive Ar-Ar coupling occurs through
a process described as c-aryl exchange between metal centres.”
Indeed this type of intermolecular Ar-Ar coupling involving
palladium mono-aryl species has some precedent in Pd(u) and

This journal is © The Royal Society of Chemistry 2015
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Fig. 1 N,N,N palladium(i) mono-aryl pincer, 3, and the stoichiometric
reactivity to be examined.

Pd(m) chemistry involving complexes bearing a variety of
multidentate ligands.>>®°

Given the apparent variation in coupling events that can
occur from a high valent organo-Pd species,"” we have been
interested in exploring the influence of a supporting multi-
dentate ligand on the oxidatively induced reaction pathway.
Herein, we report the reactivity of a family of N,N,N-pincer
bearing Pd(un) mono-phenyl complexes of the type, [{2-(Ce¢Ha-
2-NH)-6-(CMe=NAr)CsH;N}PdPh] (Ar = aryl (3)), towards
Selectfluor and XeF, (Fig. 1);'° as an additional point of inter-
est the effects that steric variation (Ar = 4-i-PrC¢H,, 2,6-i-
Pr,C¢H3) has on the reactivity, will be investigated. Further-
more, we report the full synthetic details for the preparation of
the novel pro-ligands (HL1) and their palladium(u) acetate (1),
chloride (2) and phenyl (3) derivatives.

Results and discussion

Preparation of pro-ligand HL1

The 2-(2-aniline)-6-imine-pyridines, 2-(CeH;-2"-NH,)-6-(CMe=—
NAr)CsH;N (Ar = 4-i-PrC¢H, (HL1a), 2,6-i-Pr,CeH; (HL1b)),
have been prepared in reasonable yield via sequential Stille
coupling, deprotection and condensation reactions from 6-tri-
butylstannyl-2-(2-methyl-1,3-dioxolan-2-yl)pyridine and 2-bromo-
nitrobenzene (Scheme 1). For both HL1a and HL1b, the
condensation step proved sluggish in alcoholic media but pro-
ceeded more effectively by running the reaction in the neat
aniline at high temperature; nevertheless problems encoun-
tered in the work-up of HL1a resulted in its isolation in only a
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modest yield (see later for a higher yielding template approach
to L1a). The precursor ketone and the two N,N,N pro-ligands,
HL1a and HL1b, have been characterised using a combination
of electrospray mass spectrometry, IR, "H NMR and *C NMR
spectroscopy (see Experimental section).

Compounds, HL1la, and HL1b, both display protonated
molecular ions peaks in their electrospray mass spectra and
downfield shifted signals for the amino protons (range:
§ 5.72-5.79) in their '"H NMR spectra. Characteristic imine
stretching frequencies of ca. 1638 cm™" are seen in their IR
spectra as are higher wavenumber bands corresponding to the
N-H stretches. Further confirmation of the composition of
HL1b was achieved in the form of a single crystal X-ray
determination.

A perspective view of HL1b is depicted in Fig. 2; selected
bond distances and angles are listed in Table 1. The structure
consists of a central pyridine ring that is substituted at its
2-position by a phenyl-2-amine group and at the 6-position by
a trans-configured N-arylimine unit [C(7)-N(1) 1.277(3) A].
The pyridine nitrogen atoms adopt a cis conformation with
respect to the neighbouring aniline nitrogen (tors: N(2)-C(13)-
C(14)-C(15) 8.1°) as a result of a hydrogen-bonding interaction
between one of the amino hydrogen atoms and the pyridine
nitrogen [N(3)---N(2) 2.675 A]; a similar arrangement has been
reported for a related quinolinyl-substituted aniline."*

Palladium(u) complexes of L1

Interaction of HL1b with Pd(OAc), at 60 °C in toluene gave on
work-up, [{2-(CeH,-2-NH)-6-(CMe=N(2,6-i-Pr,C¢H3))CsH;N}Pd-
(OAc)] (1b)), in good yield (Scheme 2). While [{2-(C¢H,4-2-NH)-
6-(CMe=N(4-i-PrC¢H,))CsH;N}Pd(OAc)] (1a) could also be
made by this route, it was more conveniently prepared by the
template reaction of ketone 2-(C¢H,-2-NH,)-6-(CMe=0)CsH;N,
Pd(OAc), and 4-isopropylaniline. Compounds 1 can be readily
converted to their chloride analogues, [{2-(CcH4-2-NH)-
6-(CMe=NAr)CsH;N}PdCl] (Ar = 4-i-PrC¢H, (2a), 2,6-i-Pr,C¢Hj
(2b)), by treatment of a dichloromethane solution of 1 with
aqueous sodium chloride. All four complexes are air stable
and have been characterised using a combination of FAB mass
spectrometry, IR and NMR ('H and '*C) spectroscopy and
elemental analyses (see Experimental section). In addition,
crystals of each complex have been the subject of single crystal
X-ray diffraction studies.

| X | X S
@ - R, i Ar—N a
N/ Sn(n-Bu)3 1 N (ii), (iii) (iv) r '~ N
o o0 o 0O Me
() L/ o, HoN

HL1a Ar = 4-i-PrCgH,
HL1b Ar = 2,6-i-Pr,CgHy

Scheme 1 Reagents and conditions: (i) 2-BrCgH4NO,, cat. Pd(OAc),—PPhs, toluene, 100 °C, microwave; (ii) SnCl,, ethanol; (i) HCl(aq.); (iv) ArNH,,

225 °C.
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Fig. 2 Molecular structure of HL1b, including a partial atom numbering
scheme. All hydrogen atoms, apart from H3A and H3B, have been
omitted for clarity.

Table 1 Selected bond distances (A) and angles (°) for HL1b

Bond lengths

C(15)-N(3) 1.366(4) C(13)-C(14) 1.477(4)
C(7)-N(1) 1.277(3) C(7)-C(9) 1.482(4)
C(7)-C(8) 1.504(4)

Bond angles

C(8)-C(7)-N(1) 125.3(2) C(9)-C(7)-N(1) 116.4(3)

Views of acetate-containing 1a and 1b are given in Fig. 3
and 4; selected bond distances and angles are collected for
both structures in Table 2. There are two independent mole-
cules for 1b in the unit cell (4 and B) which differ most notice-
ably in the relative inclination of neighbouring pyridyl and
anilido ring planes (vide infra). The structures of 1a and 1b are
similar consisting of a four-coordinate palladium centre
bound by a tridentate monoanionic 2-(2-anilido)-6-imine-pyri-
dine ligand and a monodentate O-bound acetate, but contrast
in the nature of the hydrogen bonding involving the acetate
ligand. In 1a, a water molecule present within the unit cell
links the palladium-acetate units to form a hydrogen-bonded
networok [O(l)acetate”'o(?’)water 2.837, 0(3)water'”0(2A)acetate
2.877 A], while in 1b the hydrogen bonding is intramolecular
in origin involving the pendant acetate oxygen and the anilido
proton [N(3):+-0(2)acetate 2-7994, 2.889; A]. Within the N,N,N-
ligand there are both 5- and 6-membered chelate rings with
the bite angle for the 6-membered ring being more compatible
with the square planar geometrical requirements of the
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Fig. 3 A segment of the network based on 1a linked by water mole-
cules. A partial atom numbering scheme is included while all hydrogen
atoms, apart from H3 and those belonging to the water molecule, have
been omitted for clarity; dotted lines show the intermolecular hydro-
gen-bonding interactions.

Fig. 4 Molecular structure of 1b (molecule A) including a partial atom
numbering scheme. All hydrogen atoms, apart from H3 have been
omitted for clarity.

palladium(u) centre [N(3)-Pd(1)-N(2)s-memberea: 93-7(2) (1a),
92.2(3)a, 93.6(2)5 (1b) vs. N(2)-Pd(1)-N(1)smemberea 82.2(2) (1),
82.6(3)a, 82.1(2)g° (1b)]. In both cases some twisting of the
anilido unit with respect to the adjacent pyridyl plane is appar-
ent [tors. N(2)-C(13)-C(14)-C(15) 3.6(4) (1a), 4.9(4)s, 9.0(5)5°
(1b)]. For a given complex, the Pd-Njyin bond distance is the
longest of the three metal-ligand interactions involving the
N,N,N-ligand followed by the Pd-Npyigine distance and then
by the Pd-N,niiqo distance which is best exemplified for 1a

—
. ’ = .o
HLL @) N 7 (ii) l Y
E—— —_—
N——Pd/N\Ar N——Pd/N\Ar
H H
OAc Cl

la Ar = 4-i-PrC¢H,

1b Ar =2,6-i-Pr,C¢H;

2a Ar=4-i-PrCgH,
2b Ar = 2,6-i-Pr,CgHj

Scheme 2 Reagents and conditions: (i) Pd(OAc),, toluene, 60 °C; (ii) NaCl(aqg.), CH,Cl,, RT.
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Table 2 Selected bond distances (A) and angles (°) for 1a and 1b Table 3 Selected bond distances (A) and angles (°) for 2a and 2b
1b 2a

la Molecule A Molecule B Molecule A Molecule B 2b
Bond lengths Bond lengths
Pd(1)-N(1) 2.014(6) 2.017(8) 2.019(8) Pd(1)-N(1) 2.022(5) 2.035(6) 2.025(3)
Pd(1)-N(2) 1.963(5) 1.970(9) 1.977(7) Pd(1)-N(2) 1.976(5) 1.984(5) 1.987(3)
Pd(1)-N(3) 1.932(5) 1.920(9) 1.922(8) Pd(1)-N(3) 1.934(5) 1.931(6) 1.927(3)
Pd(1)-0(1) 2.036(5) 2.011(8) 2.021(7) Pd(1)-Cl(1) 2.2971(18) 2.2931(18) 2.3123(17)
C(7)-N(1) 1.286(8) 1.285(12) 1.300(11) C(7)-N(1) 1.297(7) 1.298(7) 1.289(5)
C(9)-C(7) 1.469(9) 1.468(13) 1.458(13) C(15)-N(3) 1.335(8) 1.334(8) 1.336(5)
C(15)-N(3) 1.347(9) 1.316(12) 1.323(12) Bond angles
Bond angles N(1)-Pd(1)-N(2) 81.6(2) 82.2(3) 82.01(13)
N(1)-Pd(1)-N(2) 82.2(2) 82.6(3) 82.1(2) N(1)-Pd(1)-N(3) 174.4(2) 174.0(2) 173.63(13)
N(1)-Pd(1)-N(3) 174.6(3) 174.3(3) 174.4(2) N(2)-Pd(1)-N(3) 93.1(2) 92.2(3) 91.91(13)
N(1)-Pd(1)-0O(1) 93.8(2) 89.6(3) 93.8(2) N(1)-Pd(1)-CI(1) 96.66(16) 96.56(17) 97.63(10)
N(2)-Pd(1)-N(3) 93.7(2) 92.2(3) 93.6(2) N(2)-Pd(1)-CI(1) 178.21(17) 175.39(15) 179.27(9)
N(3)-Pd(1)-0(1) 90.3(2) 95.6(3) 90.5(2) N(3)-Pd(1)-CI(1) 88.54(16) 89.14(17) 88.47(10)

[PA(1)-N(Dimine 2-014(6) > Pd(1)-N(2)pyridine 1.963(5) > Pd(1)-
N(3)anilido 1-932(5) A]. The N-aryl groups are inclined towards
orthogonality with regard to the neighbouring C=Ninmine
vector [tors. C(7)-N(1)-C(1)-C(6) 87.6(4) (1a), 86.4(4),° (1b)],
with the 2,6-diisopropyl substitution on the N-aryl group in 1b
additionally providing some steric protection to the axial sites
of the palladium centre. The closest crystallographically
characterised comparators to 1 are the phenolate-containing
counterparts, [{2-(C¢H,4-2'-0)-6-(CMe=NAr)C5H;N}Pd(OAc)]
(Ar = 4-i-PrC¢H,, 2,6-i-Pr,C¢H3), which display similar bonding
characteristics."”

Aview of chloride-containing 2b is given in Fig. 5; selected
bond distances and angles are collected for both 2a and 2b in
Table 3. The two independent molecules present in the unit
cell for 2a (A and B) differ most noticeably in the inclination of
the N-aryl plane to the adjacent imine unit. The structures of
2a and 2b are similar to those of their acetate precursors (1)
with a tridentate monoanionic 2-(2"-anilido)-6-imine-pyridine
filling three coordination sites of the distorted square planar
geometry but differ with a chloride now filling the fourth site.

Fig. 5 Molecular structure of 2b including a partial atom numbering
scheme. All hydrogen atoms, apart from H3, have been omitted for
clarity.

This journal is © The Royal Society of Chemistry 2015

Replacing a chloride for an O-bound acetate has little effect
on the trans Pd-Npygine distance [1.976(5),, 1.984(5)s (2a),
1.987(3) (2b) vs. 1.963(5) (1a), 1.970(9), 1.977(7); A (1b)].
Unlike 1b, the anilido NH proton is not involved in any inter-
or intra-molecular contacts of note.

Complexes 1a, 1b, 2a and 2b, all display molecular ion
peaks in their FAB mass spectra along with fragmentation
peaks corresponding to the loss of an acetate or a chloride,
respectively. In their IR spectra the imine stretching frequen-
cies are shifted between 28 and 35 cm™" to lower wavenumber
in comparison with the corresponding free HL1, characteristic
of imine-nitrogen coordination.*** In 1b and 2b two distinct
doublets are seen for the isopropyl methyl groups in their 'H
NMR spectra consistent with some restricted rotation about
the N-2,6-diisopropylphenyl bond in solution. The acetate
methyl groups in 1 can be seen at § ca. 1.5 in their 'H NMR
spectra with the MeC(O)O carbon atoms observable at &
ca. 177.1 in their *C NMR spectra. The anilido NH proton in 2
is observable at a similar chemical shift (ca. § 5.8) to that seen
in free HL1, but in acetate-containing 1 there is some variation
with that observed in 1b being more downfield (5§ 5.60 (1a),
7.39 (1b)); this is likely to be due to the influence of the intra-
molecular NH---Oyeerate hydrogen bonding seen in 1b (see
Fig. 4). As with related monodentate acetate complexes, 1a and
1b both show strong bands assignable to the symmetric and
asymmetric y(COO) vibrations."®

Their phenyl derivatives, [{2-(CeH,-2-NH)-6-(CMe=NAr)-
CsH;N}PdPh] (Ar = 4-i-PrC¢H, (3a), 2,6-i-Pr,CsH; (3b)), could
be readily accessed by treatment of HL1 with NaH followed by
(PPh3),PdPh(Br) (Scheme 3). Alternatively, 3a can be prepared
by treating chloride 2a with phenyl lithium; a related salt elim-
ination approach to make 3b has not proved possible. In the
case of 2a, chloride abstraction with both silver tetrafluoro-
borate and triflate in acetonitrile proved facile affording
[{2-(CeH4-2'-NH)-6-(CMe=N(4-i-PrCsH,)CsHsN}Pd(NCMe)|[X]
(X = BF, (4), X = O3SCF; (5)) in high yield (Scheme 3). Mono-
phenyl 3a and 3b are air and water stable, whereas 4 and 5
proved hygroscopic on prolonged standing. All four complexes

Dalton Trans., 2015, 44, 7230-7241 | 7233
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have been characterised using a combination of FAB mass
spectrometry, IR and NMR ("H and "C) spectroscopy and
elemental analyses (see Experimental section).

The mass spectra of 3a and 3b exhibit molecular ions while
4 and 5 display peaks corresponding to their cationic units. As
with 1 and 2, all four complexes exhibit Y(C=N)imine Stretches
at lower wavenumber (typically by 35 cm™") when compared
with HL1, supporting coordination of L1 to the metal
centre.”*" The imine methyl resonances are seen between &
2.2 and 2.5 in their '"H NMR spectra, while signals for the
imine carbon fall between § 170.5 and 174.8 in their "*C{'H}
NMR spectra. Signals attributable to [BF,]” and [O3SCF;]~
counterions could also be seen in the '’F NMR spectra of 4
and 5. In addition, crystals of 3a, 3b and the pyridine analogue
of 5, [{2-(C¢H4-2-NH)-6-(CMe=N(4-i-PrCsH,)CsH;N}Pd(NCs-
H;)][0O3SCF3] (5'), have been the subject of single crystal X-ray
diffraction studies.

As a representative of the mono-phenyl pair of structures, a
view of the molecular structure of 3a is depicted in Fig. 6;
selected bond distances and angles are listed in Table 4 for
both 3a and 3b. As with 1 and 2, 2-(2"-anilido)-6-imine-pyridine
ligand acts a tridentate ligand with the o-phenyl ligand now
occupying the fourth coordination site to complete a distorted
square planar geometry. The phenyl ligand in both structures
is tilted with respect to the trans-pyridine unit of the N,N,N-
ligand and most noticeably for 3a, presumably as a conse-
quence of the variation in steric hindrance imposed by the
N-aryl groups [tors. C(13)-N(2)-C(23)-C(24) 46.4(4) (3a),

Fig. 6 Molecular structure of 3a including a partial atom numbering
scheme. All hydrogen atoms, apart from H3, have been omitted for
clarity.
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Reagents and conditions: (i) xs. NaH, THF, heat; (ii) (PPh3z),PdPh(Br), THF, heat; (iii) LiPh, THF, —78 °C; (iv) AgX (X = BF,4, O3SCFs), MeCN,

Table 4 Selected bond distances (A) and angles (°) for 3a and 3b

3a 3b

Bond lengths
Pd(1)-N(1) 2.060(6) 2.041(2)
Pd(1)-N(2) 2.066(6) 2.069(2)
Pd(1)-N(3) 1.937(6) 1.959(3)
Pd(1)-C(23) 2.016(8) 2.013(3)
C(7)-N(1) 1.302(9) 1.291(4)
C(9)-C(7) 1.452(10) 1.472(4)
C(15)-N(3) 1.326(9) 1.348(4)
Bond angles

N(1)-Pd(1)-N(2) 81.0(3) 79.88(10)

N(1)-Pd(1)-N(3) 172.5(3) 171.38(10)
N(1)-Pd(1)-C(23) 99.2(3) 99.68(11)
N(2)-Pd(1)-C(23) 178.5(3) 169.73(11)
N(3)-Pd(1)-N(2) 91.5(3) 79.88(10)

41.4(4)° (3b)]. When compared to 1 and 2, the presence of
a o-phenyl group in 3 results in an elongation of the trans
Pd-Npyigine distance [Pd-N(2) 2.066(6) (3a), 2.069(2) (3b) vs
1.963(5) (1), 1.974(8),. (1b), 1.980(5),. (2a), 1.987(3) (2b) A],
an observation attributable to the strong trans-influence
exhibited by the aryl group. In contrast, the exterior nitrogen-
palladium distances remain similar in length to those seen in
1 and 2. To accommodate the increased Pd-N(2)pyrigine distance,
there is increased twisting of the ligand backbone which is
most apparent in 3b [tors. N(2)-C(13)-C(14)-C(15) 25.2(4) and
N(1)-C(7)-C(9)-N(2) 13.7(4)°]. As with chloride-containing 2, the
anilido NH proton shows no notable intra- or inter-molecular
contacts of note.

Unfortunately cationic 4 and 5 were not amenable to
forming crystals suitable for an X-ray determination. To over-
come this practical issue, small amounts of pyridine were
added to a solution of 5 in chloroform and hexane slowly
diffused forming single crystals of [{2-(C¢H4-2-NH)-6-(CMe=
N(4-i-PrC¢H,)CsH;3N}Pd(NC;sH;)][03SCF;] (5'). The molecular
structure of the cationic unit 5 is depicted in Fig. 7; selected
bond distances and angles are listed in Table 5. As with a
number of the structures reported in this study, two indepen-
dent molecules (A and B) were present in the unit cell which,
in this case, differ most noticeably in the inclination of the
N-aryl groups. The structure of 5’ consists of a palladium(iu)
cationic unit charge balanced by a non-coordinating triflate
counteranion. Within the distorted square planar cationic

This journal is © The Royal Society of Chemistry 2015
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Fig. 7 Molecular structure of cationic unit in 5, including a partial atom
numbering scheme. All hydrogen atoms, except for H3, have been
omitted for clarity.

Table 5 Selected bond distances (A) and angles (°) for 5

Molecule A Molecule B
Bond lengths
Pd(1)-N(1) 2.049(12) 2.034(12)
Pd(1)-N(2) 1.992(11) 1.952(11)
Pd(1)-N(3) 1.937(11) 1.962(11)
Pd(1)-N(4) 2.010(11) 2.105(11)
C(7)-N(1) 1.276(16) 1.279(16)
C(15)-N(3) 1.336(15) 1.316(16)
Range S-O (triflate) 1.424(11)-1.485(10)
Bond angles
N(1)-Pd(1)-N(2) 82.9(5) 82.0(5)
N(1)-Pd(1)-N(3) 175.3(5) 174.9(4)
N(1)-Pd(1)-N(4) 93.7(5) 94.0(5)
N(2)-Pd(1)-N(3) 92.6(5) 93.8(5)
N(2)-Pd(1)-N(4) 176.6(5) 175.7(5)
N(3)-Pd(1)-N(4) 90.8(5) 90.3(4)

unit, the 2-(2"-anilido)-6-imine-pyridine ligand acts a tridentate
ligand and an N-bound pyridine fills the fourth coordination
site. Similar to phenyl-bound 3, the monodentate hetero-
aromatic in 5’ is not co-planar with the trans-pyridine unit of
the tridentate ligand. Instead it adopts a tilted configuration
[C(13)-N(2)-N(4)-C(27) 58.1(5)s, 60.0(5)z°] which is ca. 8°
greater than that for the aryl group in 3b. Inspection of the
trans Pd-N(2)pyrigine distance involving the N,N,N-ligand
reveals a bond length [Pd(1)-N(2) 1.992(11),, 1.952(11); A]
comparable with those seen in 1 and 2, but shorter than that
in 3 (vide supra). The NH proton of the anilido unit of the
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pincer undergoes a modest interaction with a triflate oxygen
atom [N(3)---O(1) 3.096,, 3.1755 A].

Reactivity of 3 towards Selectfluor and XeF,

In the first instance the reactivity of mono-phenyl containing
3a towards Selectfluor was explored. Typically 3a was treated
with excess Selectfluor at 100 °C in a toluene-MeCN mixture;
these higher temperature conditions having been identified as
more conducive to formation of the C-F reductive elimination
product.*>** However, biphenyl was the only aryl-containing
organic product identified by GC-MS. Likewise using XeF, as
the oxidant instead of Selectfluor under the same conditions
gave only biphenyl.

To investigate the reaction further and potentially observe
any possible intermediates, a reaction involving an equimolar
ratio of 3a and Selectfluor was undertaken in CD;CN at a
series of lower temperatures and the reaction monitored by
"H and "F NMR spectroscopy (Scheme 4). After 15 minutes at
room temperature the '’F NMR spectrum revealed full con-
sumption of Selectfluor and a new peak at § —181 attributable
to the formation of hydrogen fluoride."” The '"H NMR spec-
trum contained signals consistent with biphenyl, the salt
[{2-(C¢H4-2-NH)-6-(CMe=N(4-i-PrC¢H,)CsH;N}Pd(NCCD3)|[BF,]
(4) (vide supra) and 1-(chloromethyl)-1,4-diazabicyclo[2.2.2]-
octan-1-ium tetrafluoroborate, the Selectfluor degradation
product. In addition, there were signals present attributable to
another palladium species that slowly reduced in intensity
over time.

When the reaction was carried out at —40 °C, full consump-
tion of Selectfluor was again evident from the '°F NMR spec-
trum which also contained a peak attributable to HF, albeit
temperature shifted (6§ —172). In the "H NMR spectrum full
conversion of 3a to a single palladium species was observed
with the aromatic/pyridyl region integrating to sixteen protons;
no peaks assignable to biphenyl nor 4 could be identified. As
the reaction mixture was warmed to 0 °C, only sharpening of
the "H NMR spectrum was observed with peaks that clearly
match those observed for the decomposing palladium species
seen at room temperature (Fig. S9 in ESIf). In the '°F NMR
spectrum a 1: 8 ratio between the HF signal (6 —174) and the
BF, peak (6 —152) accounts for all the fluorine introduced
from the Selectfluor (Fig. S10 in ESI{). On warming to room
temperature, decomposition of the palladium intermediate
ensued generating biphenyl and 4; full conversion being

r CI- [BF4l2
_ de
= LS — BF,
N7 L F J -
N—Pd—N . CDyCN/-40t00°C [Pd] CD;CN/0°C o RT ']l 4
H Pr intermediate N—Pd—N N
r 1[BFa H | Pri
) 7% NCCD3
3 L0 | )

Scheme 4 Low temperature oxidation of 3a and Ar—Ar coupling on warming.
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observed after 48 hours (Fig. S11 in ESIf). Unfortunately,
further attempts to fully characterise the high valent palladium
intermediate were unsuccessful.

The 1:1 reaction of 2,6-diisopropylphenyl-containing 3b
with Selectfluor was also explored at a range of different temp-
eratures. However, despite consumption of 3b, there was no
evidence for the formation of biphenyl, fluorobenzene nor
could any characterisable palladium species be identified. It is
unclear as to the origin of these differences in reactivity
between 3a and 3b towards Selectfluor.

Conclusions

A new family of imino-based monoanionic N,N,N pincer
ligands have been developed that can support neutral palla-
dium(u) acetate (1), chloride (2) and phenyl (3) species; the
tetrafluoroborate (4) and triflate (5) salts are also reported. The
oxidatively induced Ph-Ph coupling reactions involving 3a
described in this work highlights the ability of Selectfluor and
xenon difluoride to behave as bystanding oxidants.?? Using the
more sterically bulky 3b, neither biphenyl nor fluorobenzene
were produced under similar oxidative conditions. The identity
of the palladium intermediate that generates biphenyl and cat-
ionic 4 remains uncertain but investigations into the precise
nature of this species are ongoing.

Experimental
General

All operations, unless otherwise stated, were carried out under
an inert atmosphere of dry, oxygen-free nitrogen using stan-
dard Schlenk and cannular techniques or in a nitrogen purged
glove box. Operations involving a Microwave were performed
on a CEM Discover Explorer Hybrid instrument. Solvents were
distilled under nitrogen from appropriate drying agents'® or
were employed directly from a Solvent Purification System
(Innovative Technology, Inc.). The electrospray (ESI) mass
spectra were recorded using a micromass Quattra LC mass
spectrometer with acetonitrile or methanol as the matrix. FAB
mass spectra (including high resolution) were recorded on a
Kratos Concept spectrometer with NBA as matrix or on a
Waters Xevo QToF mass spectrometer equipped with an atmos-
pheric solids analysis probe (ASAP). The infrared spectra were
recorded in the solid state with Universal ATR sampling acces-
sories on a Perkin Elmer Spectrum One FTIR instrument.
NMR spectra were recorded on a Bruker DRX400 spectrometer
at 400.13 (*H), 376.46 (*°F) and 100.61 MHz (**C) or a Bruker
Avance III 500 spectrometer at 125 MHz (*’C), at ambient
temperature unless otherwise stated; chemical shifts (ppm)
are referred to the residual protic solvent peaks and coupling
constants are expressed in hertz (Hz). Melting points (mp)
were measured on a Gallenkamp melting point apparatus
(model MFB-595) in open capillary tubes and were un-
corrected. Elemental analyses were performed at the Science
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Technical Support Unit, London Metropolitan University. The
reagents 4-isopropylaniline, 2,6-diisopropylaniline, tin(u)
chloride dihydrate, phenyllithium (1.8 M in n-Bu,0), silver tri-
flate, silver tetrafluoroborate, 1-chloromethyl-4-fluoro-1,4-di-
azoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor™)
and 2-bromonitrobenzene were purchased from Aldrich
Chemical Co. and used without further purification. The com-
pounds 6-tributylstannyl-2-(2-methyl-1,3-dioxolan-2-yl)pyri-
dine'® and [(PPh;),PdPh(Br)]*° were prepared using literature
procedures. All other chemicals were obtained commercially
and used without further purification.

Synthesis of 2-(2-methyl-1,3-dioxolan-2-yl)-6-(2-nitrophenyl)-
pyridine

A 25 mL microwave vial was loaded with 2-bromonitrobenzene
(0.536 g, 2.70 mmol), 6-tributylstannyl-2-(2-methyl-1,3-dioxo-
lan-2-yl)pyridine (1.226 g, 2.70 mmol), Pd(OAc), (0.025 g,
0.11 mmol) and triphenylphosphine (0.058 g, 0.22 mmol) and
the contents dissolved in bench toluene (13 mL). The system
was then sealed and stirred for 30 s in a microwave before
heating to 100 °C (with 100 W power and 10 bar pressure
limits) for 1 h. The resulting dark brown reaction mixture was
concentrated under reduced pressure to yield a dark brown oil.
This oil was then dry loaded on to a silica column and eluted
with a 70 : 30 mixture of petroleum ether (40-60) and ethyl ace-
tate affording 2-(2-methyl-1,3-dioxolan-2-yl)-6-(2-nitrophenyl)-
pyridine as a yellow solid (0.517 g, 67%) along with trace
amounts of the homocoupled by-product 6,6"-bis(2-methyl-1,3-
dioxolan-2-y1)-2,2"-bipyridine. "H NMR (400 MHz, CDCl;): &
1.66 (s, 3H, CH3), 3.84 (m, 2H, O-CHH-CHH-0), 4.02 (m, 2H,
O-CHH-CHH-0), 2.37 (dd, *Juy 7.8, “Juu 1.0, 1H, Ar-H),
7.42-7.46 (m, 1H, Ar-H), 7.50 (dd, *Juy 7.5, Y 0.9, 1H, Ar-
H), 7.54-7.57 (m, 2H, Ar-H), 7.74 (dd, *Juy 7.8, *Jun 7.9, Ar-H),
7.78 (dd, *Jun 8.0, *Jun 8.1, 1H, Ar-H). “C {'H} NMR
(100 MHz, CDCl;): & 24.9 (CH3;), 65.0 (CH,), 65.1 (CH,), 108.6
(C), 118.7 (CH), 121.7 (CH), 124.4 (CH), 129.1 (CH), 131.1 (CH),
135.3 (C), 137.5 (CH), 149.8 (C), 154.9 (C), 161.1 (C). IR (cm™"):
1587 (C=N)pyridines 1530 (NO5)asymm, 1369 (NO,)symm HRMS
(TOFMS, ASAP): caled for C;5H;sN,0, [M + H]" 287.1032,
found 287.1034.

Synthesis of 1-(6-(2-aminophenyl)pyridine-2-yl)ethanone

2-(2-Methyl-1,3-dioxolan-2-yl)-6-(2-nitrophenyl)pyridine (1.040 g,
3.6 mmol) and SnCl,-2H,0 (8.220 g, 36.0 mmol) were
suspended in bench ethanol (34 mL) and sonicated for
2 h, whereupon a bright yellow slurry was obtained. This slurry
was concentrated under reduced pressure and partitioned
between 1 M NaOH (100 mL) and CHCl; (100 mL) until a
bright yellow organic phase was observed. The organic phase
was separated and the aqueous phase washed with CHCI; (3 x
25 mL). The combined organic phases were washed with water
(2 x 30 mL) and concentrated to a smaller volume under
reduced pressure. Aqueous HCI (150 mL, 16% (v/v)) was added
to the solution and the resultant biphase stirred for 1 h at
ambient temperature. The reaction mixture was neutralised
with K,CO;, the organic phase separated and the aqueous

This journal is © The Royal Society of Chemistry 2015
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phase washed with dichloromethane (2 x 30 mL). The com-
bined organic extracts were washed with water (1 x 30 mL) and
brine (1 x 30 mL) and then filtered through Celite layered with
magnesium sulphate. The filtrate was concentrated under
reduced pressure to afford 1-(6-(2-aminophenyl)pyridin-2-yl)-
ethanone as a brown/yellow oil which slowly solidifies (0.68 g,
89%). Mp: 95-98 °C. "H NMR (400 MHz, CDCl,): § 2.73 (s, 3H,
MeC=0), 5.77 (br, s, 2H, NH,), 6.82 (m, 2H, Ar-H), 7.22 (ddd,
*Jun 7.3, Jun 8.1, Yuu 1.6, 1H, Ar-H), 7.56 (dd, *Juy 7.8, Yuu
1.5, 1H, Ar-H), 7.85-7.95 (m, 3H, Py-H). “C{'H} NMR
(100 MHz, CDCl;): & 26.1 (Me-C=0), 117.4, 118.0, 119.0 (CH),
121.3 (C), 125.7 (CH), 129.6 (CH), 130.5 (CH), 137.9 (CH), 146.5
(C), 151.7 (C), 158.7 (C), 199.4 (C=0). IR (cm™'): 3456, 3363
(NH), 1695 (C=O)ietones 1585 (C=N)pyridine. ESIMS: m/z 213
[M + H]'. HRMS (FAB): caled for C;3Hy3N,O [M + HJ'
213.10246, found 213.10252.

Synthesis of 2-(C¢H,-2-NH,)-6-(CMe—NAr)CsH;N (HL1)

(a) Ar = 4-i-PrC¢H;, (HL1a). To a round bottomed flask
equipped with stir bar was added 1-(6-(2-aminophenyl)pyridin-
2-yl)ethanone (0.500 g, 2.4 mmol) and 4-isopropylaniline
(2.070 g, 15.3 mmol). The reaction vessel was then lowered
into a pre-heated heating mantle set at 225 °C and the mixture
stirred for 15 min before a catalytic amount of glacial acetic
acid was introduced. After 15 min at 225 °C the reaction vessel
was allowed to cool to room temperature. The excess aniline
was removed by distillation under reduced pressure, the resul-
tant dark residue heated to reflux in ethanol (10 ml) and hot
filtered. The filtrate was concentrated to half volume and
allowed to cool to room temperature to yield HL1a as a yellow
solid (0.040 g, 5%). Mp: 113-115 °C. 'H NMR (400 MHz,
CDCLy): & 1.28 (d, %y 7.0, 6H, CHMe,), 2.37 (s, 3H, MeC=N),
2.92 (sept, *Jun 7.0, 1H, CHMe,), 5.79 (br, s, 2H, NH,),
6.76-6.84 (m, 4H, Ar-H), 7.20 (ddd, *Juy 8.1, *Jun 7.4, YJuu 1.5,
1H, Ar-H), 7.23 (d, *Juy 8.2, 2H, Ar-H), 7.58 (dd, *Jux 7.8, *Jun
1.5, 1H, Ar-H), 7.74 (dd, *Juu 8.0, Juu 0.9, 1H, Py-H), 7.86
(dd, *Jun 7.93, *Juu 7.9, 1H, Py-H), 8.76 (dd, *Jum 7.9, YJuu 1.0,
1H, Py-H). C{"H} NMR (100 MHz, CDCl,): § 16.6 (MeC=N),
24.1 (CHMe,), 33.6 (CHMe,), 117.3, 117.9, 118.8, 119.3 (CH),
122.1 (C), 123.2 (CH), 126.9 (CH), 129.6 (CH), 130.1 (CH), 137.4
(CH), 144.2 (C), 146.5 (C), 148.8 (C), 155.2 (C), 158.2 (C), 166.5
(MeC=N). IR (em™): 1635 (C=N)imine; 1587 (C=N)pyridine-
ESIMS: m/z 330 [(M + H)]". HRMS (FAB): caled C,,H,,N;
[M + H]" 330.1970, found 330.1968.

(b) Ar = 2,6-i-Pr,CcH; (HL1b). Employing a similar pro-
cedure to that described for HL1a with 1-(6-(2-aminophenyl)-
pyridin-2-yl)ethanone (0.700 g, 3.3 mmol), 2,6-diisopropyl-
aniline (3.800 g, 21.5 mmol) gave following work-up HL1b
as a yellow solid (0.54 g, 44%). Crystals suitable for an X-ray
determination were grown by slow cooling of an ethanol
solution containing the compound. Mp: 139-141 °C. 'H NMR
(400 MHz, CDCly): 6 1.14 (d, *Juy 6.9, 6H, CHMe,), 1.15 (d,
*Jau 7.0, 6H, CHMe,), 2.21 (s, 3H, MeC=N), 2.75 (sept, *Jun
6.9, 2H, CHMe,), 5.72 (br, s, 2H, NH,), 6.80 (dd, *Juy 8.2, “Juu
1.0, 1H, Ar-H), 6.82 (ddd, *Jiy 8.2, *Jun 8.2, Yuu 1.3, 1H, Ar-
H), 7.08 (dd, *Jux 8.7, *Jun 6.3, 1H, Ar-H), 7.17 (dd, *Jyy 6.9,
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*Jun 8.5, 2H, Ar-H), 7.21 (ddd, *Ju 7.3, *Jun 8.0, Y 1.5, 1H,
Ar-H), 7.59 (dd, *Ju 8.0, Yy 1.5, 1H, Ar-H), 7.78 (dd, *Jun
8.0, *Juy 0.9, 1H, Py-H), 7.90 (dd, *Juy 7.9, *Jun 7.9, 1H, Py-H),
826 (dd, *Juyy 7.8, Yum 0.9, 1H, Py-H). “C{'H} NMR
(100 MHz, CDCl;): § 17.5 (MeC=N), 22.9 (CHMe,), 23.2
(CHMe,), 28.3 (CHMe,), 117.6, 118.2 (CH), 118.8 (C), 122.2
(CH), 123.0 (CH), 123.4 (CH), 123.7 (CH), 129.6 (CH), 130.1
(CH), 135.8 (C), 137.6 (CH), 146.1 (C), 146.3 (C), 154.5 (C),
158.2 (C), 165.0 (Me-C=N). IR (cm™'): 3451, 3282 (br, NH),
1642 (C=N)imine; 1584 (C=N)pyridine- ESIMS: mjz 372
[(M + H)]". HRMS (FAB): caled C,5H30N;0 [M + H]" 372.24322,
found 372.24310.

Synthesis of [{2-(C¢H,-2-NH)-6-(CMe=—NAr)}Pd(OAc)] (1)

(a) Ar=4-i-PrC¢H, (1a). A Schlenk flask equipped with stir
bar was evacuated and backfilled with nitrogen and loaded
with Pd(OAc), (0.740 g, 3.3 mmol), 1-(6-(2-aminophenyl)-
pyridin-2-yl)ethanone (0.690 g, 0.81 mmol), 4-isopropylaniline
(0.660 g, 4.9 mmol) and toluene (70 mL). The reaction vessel
was stirred and heated to 80 °C for 3 h. The resultant green/
brown solution was evaporated and the resultant solid dis-
solved in the minimum volume of chloroform before hexane
was added to precipitate 1a as a green/brown solid (1.45 g,
89%). Crystals suitable for an X-ray determination were grown
by slow diffusion of hexane into a solution of 1a in CHCI; at
room temperature. Mp: >260 °C. "H NMR (400 MHz, CDCl,):
5 1.22 (d, *Jun 6.9, 6H, CHMe,), 1.53 (s, 3H, ~OC(O)Me), 2.33
(s, 3H, MeC=N), 2.98 (sept, *Juiy 6.9, 1H, CHMe,), 5.60 (br, s,
1H, NH), 6.42 (ddd, */i5; 6.6, *Jam 8.5, YJau 1.2, 1H, Ar-H), 6.86
(dd, *Jum 8.5, YJun 1.2, 1H, Ar-H), 7.02 (ddd *Jyy 6.6, *Juu 7.9,
Yun 1.4, 1H, Ar-H), 7.07 (d, *Juy 8.4, 2H, Ar-H), 7.23 (d, *Jun
8.3, 2H, Ar-H), 7.59 (dd, *Juy 7.4, “Jun 1.0, 1H, Py-H), 7.89 (d,
*Juu 8.0, 1H, Ar-H), 7.99 (dd, *Juy 7.4, *Jun 8.8, 1H, Py-H),
8.56 (d, *Juu 8.8, 1H, Py-H). *C{'"H} NMR (100 MHz, CDCl,):
5 16.3 (MeC—=N), 21.9 (MeCO,), 22.9 (CHMe,), 32.9 (CHMe,),
111.8 (CH), 112.9 (C), 119.7 (CH), 121.5 (CH), 122.0 (CH), 125.4
(CH), 125.6 (CH), 128.3 (CH), 129.1 (CH), 133.5 (CH), 141.7 (C),
146.9 (C), 148.5 (C), 148.8 (C), 152.7 (C), 169.5 (Me-C—N),
177.0 (Me-CO,). IR (em™"): 1600 (C=N)imines; 1591 (COO5ymm/
C=Npyridine), 1367 (COO)symm FABMS: m/z 493 [M]’, 433
[M — OAc]". Anal Calc. for (C,4H,5N;0,Pd): C, 58.36; H, 5.10;
N, 8.51. Found: C, 58.26; H, 5.23; N, 8.51%.

(b) Ar = 2,6-i-Pr,CsH; (1b). A Schlenk flask equipped with
stir bar was evacuated and backfilled with nitrogen and loaded
with Pd(OAc), (0.180 g, 0.81 mmol), HL1b (0.300 g,
0.81 mmol) and toluene (30 mL). After stirring at 60 °C over-
night, the green reaction mixture was cooled to room tempera-
ture and filtered through Celite and the Celite cake washed
thoroughly with dichloromethane. The filtrate was concen-
trated to ca. 1 mL whereupon hexane (20 mL) was added. The
resulting green precipitate was filtered and dried under
reduced pressure forming 1b as a dark green powder (0.38 g,
88%). Crystals suitable for an X-ray diffraction study could be
grown by slow diffusion of hexane into a chloroform solution
of the complex at room temperature. Mp: >260 °C. "H NMR
(400 MHz, CDCl,): § 1.14 (d, 3Jy 6.8, 6H, CHMe,), 1.39

Dalton Trans., 2015, 44, 7230-7241 | 7237


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5dt00216h

Open Access Article. Published on 09 March 2015. Downloaded on 1/23/2026 10:45:41 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

(d, *Jun 6.8, 6H CHMe,), 1.51 (s, 3H, ~OC(O)Me), 2.41 (s, 3H,
MeC=N), 3.14 (sept, *Juy 6.8, 2H, CHMe,), 6.53 (ddd, i1 8.6,
*Juu 6.5, YJun 1.4, 1H, Ar-H), 7.06 (dd, *Jyy 8.5, YJun 1.2, 1H,
Ar-H), 7.13 (ddd, *Juy 8.5, Jun 6.4, Yun 1.4, 1H, Ar-H), 7.26
(m, 2H, Ar-H), 7.36 (dd, *Jyy 8.7, *Jun 6.8, 1H, Ar-H), 7.39 (br,
s, 1H, NH), 7.82 (dd *Jyy 7.4, “Jun 1.0, 1H, Py-H), 8.01 (d, *Juy
8.6, 1H, Ar-H), 8.10 (dd, */uu 8.8, *Juwu 7.3, 1H, Py-H), 6.80 (d,
*Jun 8.7, 1H, Py-H). “C{'H} NMR (100 MHz, CDCl3): § 17.0
(CHMe,), 22.3 (CHMe,), 22.7 (MeCO,), 22.8 (MeC=N), 27.6
(CHMe,), 112.0 (CH), 112.6 (C), 120.3 (CH), 121.0 (CH), 122.4
(CH), 125.7 (CH), 126.7 (CH), 127.7 (CH), 129.2 (CH), 132.5
(CH), 139.0 (C), 139.4 (C), 149.0 (C), 149.2 (C), 152.7 (C), 170.1
(Me-C=N), 177.2 (Me-CO,). IR (em™"): 1614 (C=N)imine, 1583
(COO)asymm/C=Npyridine), 1367 (COO)gymm ESIMS: m/z 476
[M — OAc]’". TOFMS (ASAP): m/z 536 [M'], 476 [M — OAc]". Anal
Cale. for (C,3H3,Cl3N;0,Pd): C, 51.32; H, 4.92; N, 6.41. Found:
C, 50.92; H, 4.18; N, 7.36%.

Synthesis of [{2-(C¢H,-2-NH)-6-(CMe=NAr)}PdCl] (2)

(a) Ar = 4-i-PrC¢H, (2a). A round bottomed flask equipped
with stir bar and open to the air was loaded with 1a (0.595 g,
1.20 mmol), dichloromethane (5 mL) and brine (5 mL). The
reaction mixture was stirred rapidly for 1 h at room tempera-
ture whereupon both phases were diluted and the aqueous
layer removed via a separating funnel. The organic phase was
washed with water (2 x 20 mL) and concentrated to a smaller
volume under reduced pressure. The dark green solution was
filtered through a Celite plug and the plug washed thoroughly
with dichloromethane. All volatiles were removed under
reduced pressure affording 2a as a dark brown solid (0.56 g,
99%). Single crystals suitable an X-ray determination were
grown by diffusion of hexane into a solution of 2a in chloro-
form at room temperature. Mp: >260 °C. "H NMR (400 MHz,
CDCl,): 6 1.23 (d, *Juy 6.9, 6H, CHMe,), 2.28 (s, 3H, MeC—N),
2.89 (sept, *Juy 6.9, 1H, CHMe,), 5.59 (br, s, 1H, NH), 6.43
(ddd, *Jun 6.1, *Juu 8.0, Yun 1.20, 1H, Ar-H), 6.81 (dd, *Juy
8.6, *un 1.0, 1H, Ar-H), 6.99-7.03 (m, 5H, Ar-H), 7.19 (d, *Juy
8.2, 2H, Ar-H), 7.55 (dd, *Jun 7.5, Yuu 0.9, 1H, Py-H),
7.73-7.79 (m, 2H, Py-H/Ar-H), 8.30 (d, *Juy 8.7, 1H, Py-H). *C
{"H} NMR (125 MHz, CDCl;): § 17.0 (CH;C=N), 22.9 (CHMe,),
32.7 (CHMe,), 112.1 (CH), 112.8 (C), 119.7 (CH), 121.6 (CH),
122.3 (CH), 125.1 (CH), 125.5 (CH), 128.2 (CH), 129.5 (CH),
133.4 (CH), 142.9 (C), 146.6 (C), 148.4 (C), 148.4 (C), 153.1 (C),
171.0 (Me-C=N). IR (ecm™'): 1603 (C=N)imine, 1576
(C=N)pyridine- FABMS: m/z 469 (M), 434 (M-Cl)". Anal Calc.
for (For C,,H,,CIN;Pd): C, 56.18; H, 4.71; N, 8.93. Found:
C, 56.11; H, 4.69; N, 9.00%.

(b) Ar = 2,6-i-Pr,C¢H; (2b). Employing a similar procedure
to that described for 2a using 1b (0.544 g, 1.02 mmol) gave 2b
as a dark green solid (0.520 g, 99%). Single crystals suitable for
an X-ray diffraction study could be grown by slow diffusion of
hexane into a chloroform solution of 2b at room temperature.
Mp: >260 °C. "H NMR (400 MHz, CDCl3): § 1.05 (d, *Juy 6.9,
6H, CHMe,), 1.35 (d, *Jjug 6.9, 6H, CHMe,), 2.28 (s, 3H,
MeC=N), 2.99 (sept, *Jun 6.9, 2H, CHMe,), 5.91 (br, s, 1H,
NH), 6.49 (ddd, */us 8.5, *Jun 6.7, “Jun 1.3, 1H, Ar-H), 6.92
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(dd, *Jun 8.6, YJun 1.2, 1H, Ar-H), 7.06 (ddd, *Jyy 8.2, *Juy 6.5,
Y 1.4, Ar-H), 7.19 (m, 2H, Ar-H), 7.28 (dd, *Jun 8.5, Jun
8.5, 1H, Ar-H), 7.77 (dd, *Jug 7.3, YJuu 1.1, 1H, Py-H), 7.92
(dd, *Ju 8.6, Yun 1.5, 1H, Ar-H), 8.06 (dd, *Jiy 8.8, *Jun 8.4,
1H, Py-H), 8.63 (d, *Juu 8.6, 1H, Py-H). C {'H} NMR
(125 MHz, CDCl;): § 18.0 (Me-C=N), 23.7 (CHMe,), 23.8
(CHMe,), 28.7 (CHMe,), 113.6 (CH), 113.8 (C), 121.3 (CH),
122.1 (CH), 123.6 (CH), 127.2 (CH), 128.1 (CH), 129.1 (CH),
130.8 (CH), 134.1 (CH), 139.7 (C), 141.6 (C), 150.0 (C), 150.3
(C), 153.7 (C), 172.1 (Me-C=N). IR (cm™"): 1608 (C=N)imine,
1577 (C=N)pyridine- FABMS: m/z 511 [M + H]", 475 [M — CI]".
Anal Calc. for (C,sHpgCIN;Pd): C, 58.60; H, 5.51; N, 8.20.
Found: C, 58.49; H, 5.35; N, 8.26%.

Synthesis of [{2-(C¢H,-2-NH)-6-(CMe=NAr)}Pd(C¢H;)] (3)

(a) Ar=4-i-PrCeH, (3a). A Schlenk flask equipped with stir
bar was evacuated and backfilled with nitrogen and loaded
with 2a (0.208 g, 0.44 mmol) and THF (20 mL). The reaction
mixture was stirred and cooled to —78 °C for 15 min. A solu-
tion of PhLi (861 pL, 1.55 mmol, 1.8 M in #-Bu,0) was added
slowly and the reaction mixture stirred at —78 °C for a further
2 h. One drop of water was added and the solution slowly
warmed to room temperature. All volatiles were removed under
reduced pressure and the resultant green solid re-dissolved in
dichloromethane (20 mL) and washed with water (2 x 20 mL)
and brine (10 mL). Following drying over anhydrous mag-
nesium sulphate and filtration, the resulting green solution
was concentrated to a smaller volume (ca. 5 mL) and hexane
added to precipitate 3a as a green solid (0.161 g, 71%). Single
crystals suitable for an X-ray determination were obtained by
slow diffusion of hexane into a solution of 3a in chloroform at
room temperature. "H NMR (400 MHz, CDCl3): 6 1.19 (d, *Juy
6.9, 6H, CHMe,), 2.46 (s, 3H, MeC=N), 2.80 (sept, *Ju 6.9,
1H, CHMe,), 5.48 (br, s, 1H, NH), 6.44 (ddd, *Jyy 6.5, *Juy 8.0,
Yuu 1.1, 1H, Ar-H), 6.65 (d, *Ju 8.4, 2H, Ar-H), 6.73-6.75 (m,
3H, Ar-H), 6.90 (dd, /iy 8.6, “Jun 1.3, 1H, Ar-H), 6.95 (d, *Jun
8.4, 2H, Ar-H), 7.05 (ddd, */yy 6.6, *Jun 8.1, Y 1.4, 1H, Ar-
H), 7.07-7.09 (m, 2H, Ar-H), 7.82 (d, %Jy 7.1, 1H, Py-H), 7.98
(dd, *Juy 8.5, Yuu 1.3, 1H, Ar-H), 8.05 (dd, *Juy 7.5, *Juu 8.6,
1H, Py-H), 8.58 (d, *Jun 8.8, 1H, Py-H). "C{'H} NMR
(100 MHz, CDCl;) & 18.3 (Me-C—N), 24.0 (CHMe,), 33.7
(CHMe,), 111.9 (CH), 114.0 (C), 121.3 (CH), 122.2 (CH), 122.6
(CH), 122.9 (CH), 125.9 (CH), 126.0 (CH), 126.1 (CH), 129.9
(CH), 130.0 (CH), 134.2 (CH), 135.9 (CH), 145.1, 146.9, 152.0,
152.1, 153.1, 158.5 (C), 170.5 (MeC=N). IR (cm™): 1602
(C=N)imine, 1567 (C=N)pyridine. FABMS: m/z 511 [M]". Anal
Cale. for (C,gH,,N;Pd-1.50H,): C, 62.40; H, 5.61; N, 7.80.
Found: C, 62.04; H, 5.33; N, 8.16%.

(b) Ar = 2,6-i-Pr,CsH; (3b). A Schlenk flask equipped with
stir bar was evacuated and backfilled with nitrogen and loaded
with HL1b (0.100 g, 0.13 mmol), NaH (0.052 g, 2.20 mmol)
and THF (10 mL). The resulting slurry was stirred and heated
to reflux for 72 h before being allowed to cool to room temp-
erature. The reaction mixture was transferred by cannular fil-
tration to a second Schlenk flask containing [(PPh;),PdPh(Br)]
(0.100 g, 0.13 mmol) and the contents stirred and heated to
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reflux for a further 72 h. On cooling to room temperature, the
resulting green solution was concentrated under reduced
pressure and re-dissolved in chloroform (10 mL) before being
filtered through a Celite plug. All volatiles were removed under
reduced pressure and the resulting residue triturated with
hexane (3 x 20 mL) and 3b collected as a green solid (0.067 g,
93%). Crystals suitable for an X-ray determination were grown
by slow diffusion of hexane into a solution of 3b in chloroform
at room temperature. "H NMR (400 MHz, CDCl3): § 0.90 (d,
*Jun 6.7, 6H, CHMe,), 0.95 (d, *Jiu 6.8, 6H, CHMe,), 2.32 (s,
3H, MeC=N), 2.94 (sept, *Juy 6.8, 2H, CHMe,), 6.40 (ddd, *Ji;x1
8.1, Jun 6.6, Yun 1.3, 1H, Ar-H), 6.66-6.73 (m, 3H, Ar-H),
6.84 (dd, *Jyy 8.4, YJun 1.2, 1H, Ar-H), 6.88-6.93 (m, 2H, Ar-
H), 6.99 (ddd, *Jyy 8.3, *Jun 6.6, Yy 1.6, 1H, Ar-H), 6.99 (d,
*Juu 7.8, 2H, Ar-H), 7.12 (dd, *Juy 7.7, *Juu 7.7, 1H, Ar-H),
7.80 (dd, *Ju 7.5, Yun 1.0, 1H, PyH), 7.91 (dd, *Juy 8.6, “Juu
1.4, 1H, Ar-H), 8.02 (dd, *Jyy 8.8, *Jun 7.5, 1H, Py-H), 8.55 (d,
un 8.7, 1H, Py-H). *C{'H} NMR (100 MHz, CDCl,): 5 19.3
(MeC=N), 22.9 (CHMe,), 24.2 (CHMe,), 28.2 (CHMe,), 112.1
(CH), 114.5 (C), 121.3 (C), 122.5 (CH), 122.8 (CH), 123.5 (CH),
125.8 (CH), 126.5 (CH), 127.1 (CH), 130.0 (CH), 130.1 (CH),
134.3 (CH), 135.9 (CH), 139.5 (CH), 142.9 (C), 151.5 (C), 152.4
(C), 153.2 (C), 155.5 (C), 172.1 (Me-C=N). IR (cm™'): 1605
(C=N)imine, 1571 (C=N)pyridine- FABMS: m/z 553 [M + H]".

Synthesis of [{2-(C¢H,4-2-NH)-6-(CMe=—N(4-i-PrC¢H,)}Pd-
(NCMe)][X] (4 and 5)

(a) X =BF, (4). A Schlenk flask equipped with stir bar was
evacuated and backfilled with nitrogen and loaded with 2a
(0.200 g, 0.426 mmol), AgBF, (0.083 g, 0.426 mmol) and MeCN
(20 mL). The reaction mixture was stirred at room temperature
for 12 h, at which point the suspension was allowed to settle
and the solution transferred by cannula filtration into another
Schlenk flask. All volatiles were removed under reduced
pressure to afford 4 as a dark green solid (0.233 g, 97%). Mp:
>260 °C. "H NMR (400 MHz, CD;CN): § 1.21 (d, *Jiy 6.9, 3H,
CHMe,), 2.27 (s, 3H, CH;C=N), 2.93 (sept, Jun 6.9, 1H,
CHMe,), 6.60 (dd, *Jyy 7.5, *Jau 7.5, 1H, Ar-H), 6.98 (d, *Juy
8.4, 1H, Ar-H), 7.04 (d, *Juy 7.8, 2H, Ar-H), 7.10 (dd, *Juy 7.6,
*Jun 7.8, 1H, Ar-H), 7.34 (d, *Juy 8.0, 2H, Ar-H), 7.83 (d, *Juu
7.5, 1H, Py-H), 7.89 (d, *Juy 8.0, 1H, Ar-H), 8.08 (dd, */x 8.0,
*Juu 8.0, 1H, Py-H), 8.53 (d, *Juy 8.6, 1H, Py-H), the co-
ordinated CH;CN ligand was not observed due to rapid
exchange with bulk CD;CN. *C{'"H} NMR (100 MHz, CD;CN):
8 17.0 (CH;C=N), 22.9 (CHMe,), 33.3 (CHMe,), 115.3 (CH),
117.0 (C), 119.6 (CH), 122.3 (CH), 124.9 (CH), 126.9 (CH), 127.0
(CH), 129.7 (CH), 131.2 (CH), 136.8 (CH), 142.9 (C), 147.1 (C),
148.8 (C), 149.5 (C), 155.0 (C), 174.8 (C=N). “F{'H} NMR
(375 MHz, CD3;CN): § —151 (-BF,). ESIMS (+ve) m/z: 475
[M — BFE,]; ESIMS (-ve): m/z 87 [BF,]". Anal Calc. for
(C,4H,5N,F,PdB): C, 51.23; H, 4.48; N, 9.96. Found: C, 51.13;
H, 4.40; N, 9.87%.

(b) X = 0;SCF; (5). Employing a similar procedure to that
described for 4 using 2a (0.205 g, 0.44 mmol), AgOSO,CF;
(0.112 g, 0.44 mmol) and MeCN (20 mL) gave 5 as a dark
green solid (0.259 g, 95%). Crystallisation by slow diffusion of
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petroleum ether (40-60) into a solution of the salt in aceto-
nitrile-dichloromethane (5:95) gave 5 as a microcrystalline
powder. Single crystals of pyridine-containing 5’ suitable for
X-ray diffraction could be obtained by slow diffusion of hexane
into a chloroform solution of 5 that contained a few drops of
pyridine. Complex 5: Mp: >260 °C. 'H NMR (400 MHz,
CD5CN): § 1.32 (d, *Jup 6.9, 6H, CHMe,), 2.51 (s, 3H, MeC=N),
3.05 (sept, *Jyy 6.9, 1H, CHMe,), 6.14 (br, s, 1H, NH), 6.74
(app. t, *Juu 7.7, 1H, Ar-H), 7.17-7.23 (m, 3H, Ar-H), 7.26-7.29
(m, 1H, Ar-H), 7.48 (d, *Jun 8.3, 2H, Ar-H), 8.16 (m, 2H, Ar-H),
8.33 (dd, *Jum, 8.0, *Jun 8.0, 1H, Py-H), 8.54 (d, *Juy 8.5, 1H,
Py-H), the coordinated CH;CN ligand was not observed due to
rapid exchange with bulk CD;CN. “C{'H} NMR (100 MHz,
CD;CN): 6 17.0 (MeC—=N), 22.9 (CHMe,), 33.3 (CHMe,), 115.4
(CH), 119.2 (C), 119.7 (CH), 122.4 (CH), 124.9 (CH), 126.9 (CH),
129.7 (CH), 131.0 (CH), 136.7 (CH), 142.8 (C), 146.7 (C), 148.8
(C), 149.3 (C), 154.8 (C), 174.7 (MeC—=N), CF;SO;  not
observed. "’F{'"H} NMR (375 MHz, CD;CN): § —79 (O3SCF;). IR
(em™): 1602 (C=N)imine, 1570 (C=N)pyridine- ESIMS (+ve): m/z
475 [M — O5SCF;]'; ESIMS (—ve): m/z: 149 [05SCF;]". Anal Calc.
for (C,5H,sN,0;F;PdS-CH,CL,): C, 43.99; H, 3.83; N, 7.89.
Found: C, 44.13; H, 3.78; N, 7.60%.

Reaction of 3a with Selectfluor in NMR tube at reduced
temperatures

(a) —40 to 0 °C. Complex 3a (0.005 g, 0.0098 mmol) and
Selectfluor™ (0.0035 g, 0.0098 mmol) were loaded into a
Young’s NMR tube open to the air and then cooled to =100 °C
before acetonitrile-d; was added and the system sealed. The
NMR tube was inserted into a 400 MHz NMR spectrometer
pre-cooled to —40 °C and the "F and 'H NMR spectra were
recorded at —40 °C and then at 10 °C intervals up to 0 °C. At
—40 °C, '"H NMR (400 MHz, CD;CN): 6 1.16 (d, *Jyy 6.8, 6H,
CHMe,), 2.40 (s, 3H, MeC=N), 2.82 (sept, *Jun 6.8, 1H,
CHMe,), 6.70 (d, *Jyp, 8.5, 2H, Ar-H), 6.72-6.77 (m, 2H, Ar-H),
6.84-6.86 (m, 2H, Ar-H), 7.04 (d, *Jiy 8.4, 2H, Ar-H), 7.36-7.43
(m, 2H, Ar-H), 7.47-7.55 (m, 2H, Ar-H), 7.86 (dd, *Juy 7.7,
Yuu 1.9, 1H, Ar-H), 8.17 (m, 1H, Ar-H), 8.40 (m, 2H, Ar-H).
F{'H} NMR (375 MHz, CD;CN): § —152 (BF,), —172 (HF).
At —30 °C, '"H NMR § no change. F{'"H} NMR: § —152
(BF,), —172 (HF). At —20 °C, '"H NMR § no change. 'F{'H}
NMR: § —-152 (BF,), —173 (HF). At —10 °C, "H NMR 6 no
change. "F{'"H} NMR: § -152 (BF,), =173 (HF). At 0 °C:
'H NMR & no change. "F{'"H} NMR: § —152 (8F, BF,), —174
(1F, HF).

(b) 0 °C to room temperature. The reaction mixture pre-
pared in (a) was further warmed to room temperature and the
'H NMR spectrum recorded periodically. After 48 h, complete
conversion to 4 (data as reported for 4 above) and biphenyl
was observed. "’F{'H} NMR § —152 (BF,), —181 (HF).

Crystallographic studies

Data for HL1b, 1a, 1b, 2a, 2b, 3a, 3b and 5’ were collected on a
Bruker APEX 2000 CCD diffractometer. Details of data collec-
tion, refinement and crystal data are listed in Table 6. The data
were corrected for Lorentz and polarisation effects and empiri-
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Complex HL1b la 1b 2a
Formula CysH,oN; C,4H,5C1;N;0,Pd-CHCL,-OH, C,sH3,Cl;N;0,Pd C,,H,,CIN,Pd
M 371.51 631.25 655.32 470.28
Crystal size (mm?) 0.24 X 0.17 x 0.12 0.27 X 0.05 x 0.04 0.27 x 0.17 x 0.11 0.23 % 0.20 x 0.04
Temperature (K) 150(2) 150(2) 150(2) 150(2)
Crystal system Orthorhombic Triclinic Triclinic Monoclinic
Space group Pbca P1 P1 P2(1)/n
a(A) 12.906(10) 6.9770(16) 14.194(4) 17.674(4)
b(A) 8.308(6) 12.184(3) 15.316(4) 8.9111(19)
c(4) 39.43(3) 15.543(4) 15.711(4) 24.267(5)
a(°) 90 87.923(4) 61.002(5) 90
B (°) 90 84.029(5) 77.050(7) 93.133(5)
v (° 90 84.203(5) 80.162(7) 90
U (A% 4228(5) 1307.0(5) 2903.6(14) 3816.2(14)
zZ 8 2 4 8
D, (Mg m™?) 1.167 1.604 1.499 1.637
F(000) 1600 640 1336 1904
#(Mo-K,)(mm™) 0.069 1.049 0.945 1.124
Reflections collected 28 600 10332 22 854 28912
Independent reflections 3715 5074 11293 7469
Rint 0.2201 0.1059 0.1479 0.1336
Restraints/parameters 0/258 20/319 0/679 1/493
Final R indices (I > 20(1)) R, =0.0628 R, =0.0683 R; =0.0873 R; =0.0582
WR, = 0.1155 WR, = 0.1067 WR, = 0.1788 WR, = 0.0914
All data R, = 0.1397 R, =0.1235 R, =0.1888 R, =0.1237
WR, = 0.1377 WR, = 0.1232 WR, = 0.2173 WR, = 0.1078
Goodness of fit on F* (all data) 0.871 0.861 0.848 0.890
Complex 2b 3a 3b 5
Formula Cp6HoCLN3Pd C,sH,,N3Pd C3,H33N3Pd CygHyF3N, O3PdS-2CHCl;
M 631.72 511.93 554.00 900.72
Crystal size (mms) 0.36 x 0.31 x 0.04 0.26 x 0.12 x 0.05 0.25 % 0.22 x 0.10 0.46 x 0.14 x 0.04
Temperature (K) 150(2) 150(2) 150(2) 150(2)
Crystal system Monoclinic Monoclinic Orthorhombic Triclinic
Space group P2(1)/n P2(1)/c Pbca P1
a(A) 11.410(8) 17.244(11) 12.118(3) 14.155(7)
b(A) 17.663(13) 11.142(8) 10.844(3) 16.226(8)
c(A) 12.991(9) 12.238(8) 40.250(10) 17.503(8)
a () 90 90 90 89.109(9)
£(°) 94.182(13) 105.925(14) 90 76.364(11)
y(° 90 90 90 70.267(10)
U (A% 2611(3) 2261(3) 5289(2) 3668(3)
zZ 4 4 8 4
D. (Mg m~3) 1.607 1.504 1.391 1.631
F(000) 1280 1048 2288 1804
H(Mo-Ky)(mm™) 1.141 0.842 1.391 1.053
Reflections collected 19939 17292 41613 26756
Independent reflections 5116 4444 5763 12 826
Rint 0.0775 0.2311 0.0699 0.2649
Restraints/parameters 0/312 0/292 0/321 749/889
Final R indices (I > 20(I)) R, =0.0446 R, =0.0732 R, =0.0431 R, =0.1055
WR, = 0.0904 WR, = 0.1210 WR, = 0.0906 WR, = 0.2112
All data R, = 0.0615 R, =0.1615 R, = 0.0569 R, =0.2711
WR, = 0.0955 WR, = 0.1450 WR, = 0.0955 WR, = 0.2821
Goodness of fit on F* (all data) 1.044 0.867 1.122 0.829

“Data in common: graphite-monochromated Mo-K, radiation, A = 0.71073 A; R, = X||F,| — |Fe||/X|Fol, WRs = [SW(Fo? — F2)* Y w(F2) T, w™t =
[6*(Fo)* + (aP)?], P = [max(F,?, 0) + 2(F%)]/3, where a is a constant adjusted by the program; goodness of fit = [Y(F,> — F.*)2/(n — p)]"/* where n is

the number of reflections and p the number of parameters.

cal absorption corrections applied. Structure solution by direct
methods and structure refinement based on full-matrix least-
squares on F° employed SHELXTL version 6.10.>" Hydrogen
atoms were included in calculated positions

7240 | Dalton Trans., 2015, 44, 7230-7241

(C-H =

0.96-1.00 A) riding on the bonded atom with isotropic displa-
cement parameters set to 1.5 Ugq(C) for methyl H atoms and
1.2 Ueqy(C) for all other H atoms. All non-H atoms were refined
with anisotropic displacement parameters.
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