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Treatment of the imine PhC(=NSiMe;z)py with Et,BOMe or
BF;-Et,O afforded bicyclic ketiminoboranes 4a and 4b via intra-
molecular N-coordination. The basicity of the imine N is evidenced
by their reactivity towards Bregnsted and Lewis acids and the struc-
tures of 4a-HCl and 4b-BF; are reported as well as the dipyridyl
imine derivative 4c-HCL

The use of intramolecular coordination of a pyridyl group has
been exploited in recent years as a route to novel main group
heterocycles. For example Dyer and co-workers investigated the
intramolecular N-coordination of 2-pyridyl-N-phosphino-
imines (1) and found that an equilibrium existed between
open and closed forms 1a and 1b." The 2-coordinate nitrogen
in 1b is found to be sufficiently basic to form the adduct 1c
with Lewis acidic AlCl;," whilst oxidation with [(‘Pr,N),P][OTf]
led to an unusual n-conjugated coupled products (1d and 1e)
(Scheme 1) via an oxidative radical coupling process.”

Studies on the chemistry of related group 16 compounds
revealed similar behaviour between ring-open and ring-closed
products (Scheme 2). For example, when X = Ar (E = S) the
open-form 2a is favoured with a short intramolecular S---N
contact whereas when X = Cl (E = S, Se) then the ring-closed
form 2b was favoured.> Work by Brusso and co-workers has
revealed that at elevated temperatures ring-opening of these
N-bridgehead thiadiazoles can occur.’ Similar intramolecular
N-coordination has been implemented to generate hypervalent
si'v (3).°
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In these compounds the group 14/15/16 heteroatoms are all
formally electron precise centres and intramolecular N-coordi-
nation makes them hypervalent affording some degree of labi-
lity between open and closed forms. Conversely group 13
elements are Lewis acidic and ring closure is expected to be
strongly favoured. Ketiminoboranes, R,C=N-BR, were
reported by Hawthorne, Wade and Lappert in the 1960’s and
are variously monomeric or dimeric depending upon substitu-
ents, with the monomeric ketimines R,C=NBR, formally iso-
electronic with allene.® In the current manuscript we describe
the synthesis of ketiminoboranes in which the R group is
capable of intramolecular coordination forming novel C/N/B
heterocycles (4a-c). These heterocycles are similar to
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N,N'-boron chelate complexes, particularly derivatives of
BODIPY, which have attracted considerable attention for their
fluorescent properties,” as dyes in photodynamic therapy,® as
well as photo-induced electron and energy transfer’ and as
optical switches' inter alia. In the current paper we describe
the generation of 4a-4c and find that the 2-coordinate imine
nitrogen is strongly basic, permitting us to isolate and structu-
rally characterise 4a-HCl, and 4b-BF; and 4¢-HCI.§

Compounds 4a-4c were prepared using a similar conden-
sation reaction to that employed by Wade® to prepare
Ph,C=NBPh, ie. via the condensation of the imine
Ar,C=NSiMe; with either Et,BOMe or BF; OEt,. Crystals of
4a-HCI and 4c-HCI appeared over 3 days and were isolated by
filtration (27-37% unoptimised isolated yield). The HCI pre-
sumably arises from adventitious hydrolysis of Me;SiCl. Crys-
tals of 4b-BF; were initially recovered in low yield from the
reaction of PhC(=NSiMe;)py with BF;-Et,O in a 1:1 ratio but
substantially improved yields (61%) were achieved using a 1:2
ratio. This suggests that the low solubility of the adduct
favours crystallisation of the 1:2 product.

The 'H NMR spectrum of 4a-HCI clearly reveals a broad
singlet at 16.3 ppm consistent with N-protonation whilst the
"B NMR spectrum revealed a singlet at +8 ppm consistent
with a tetrahedral B centre and a molecular ion peak at m/z =
251 with an isotope distribution pattern consistent with 4a-H".
The structure of 4a-HCI was determined by X-ray diffraction
(Fig. 1) and found to crystallise as a THF solvate. The B-C
bonds are unexceptional but the B-N bond lengths are slightly
different (within 3 esd’s) with the B1-N1 bond (1.561(5) A)
somewhat shorter than the formally dative pyridyl B-N bond
(1.595(5) A). Both are consistent with B-N single bond charac-
ter (1.57-1.60 A).™ The C10-N1 bond at 1.285(4) is short, con-
sistent with significant imine character. At 3.058(3) A the
N1---Cl1 distance is consistent with a conventional N-H---Cl
hydrogen-bonded contact.'?

The "B and '°F spectra of 4b-BF; revealed four '°F and four
"B NMR resonances, the intensities of which varied depend-
ing upon solvent. In the "B NMR in MeCN two triplet reson-
ances are observed in the 4-8 ppm range corresponding to two
chemically distinct BF, environments, comparable with other

Fig. 1 Molecular structure of 4a-HCl (THF solvent omitted for clarity)
with thermal ellipsoids drawn at the 50% probability level. Selected bond
lengths: B1-C31 1.598(6), B1-C33 1.598(5), B1-N1 1.561(5), B1-N2
1.595(5), N1-C10 1.285(4), N2-C11 1.355(4), C10-C11 1.476(4) A.
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Fig. 2 'B—!°F HMQC NMR spectra of 4b-BFz in MeCN.

4-coordinate BN,F, centres.'®® In addition, a quartet at

0 ppm and a singlet at —1 ppm are observed (see ESIt). The
quartet we tentatively assign to the N-coordinated BF; in
4b-BF; and the singlet as BF; MeCN, based on chemical shift.
These observations suggest a dynamic equilibrium (eqn (1)) in
which the coordinated BF; is labile in the presence of coordi-
nating solvents. In the '’F NMR three resonances exhibit ''B
hyperfine coupling (see ESIt) and the HMQC 2D NMR spec-
trum (Fig. 2) along with coupling constants confirms the
assignments of the corresponding BF, and BF; groups. In the
'“F NMR spectrum in MeCN the BF, fluorine atoms in both 4b
and 4b-BF; appear around —159 ppm, reflecting very similar
chemical environments whereas the BF; resonances appear at
—152 ppm (BF3-MeCN) and —141 ppm (4b-BF;). The resonance
at —152 ppm appears as two signals in an approximate 4:1
ratio separated by 0.3 ppm and reflects the ''B and '°B isoto-
pomers (~80 : 20 natural abundance). In non-coordinating sol-
vents such as benzene just two ''B resonances are detected
suggesting displacement of BF; in non-coordinating solvents
is unfavourable and the structure of 4b-BF; appears fully
retained in solution.
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Crystals of 4b-BF; were grown from the mother liquor on
standing for 24-48 h. Single crystal structure determination
revealed one molecule per asymmetric unit (Fig. 3). The
heterocyclic C,N,B ring exhibits a similar geometry to the
ethyl derivative with a longer B-N bond to the pyridyl nitrogen
(1.600(2) A) than to the imine nitrogen (1.574(2) A) and a short
imine-like C=N bond (1.286(2) A). These distances fall at the
extremes of those reported previously for other C,N,B hetero-
cycles with a pyridyl nitrogen atom coordinated to a BF, group
in which the dative bonds fall in the range 1.60-1.63 A and the
covalent B-N bonds fall in the range 1.50-1.57 A.”'? The exo
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Fig. 3 Molecular structure of 4b-BFs with ellipsoids drawn at the 50%
probability level. Selected bond lengths: B1-F11 1.366(2), B1-F12
1.364(2), BL-N11 1.600(2), BL-N12 1.574(2), N11-C11 1.349(2), C10—-N12
1.286(2), C10-C11 1.490(2), N12-B2 1.600(2) B2—-F21 1.377(2), B2—-F22
1.377(2), B2-F23 1.366(2) A.

B-N dative bond length to the BF; group, at 1.600(2) A, is iden-
tical to the dative pyridyl-N-B bond.

Theoretical calculations (DFT B3LYP/6-311G*) on the reac-
tion of 4b with BF; indicate adduct formation in the gas phase
is favoured by 75 k] mol™" (see ESIf). Additional calculations
along the B---N bond forming pathway reveal no significant
activation energy barrier to formation of 4b-BF;. However
stabilisation of the ‘free’ BF; in coordinating solvents through
adduct formation such as MeCN-BF; or THF-BF; is expected to
destabilise 4b-BF; with respect to loss of BF;. An NBO analysis
revealed a bonding pattern best represented by the figure
shown for 4b-BF; (eqn (1)) (see ESIT). Notably the reaction of
py.C=0 with Li[N(SiMe3),]/Me;SiCl, followed by 1 equivalent
of Et,BOMe afforded the pyridyl analogue, 4¢-HCI in which the
diazaborole nitrogen is protonated rather than the pyridyl
nitrogen atom, reflecting the strongly basic nature of the diaza-
borole nitrogen atom (pKp = 5.6, calculated using DFT
methods), ¢f. pyridine (pK; = 8.8)."* Synthetic details and crys-
tallographic data for 4¢-HCI are available as ESL.{

The current studies reflect the diversity of heterocyclic ring
systems accessible by intramolecular N-coordination. Unlike
the later p-block elements in which intramolecular coordi-
nation generates a hypervalent multi-centre bonding inter-
action, the electron poor boron centre adopts a 4-coordinate
electron-precise centre upon intramolecular coordination. The
resultant heterocycle offers a strongly basic nitrogen atom
which affords similar acid-base chemistry to the N-pyridyl
phosphine-imines.
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Notes and references

§ Crystal data for 4a-HCI-THF monoclinic space group P2/c, M = 358.70. T =
240(2) K, a = 9.2150(2), b = 13.4773(3), ¢ = 17.1221(4) A, b = 97.697(2)°, V =
2107.29(8) A% Z = 4, D, = 1.131 g em™>, y(Mo-Ka) = 0.191 mm™". 21422 reflec-
tions measured (3.76 < 260 < 29.98°) of which 6052 unique (R;,, = 0.055). Final R,
(I > 20(I)) = 0.093, WR, (all data) = 0.179 for 214 parameters. Max/min electron
density +0.50/—0.48 e~ A2,

Crystal data for 4b-BF; orthorhombic space group Phca, M = 297.83. T = 173(2)
K, a = 9.934(3), b = 12.290(4), ¢ = 21.001(7) A, V = 2564.0(14) A*, Z = 8, D, =
1.543 g em ™, u(Mo-Ka) = 0.142 mm™ . 25 423 reflections measured (1.94 < 260 <
27.88°) of which 2957 unique (R, = 0.052). Final R, (I > 206(I)) = 0.048, wR, (all
data) = 0.139 for 197 parameters. Max/min electron density +0.49/—0.20 e~ A™>.

Crystal data for 4c-HCI-THF monoclinic space group P2;, M = 359.71. T =
180(2) K, a = 9.38350(10), b = 12.8596(3), ¢ = 16.6196(3) A, f = 99.1807(12)°, V =
1979.77(6) A®, Z = 4, D. = 1.207 g cm ™, y(Mo-Ka) = 0.204 mm™". 25 481 reflec-
tions measured (2.69 < 26 < 26.37°) of which 7194 unique (Rj,, = 0.051). Final R,
(I > 20(I)) = 0.045, WR, (all data) = 0.106 for 453 parameters. Max/min electron
density +0.30/—0.34 e~ A
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