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A series of catalysts based on molybdenum carbide nanoparticles supported on carbon were prepared by
carburization of an oxidic Mo precursor impregnated on differently treated multi-walled carbon nanotubes
(CNTs) and reference carbons, respectively. The effects of surface defects and decoration of the support
with heteroatoms (O, N, and S), as analyzed by IR and Raman spectroscopy as well as by TPD, were investi-
gated. The catalysts were characterized by XRD, N, physisorption, and electron microscopy. The catalytic
performance in steam reforming of methanol was used as a probe to indicate changes in the catalyst sur-
face during catalytic action. The surface chemistry of the carbon supports influences the process of carbu-
rization and the nature of resulting supported Mo,C (nano) particles. This includes crystal phase composi-
tion (a- and B-Mo,C) and crystallite as well as particle diameter. However, if the surface decoration of the
support is limited to oxygen groups, these differences are not reflected in the catalytic action, which is al-
most identical for oxygen functionalized carriers. A significant modification of the catalytic performance
can only be achieved by surface modification of a CNT support with S- or N-containing functionalities,
which causes changes in the lattice constant of the resulting carbide compared to reference systems.
These changes are sensitively reflected in activity and CO,/CH,4 product ratio in steam reforming of
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Introduction

The catalytic performance of group VI metal carbides in hy-
drogen transfer reactions, such as hydrogenation, dehydroge-
nation, isomerization of alkanes, ammonia decomposition,
Fischer-Tropsch synthesis, or electrocatalysis makes them
highly attractive candidates for the substitution of expensive
noble metals that are nowadays required for these pro-
cesses.”” The pure high surface area carbides for use in
heterogeneous catalysis are accessible by controlled carburi-
zation of oxidic precursors,” whereas dispersed carbide
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nanoparticles can also be stabilized on conventional high
surface area support materials, such as carbon or alumina.*™®
The synthesis and application of carbon-supported molyb-
denum carbide catalysts has been frequently reported.® '’
The dispersion of Mo,C nanoparticles strongly depends on
the carburization conditions such as heating rate and gas
composition, but also on Mo loading and the degree of sur-
face functionalization,'”®® which can be achieved, for exam-
ple, by nitric acid treatment.® It is concluded that surface oxy-
gen groups are needed to anchor the impregnated Mo
precursor, although a systematic study has not been
performed to investigate this effect in detail. A quantitative
analysis indicates that the maximum loading of highly dis-
persed Mo species on the carbon surface is approximately 20
wt%,%*"'? which is supported by experimental data.®®
Besides the structural stabilization of the carbide nano-
particles, the intrinsic structure and defect chemistry of the
carbon support will also affect both the carburization process
and product properties. From the reports of Solymosi et al.
one can compare the catalytic activities of Mo,C/C compos-
ites based on activated carbon'® and on multi-walled CNTs,’
respectively, in steam reforming of ethanol. An effect on both
the activity and selectivity is observed showing that the CNT
support lowers the activity but increases the selectivity to the

This journal is © The Royal Society of Chemistry 2016
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target-product H,. The characterization of the catalysts, how-
ever, is limited to X-ray photoelectron spectroscopy (XPS).

Our recent report® highlighted the impact of synthesis
conditions, such as heating rate of the carburization in CH,/
H,, composition of gas atmosphere, and Mo loading, on the
physical and chemical properties and catalytic performance
of CNT-supported Mo,C catalysts in steam reforming of
methanol (SRM). We showed that MoC/CNT is a stable cata-
lyst under mild reaction conditions applied, whereas several
previous studies pointed at the (partial) oxidation of the car-
bide phase in the presence of steam at higher temperatures
and H,O concentrations, respectively, or including metal
dopants.?**“ Electronic and structural features of the CNT
support might also play an important role here.'” In the pres-
ent study, we focus on the impact of carbon surface proper-
ties, such as surface functionalization, in particular, incorpo-
ration of heteroatoms, defect density, and specific surface
area on the nature of Mo,C nanoparticles as well as their re-
activity in steam reforming of methanol applied as probe
reaction.

Experimental

Synthesis

Commercial multi-walled CNTs (Baytubes C 150 HP®) as well
as reference multi-walled CNTs obtained from Shandong
Dazhan were pre-treated by refluxing in 65% HNO; (500 ml
per 10 g) for 2 h. The product was washed with deionized wa-
ter until neutral pH and dried in air at 110 °C for 1 day
(oCNT and oCNT(ref), respectively). 1 g of oCNT was further
treated in a stream of 10% O,/He at 673 K for 5 h'* (O,-
oCNT) or stirred in 50 ml of 30% H,O, at 65 °C for 24 h"
(H,0,-0CNT), respectively. The pristine Baytubes were also
treated in HNO; vapor (HNO;-CNT).'®  Sidewall
functionalization of Baytubes C150 HP® (Bayer) based on the
diazotization of sulfanilic acid with isoamyl nitrite in water at
60 °C (molar ratio of CNT: sulfanilic acid = 1000 : 50) followed
by removal of unreacted component through sonication and
washing in 2,5-dimethylfuran resulted in S-oCNT. N-doped
MWCNTs (Bayer)'” were stirred in 3 M HNO; (100 ml per 1 g)
at room temperature for 24 h, washed with deionized water
until neutral pH and dried in air at 110 °C for 3 days (oN-
CNT). This mild acid treatment was also performed for high
surface area nanographite (Timrex HSAG 300, oNG) and acti-
vated carbon (Chemviron Carbon 114A, 0AC).

Aliquots of 1 g of each precursor were impregnated with 3
ml of a 117 mmol L™ solutions of (NH4)sMo0,0,4-4H,0, re-
spectively, to achieve a final Mo,C loading of 20 wt%. Accord-
ingly, samples are denoted as MoC/y-(0)CNT, where y iden-
tifies the treatment of the carbon support. The resulting
pastes were thoroughly kneaded in a mortar followed by dry-
ing in air at 110 °C for 1 day.

In a typical carburization procedure, a catalyst mass nomi-
nally containing 0.5 mmol Mo (e.g., 250 mg MoC/oCNT) was
placed in a quartz tubular reactor (7 mm inner diameter) in a
stream of 37 ml min* of a 20 vol% CH,/H, mixture. After
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elution of H,O and O, the reactor temperature was linearly
increased by 5 K min™' up to 700 °C and kept for 2 h,
followed by cooling to ambient temperature in the reducing
atmosphere.

Characterization

Temperature-programmed desorption (TPD) of CO was
performed immediately after carburization without passiv-
ation or air contact of the catalyst. The reactor was flushed
with 5 vol% CO/Ar for 10 min at ambient temperature and
subsequently flushed with He until no CO was detectable by
on-line mass spectrometry (MS, Pfeiffer GAM 200) and gas
chromatography (Varian CP-4900 Micro GC). In a He stream
of 30 ml min™' the temperature was linearly increased by 10
K min™ up to 500 °C. Further characterization of the cata-
lysts was performed after catalytic testing. Passivated samples
were analysed by SEM and (HR)TEM, energy-dispersive analy-
sis of X-rays (EDX), Xray diffraction (XRD), and N,
physisorption. SEM images were obtained with a Hitachi
S-4800 FEG microscope (1.5 kV) equipped with an EDAX Gen-
esis EDX detector (15 kV). TEM bright field images were
taken with an Philips CM200 microscope equipped with an
LaB6 cathode at an acceleration voltage of 200 kv. TEM data
presented in ESIf were obtained with an image corrected
Titan 80-300 Cs operated at 300 keV. For TEM analysis the
samples were dry deposited onto holey carbon coated Cu
grids. The XRD measurements were performed on a Bruker
AXS D8 ADVANCE DAVINCI diffractometer equipped with a
nickel filter and a LYNXEYE position sensitive detector (Cu
Koy, radiation) in Bragg-Brentano geometry (fixed diver-
gence slit). N, physisorption was performed at 77 K and p/p,
= 0.05-0.3 after drying the sample in vacuum at 200 °C for 2
h. ATR-FTIR spectra were collected using a Varian 670
spectrometer fitted with a MCT detector and a germanium
crystal (512 scans, 4 em " resolution). The finely powdered
specimen was deposited without diluent on the ATR crystal.

Catalytic testing

After CO TPD the catalysts were tested for their catalytic per-
formance in the steam reforming of methanol (SRM) at 250
°C in 100 ml min™" of a 1 vol% CH;OH/1 vol% H,0O/He mix-
ture. After 2 h on stream, the flow rate was varied between
100 and 10 ml min~", followed by decreasing the temperature
in 10 K steps to 200 °C at 100 ml min~". Reaction products
were quantified by GC analysis. Contact of the catalyst with
H,O (reactant) and CO, (product) ensured the mild passiv-
ation of the Mo,C surface, which is required prior to final ex-
posure of the catalyst to ambient for its characterization.

Results and discussion
Characterization of support materials

To investigate the impact of carbon surface properties on
resulting Mo, C/C catalysts a variety of support materials have
been investigated. Based on the HNO;-treated commercial
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multi-walled CNTs (oCNT, Baytubes® C150HP)® different
methods of surface treatment have been applied, which in-
clude oxidation processes as well as a specific decoration
with sulfonic acid groups. Also the impact of N-doping of
CNTs has been tested. Nano-graphite, activated carbon as
well as a different type of CNTs serve as reference materials.

Nanostructured carbon supports used for Mo impregna-
tion provide specific surface areas in the range of 200-350
m? g™ (Table 1) that justify a Mo,C loading of 20 wt%.

The abundance of micropores in the activated carbon ref-
erence 0AC results in a higher value of 741 m*® g™*. For nano-
graphite (oNG), Raman spectroscopy (Fig. 1) reveals domi-
nant features at around 1350, 1580, and 1620 cm ', referred
to as D1, G, and D2 bands, respectively, indicating defective/
amorphous (D1, D2) as well as crystalline/graphitic (G) car-
bon domains.'® Notably, the rise of the G+ band in CNT-
based materials at 1590 cm !, which is associated with
C-atom vibrations along the c-axis of the tube'® (see the cor-
responding range in IR spectra, Fig. 1), leads to a weak blue-
shift of the superimposed G-feature. It is seen that oxidative
post-treatment of oCNT further increases the specific surface
area, which is accompanied by an increasing I/I; ratio ob-
served by Raman. The increase in surface area can thus be re-
ferred to surface roughness induced by oxidative etching of
the CNT basal plane. Here, harsh vapor HNO; treatment
(HNO3-CNT) leads to substantial degradation documented by
the highest Ip/I; value of 2.75. oCNT(ref) shows higher crys-
tallinity at a higher specific surface area (Ip/lg = 1.98),
pointing at a qualitative difference between both CNT precur-
sor materials. On the other hand, acid-treated N-doped oN-
CNTs are rich in bulk and surface structural defects, which is
supported by TEM analysis showing a low degree of crystal-
linity and a significant fraction of fishbone carbon nano-
fibers."”” The two reference materials nanographite oNG and
activated carbon 0oAC were chosen due to very high and very
low degree of structural order, respectively, with Ip/I; ratios
ranging from 1.67 to 15.01. The pronounced structural disor-
der in 0AC and oN-CNT is supported by the appearance of a
broad D4 band located at around 1200 cm ™" (Fig. 1).

The rich surface chemistry of functionalized carbon sup-
ports before Mo loading is documented in the content of O,

Table 1 Properties of carbon support materials®

Sample Sger/m®> g Ip/l;  O/mmol g™ S or N/mmol g
oCNT 209 2.05 1.9 —

0,-0CNT 323 2.48 1.4 —

H,0,-0CNT 270 247 1.9 —

HNO;-CNT 342 2.75 2.9 —

OCNT(ref) 284 1.98 2.5 —

S-oCNT 226 2.27 1.1 0.39

ON-CNT 206 630 1.3 0.03 (6.8%”)
OoNG 303 1.67 1.6 —

0AC 741 15.01 3.5 —_

“ Heteroatom concentration determined from CO, CO,, SO,, NO, and
N, release during TPD up to 850 °C. ” ny/(nyn + nc) as determined by
EDX.
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N, and S atoms as determined by TPD (Table 1) as well as in
infrared spectra (Fig. 1). It is supposed and intended that a
significant fraction of N and S released during carburization
(only up to 700 °C), is implemented in Mo,C particles formed
on these supports. Bands in the range of 1000-1320 cm™" in-
dicate C-O stretching vibrations attributed to alcohols,
ethers, and carboxylic acids. These are dominating in 0AC
and absent in oNG, however, present in all other carbon sup-
ports. The high intensity of the corresponding bands in 0cAC
is not due to a high surface density of the oxygen-containing
functional groups, but related to the high specific surface
area of 0AC. A strong OH bending feature of carboxylic and
sulfonic acid groups at 1423 cm™ is visible for oCNT,
0oCNT(ref), and S-oCNT, whereas shoulders of this feature are
weakly indicated in the spectra of the other materials.

The range of 1475-1600 ¢cm ™" is dominated by aromatic
C=C stretching vibrations of the graphitic lattice of the
(nano)carbons. C=0 stretching vibrations at 1670-1820 cm™
are pronounced in the spectra of oCNT derived materials,
oNG, and oAC. The oN-CNT material has no feature in this
range, however, shows bands (shoulders) at 1279 and 1612
em™, which can be interpreted as Cary~N stretching and N-H
bending vibrations in amines, and C=N stretching vibra-
tions, respectively. Instead, S-oCNT shows an additional
broad band located at 1120 cm ™", which is located in the typi-
cal range of asymmetric (1186 cm™') and symmetric (1062-41
cm ™) S-O stretching vibrations of benzene sulfonic acid.* In
Fig. 1 the frequency range up to 4000 cm™" is not shown due
to the absence of significant features according to C-H or
O-H stretching vibrations.

Carburization of catalyst precursors

The catalyst precursors obtained by impregnation of the dif-
ferent supports with an aqueous solution of ammonium
heptamolybdate (AHM) and subsequent drying have been car-
burized in a methane-hydrogen mixture. The processes of
carburization of bulk and carbon supported Mo,C catalysts
in CH,/H,, H,, and He atmospheres were discussed in detail
in our previous studies.*>" Briefly, the following transforma-
tions can be identified from the H,O traces recorded in the
course of temperature-programmed carburization (Fig. 2): (i)
decomposition of the AHM precursor into MoOs, (ii) reduc-
tion of Mo"" to Mo", (iii) partial carburization of Mo" to a
non-stoichiometric oxy carbide MoO,C,, and (iv) complete
carburization of MoO,C, into Mo,C. The profiles of H,O evo-
lution, the evolution of other gases (CO, CO,) (not shown), as
well as consumption of H, and CH, (not shown), ie., peak
positions and relative intensities, do not significantly differ
for oxygen-functionalized carbon supports indicating that the
process of carburization is similar on carbon materials doped
with oxygen. Notably, the intensity of the final carburization
peak (iv) correlates with the presence of poorly dispersed
-Mo,C in the final catalysts as will be shown by XRD below.
A clear difference, however, is seen for the N-doped car-
bon support, where the carburization begins at lower

This journal is © The Royal Society of Chemistry 2016
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Fig. 1 Normalized Raman spectra (left) and ATR spectra (right) of functionalized carbon support materials before impregnation with Mo precursor.
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Fig. 2 Area-normalized MS traces of H,O evolution (m/z 18) during
carburization of carbon-supported Mo,C catalysts.

This journal is © The Royal Society of Chemistry 2016

temperature. The profile of H,O evolution is broader and
shows additional peaks. The incorporation of N into the Mo,C
lattice (nitridation) cannot be excluded. Features of initial
AHM decomposition are seen on oN-CNT, whereas the final
(bulk) carburization peak seems to exist only as a shoulder at
the high-temperature edge of the main peak. The profiles
suggest that N doping has a positive impact on the carburiza-
tion as revealed by a peak shift to lower temperatures.

Reactivity in steam reforming of methanol

Steam reforming of methanol (SRM) was chosen as a probe
reaction due to a complex selectivity pattern,® which is
expected to sensitively indicate changes in the catalyst struc-
ture. In the reaction network of SRM, MeOH can react to CO,
or CO,”*> which in the presence of H, can further react to CH,
and higher alkanes/alkenes via Fischer-Tropsch synthesis
over Mo-based catalysts.>® At normal pressure, however, only
small amounts of C,, hydrocarbons (<5%) were detected.

Catal. Sci. Technol.,, 2016, 6, 3468-3475 | 3471
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Online-MS analysis of the reaction products reveals that the
catalysts typically approach a stable catalytic performance af-
ter 2 h time-on-stream at 250 °C. The deactivation after 24 h
is negligible. Fig. 3 (top) displays the MeOH conversion as a
function of contact time. For MoC/oCNT the rapid increase
in conversion is followed by a slow-down of the reaction rate
after reaching ~50% conversion. This may be referred to in-
hibition by the main reaction products H, and CO, as ob-
served over Cu-based catalysts.> Similar to previous re-
ports>>?® the reaction mainly yields CO,, CO and CH,. In the
following, oxygen-functionalized carbons will be called
heteroatom-free supports, since oxygen can be considered as
a native surface modification. N-, and S-containing supports
are referred to as heteroatom-doped materials. Surprisingly,
all heteroatom-free carbon supported systems show almost
identical activity in terms of MeOH conversion, which is a
clear difference to a previous study comparing CNTs and acti-
vated carbon as support materials for Mo,C catalysts.*®

100%
/A
80% - /
N
T 60% /
3 s
= 40%- A/ /
~ / B /
X a —u— MoC/oCNT —&—MoC/S-oCNT
—0—MoC/O,-oCNT  —4—MoC/oN-CNT
20% A & f —B— MoC/H,0,-0CNT —e—MoC/oNG
o —m—MoC/HNO,-CNT —o— MoC/oAC
0% —&— MoC/oCNT(ref)
(o] T T T T T
0.0 0.3 0.6 0.9 1.2 1.5
tlgml’s
100% 11— — — — — — ——L———
[ ICO,
v CO
75% [ICH,
o 50% 4
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Fig. 3 Conversion of MeOH in the SRM reaction over carbon-
supported Mo,C catalysts as a function of the contact time; reaction
conditions: 250 mg catalyst, 10-100 ml min™* of 1% MeOH/1% H,O/He,
250 °C (top); selectivity of the main reaction products at MeOH con-
version of 50% (interpolated) (bottom).
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N-doping leads to higher activity, whereas S-doping reduces
the activity.

The product selectivity at MeOH iso-conversion (X = 50%)
are shown in Fig. 3 (bottom). CO, is the main product, which
is formed via steam reforming of methanol. CO and CH, are
by-products formed via reverse water-gas shift and methanol
decomposition or by methanol reduction and CO, hydrogena-
tion, respectively. Three parameters have been selected to
quantify changes in the product selectivity of Mo,C/C cata-
lysts, namely the apparent activation energies of CO, and
CH, formation, respectively, and the CO,/CH, product ratio
at X(MeOH) = 50% (Table 2). The CO,/CH, ratio as a function
of MeOH conversion (ESL} Fig. S1) suggests that both CO,
and CH, are primary products of the reaction; however, ex-
cept for MoC/oN-CNT, secondary methanation of CO, also oc-
curs. It is observed that all heteroatom-free carbon supported
systems behave very similar. A significantly higher selectivity
to CO, is obtained by using S-oCNT as the support, whereas
the oN-CNT supported catalyst shows a CO,/CH, ratio similar
to heteroatom-free carbon supported systems, however, at a
higher CO selectivity (Fig. 3 (bottom)). Fig. S1T furthermore
reveals a different trend in product formation over MoC/oN-
CNT, that is, increasing CO, selectivity with increasing MeOH
conversion, which points at a different reaction network of
parallel and consecutive reactions. Water-gas shift could play
a dominant role here, transforming excess CO formed by
MeOH decomposition into CO,, whereas the methanation of
CO and CO, appears less relevant. The apparent activation
energies E, determined for CO, and CH, formation explain
the catalytic performance pattern. The CO,/CH, product ratio
strictly follows the difference E,(CH,) — E,(CO,) (ESL;} Fig. S2).
For heteroatom-doped S-oCNT and oN-CNT samples, the ac-
tivities observed are in good agreement with observed Mo car-
bide dispersion as discussed later. N-doping of the carbon sup-
port increases both the Mo carbide dispersion and the
resulting activity of the catalyst, whereas S-doping has the ad-
verse effect. However, also electronic effects can contribute to
the improved performance. For instance, it was found that
small amounts of nitrogen (<5%) can strongly affect the rate
of ammonia synthesis over both fec and hep Mo,C catalysts.>

Table 2 Catalytic performance of carbon-supported molybdenum car-
bide catalysts and textural properties of used samples

E}? E,b 5(CO,)/ co
Sample® (CO,) (CH,) S(CH,)" - ads.’
MoC/oCNT 97 102 41 163 66.4
MoC/O,-0CNT 93 104 5.8 173 79.5
MoC/H,0,-0CNT 91 106 8.6 137 20.8
MoC/HNO;-CNT 93 107 6.9 136 47.0
MoC/0CNT (ref) 95 109 6.6 149 41.9
MoC/S-oCNT 85 109 30.9 145 6.5
MoC/oN-CNT 79 99 10.6 116 80.0
MoC/oNG 93 107 8.7 58 45.6
MoC/0AC 86 105 10.8 528 11.7

“ Internal sample ID to clearly identify the catalyst batch are
provided in ESL ? In k] mol ™. ¢ T = 250 °C, X(MeOH) = 50%. ¢ In
m® g . ¢ In umol g .

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5cy01480h

Open Access Article. Published on 15 December 2015. Downloaded on 1/16/2026 9:53:52 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Catalysis Science & Technology

Accordingly, a bulk a-MoC;-, catalyst was reported to form a
surface carbosulfide layer during hydrodesulfurization of thio-
phene, which lowers both CO adsorption capacity and catalytic
activity.”®

Post-catalytic characterization

After SRM tests the catalyst samples were characterized by
XRD, N,-physisorption, and electron microscopy. Due to the
contact with H,O and CO, acting as mildly oxidizing agents*’
during SRM no surface passivation by low-concentrated O,
was needed prior to exposition to ambient conditions. XRD
confirms the pervasive transformation of AHM into fcc
a-MoC and hcep B-Mo,C (Fig. 4). The full patterns are shown
in the ESIT (Fig. S3). Nitride or sulfide phases are not ob-
served, however, doping cannot be excluded. Although the
catalysts have been used in a catalytic reaction involving po-
tential oxidants such as H,O or CO, and even after long-term
exposition to ambient conditions the patterns give no rise
to oxidic bulk phases. For comparison, the pattern of

= B E =
© T o o =
T — 9 i)
O, o9 o0 oo
o~ o~

o O o) o
= = =

1 1 1

1 1

1 1
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e B L R
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201°

Fig. 4 XRD patterns of Mo,C catalysts supported on differently
functionalized carbon materials. Reference patterns: fcc o-MoC33
(blue) and hcp B-Mo,C (red).®”
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molybdenum oxy carbide MoOC is characterized by a shift of
the fec pattern to higher angles,®® which is indicative for a
lattice contraction as a result of partial C-O-substitution.
This is not the case here, where the detected peaks fall in line
with the reference pattern for a-MoC.?" Peak analysis reveals
a crystallite diameter of approx. 1-2 nm.

The nature of the carbide phase strongly differs among
the samples: oCNT, HNO;-CNT, and oN-CNT supported car-
bide catalysts comprise mainly the cubic phase, whereas the
reference supports oNG and oAC lead to the preferential for-
mation of the hexagonal carbide structure. The oCNT deriva-
tives O,-0CNT, H,0,-0CNT, and S-oCNT, as well as oCNT(ref)
result in a mixture of both phases, typically with an excess of
fec MoC. The reason for the formation of the metastable®>**
o-MoC instead of $-Mo,C, which is predominantly reported to
form under the synthesis conditions applied,>****** is not
fully understood. Han et al. suggest that the Mo,C phase can
be controlled over the Mo loading on an ordered mesoporous
carbon (OMC) support.” However, presented XRD
diffractograms are difficult to interpret. It is more likely that
the controlled reduction of the Mo precursor is the key factor
for a-MoC synthesis. This has been successfully managed by
MoOj; pre-reduction in a H,/n-butane mixture,* or by adding
0.5% Pt to the Mo precursor to facilitate H, activation.*
o-MoC proved a different performance than -Mo,C in some
catalytic reactions’®**?® and is traditionally prepared via
nitridation of MoO; with NH; to fce y-Mo,N followed by sub-
sequent re-carburization with CH,.**

The specific surface areas of the CNT-based catalysts drop
to 100-200 m”> g™, which is caused by plugging of open CNT
tips by agglomerates of MoC as well as by the much higher
atomic mass of Mo as compared to C. The specific surface
areas of MoC/oNG and MoC/0AC reference systems collapse
to 58 and 528 m” g, respectively. Having in mind similar ac-
tivities and almost identical CO adsorption capacities for
these samples (Table 2) we can exclude a significant impact
of textural properties on the catalytic performances of MoC/C
catalysts. For MoC/oCNT, the scanning (SEM) and transmis-
sion electron microscopy (TEM) analyses of the catalyst struc-
ture have been reported.® The finely structured agglomerates
of very small (<5 nm) a-MoC crystallites are located prefera-
bly at the outer CNT surface and at their tips, which were pre-
viously opened by harsh HNO; treatment. They vary in size
but rarely exceed a diameter of 10 nm. It was also shown that
the CNT structure is intact after the carburization process,®
which indicates that CH, rather than the support serves as
the main carbon source for carbide formation. Similar results
are obtained here: all nanotube-supported systems show the
highly entangled structure without indication of significant
MoC aggregation on the pum-scale, as exemplarily shown in
the ESIt (Fig. S4a) for MoC/O,-0CNT. Contrarily, the oNG and
0AC supported catalysts show signs of agglomeration as indi-
cated by high contrast areas in the SEM images (backscatter
mode, see arrows in Fig. S4b and ct). The appearance of such
tens of nanometers sized agglomerates correlates with pro-
nounced high-temperature peaks of H,O evolution during
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carburization (Fig. 2). Thus, we tentatively assign this feature
to B-Mo,C bulk carburization as the presence of large agglom-
erates also correlates with a significant fraction of -Mo,C
(Fig. 4). Regarding the degree of surface functionalization
(Table 1) an analogy exists between the interaction of the Mo
precursor with the carbon surface and the nature of resulting
supported MoC particles: well-anchored Mo species lead to
finely dispersed nanoparticles of fcc a-MoC, whereas the poor
interaction leads to large agglomerates of -Mo,C, however,
without any consequences for SRM catalysis.

The only strong differences in catalytic performance have
been observed when the supporting CNT's were doped either
with nitrogen or sulfur. To understand the reason, a high-
resolution TEM analysis has been performed. In agreement
with CO adsorption (Table 2), molybdenum carbide particles
are highly dispersed on the inner and outer surface of oN-
CNT (Fig. 5). The particle size distribution is, however, quite
broad comprising also larger particles (ESL} Fig. S5). A simi-
lar high dispersion has been determined by CO adsorption
on 0,-0CNT, while S-oCNT shows a particularly low disper-
sion (Table 2), which explains the lower activity of the latter
catalyst.

Based on electron diffraction, lattice expansion and/or
contraction has been identified in oN-CNT compared to the
MoC/O,-0CNT reference, which is less active in SRM in spite
of similar dispersion according to CO adsorption (Table 2).
The changes in lattice spacing might be an indicator for
heteroatom doping of the carbide phase (see ESILj Fig. S5
and Table S1). For the reference system MoC/O,-0CNT the
statistical error of d-spacing in supported Mo,C nanoparticles
is within +1% and defines the accuracy of this method.
Clearly, the N- and S-containing systems show significantly
larger deviations of up to 5-10% if referred to the un-doped
system. Of course, these depend on the crystal phase

Fig. 5 HRTEM image of MoC/oN-CNT.
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considered (fce or hep), and it is far from a statistical analysis
as only 5 particles per catalyst have been investigated. Never-
theless the results can be interpreted as a lattice distance
modulation, which can be induced by heteroatom doping.
This would be a reasonable explanation for the different cata-
Iytic behaviour observed in Fig. 3.

Conclusions

The preparation, characterization, and catalytic testing of
CNT-supported Mo,C catalysts are presented. The nature of
the Mo,C crystal phase is a sensitive function of the highly
defective state of the carbon support structure, which kineti-
cally controls the formation of favorable crystallization nu-
clei, leading to stabilized supported polycrystalline particles.
The intimate interaction of the Mo precursor with the func-
tionalized carbon surface leads to finely dispersed crystallites
of a-MoC. For purely oxygen-decorated support materials,
however, the nature of surface functionalization as well as
the defect concentration or specific surface area is less rele-
vant to the process of carburization. Instead, if the interac-
tion is reduced by insufficient surface functionalization,
larger agglomerates of -Mo,C are formed. All materials syn-
thesized are highly active and stable catalysts in the steam
reforming of methanol. However, the control over Mo,C
phase and particle and crystallite size, respectively, cannot be
transferred to the catalytic performance in this specific reac-
tion, although the catalyst is apparently stable under the ac-
tion of H,O and CO, in the reactive gas phase. A different
picture is obtained as soon as heteroatoms such as N or S are
introduced to the support. The carburization as well as cata-
Iytic performance is influenced to enable control over activity
and CO,/CH, selectivity. N-doping increases dispersion and
activity, while S-doping functions in the opposite way. Some
indication for heteroatom doping has been found in MoC/
OoN-CNT, which might be the key to enhanced activity of this
catalyst compared to the likewise highly dispersed carbide
particles in the reference material MoC/O,-0CNT. However,
further investigations are necessary to proof this hypothesis
unambiguously.

Steam reforming of methanol was used as a probe reac-
tion rather than as the economically/industrially interesting
pathway for H, generation from liquid fuels. The experiments
performed emphasise the impact of heteroatoms at the sur-
face of nanostructured carbon supports on structure and cat-
alytic performance of the supported phase. It is expected that
trends and dependencies presented here to control the cata-
lyst properties also provide important parameters to modify
the activity and selectivity of CNT-supported Mo,C catalysts
in the synthesis of alcohols by hydrogenation of carbon
monoxide.
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