

Cite this: *Chem. Soc. Rev.*, 2015,
44, 382

DOI: 10.1039/c4cs90106a

www.rsc.org/csr

Correction: Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties

Jianhui Liao,^a Sander Blok,^b Sense Jan van der Molen,^b Sandra Diefenbach,^{cd} Alexander W. Holleitner,^{cd} Christian Schönenberger,^{ef} Anton Vladýka^e and Michel Calame^{*ef}

Correction for 'Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties' by Jianhui Liao *et al.*, *Chem. Soc. Rev.*, 2015, DOI: 10.1039/c4cs00225c.

In the manuscript two subscripts are missing in eqn (4). Specifically, G should read G_t and V should read V_{jet} . The correct version of eqn (4) is therefore:

$$I \propto V_{jet} G_0 \sum_j \left(\frac{G_t}{G_0} \right)^j \left[\frac{(eV_{jet})^2 + (2\pi k_B T)^2}{E_c^2} \right]^{j-1} \times \exp\left(\frac{jeV_{jet} - E_c/j}{k_B T} \right) \quad (4)$$

where V_{jet} should be defined as the voltage drop across a single nanoparticle-tunnel barrier-nanoparticle junction and G_t is the conductance of the tunnel barrier, as already defined below eqn (3).

Furthermore, in eqn (6) and (7) the term RT that occurs in the definition of the voltage regimes should read R_t . For completeness, we give both equations with the appropriate voltage regimes below:

$$C2 : I \propto V^\alpha, \quad k_B T < eV_{jet} < k_B T \ln\left(\frac{e^2 R_t}{h}\right), \quad (6)$$

$$C3 : I \propto e^{-\sqrt{V^*/V}}, \quad k_B T \ln\left(\frac{e^2 R_t}{h}\right) < eV_{jet}. \quad (7)$$

We note that $R_t = 1/G_t$ and V^* is an activation voltage.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China

^b Leiden Institute of Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden, Netherlands

^c Walter Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany

^d Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München, Germany

^e Department of Physics, Universität Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland. E-mail: michel.calame@unibas.ch

^f Swiss Nanoscience Institute, Universität Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland

