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Energy decomposition analysis approaches and
their evaluation on prototypical protein–drug
interaction patterns†

Maximillian J. S. Phipps,a Thomas Fox,b Christofer S. Tautermannb and
Chris-Kriton Skylaris*a

The partitioning of the energy in ab initio quantum mechanical calculations into its chemical origins

(e.g., electrostatics, exchange–repulsion, polarization, and charge transfer) is a relatively recent development;

such concepts of isolating chemically meaningful energy components from the interaction energy have

been demonstrated by variational and perturbation based energy decomposition analysis approaches. The

variational methods are typically derived from the early energy decomposition analysis of Morokuma

[Morokuma, J. Chem. Phys., 1971, 55, 1236], and the perturbation approaches from the popular symmetry-

adapted perturbation theory scheme [Jeziorski et al., Methods and Techniques in Computational Chemistry:

METECC-94, 1993, ch. 13, p. 79]. Since these early works, many developments have taken place aiming to

overcome limitations of the original schemes and provide more chemical significance to the energy

components, which are not uniquely defined. In this review, after a brief overview of the origins of these

methods we examine the theory behind the currently popular variational and perturbation based methods

from the point of view of biochemical applications. We also compare and discuss the chemical relevance of

energy components produced by these methods on six test sets that comprise model systems that display

interactions typical of biomolecules (such as hydrogen bonding and p–p stacking interactions) including

various treatments of the dispersion energy.

1 Introduction

Intermolecular interactions govern the formation of many
systems of interest, and their study is therefore of particular
importance within many fields such as materials and medicinal
chemistry, catalysis and biochemistry. Physical experimentation
alone is unable to provide readily identifiable values for the
chemical phenomena that give rise to the interactions, and no
quantum mechanical (QM) operators exist that we may use to
compute interaction energies or chemical/physical components
of these. However, the development of energy decomposition
analysis (EDA) presents a novel approach to quantifying these
chemical effects. EDA is a valuable analytical tool that partitions
the intermolecular interaction energy into energy components
such as electrostatic, polarization, charge transfer, exchange
and correlation contributions and related chemical phenomena.

A significant number of recent developments have been made in
the field of EDA, and with such diversity it is not unexpected that
certain schemes should possess a greater suitability for applica-
tion to one field of chemistry above another (e.g. application to
transition metal systems or hydrogen bonded model systems).
It is for this reason that we have decided to limit our review of
EDA schemes in this work specifically to those of interest in
biomolecular applications.

There exist many possible ways in which to decompose the
interaction energy. The different approaches are the result of
the essentially arbitrary definitions of the interaction energy
components that originate from the desired chemical concepts.
It is important to note a number of problems that relate to this
arbitrary nature. For example, at close intermolecular distances
and especially with large basis sets the separation of charge
transfer and polarization becomes increasingly ill-defined. At
greater intermolecular distances charge transfer becomes more
easily separable from polarization, eventually reaching the limit
of transferring integer charges between molecules. From the
more distant perspective of considering the theoretical grounding
from which the energy components are obtained, it may also be
argued that there are only classical electrostatic interactions that
can be decomposed.
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In order to compare the effectiveness of particular EDA
schemes it is important to highlight their key distinguishing
features and compare these with others. Measures of EDA
scheme effectiveness include the physical relevance of the
energy component magnitudes and the agreement of energy
term characteristics through a series of changing chemical
environments. Also, the ability to express correlation effects
such as dispersion may also be beneficial for example in the
case of weakly interacting systems. Often consideration of the
computational expense of executing a decomposition, particularly
in the case of biological systems analyses which are typically of
larger size, is also important. Special features of schemes may also
prove to be of merit for certain applications. Such features include

the ability to further decompose terms into their monomeric
contributions, as well as the measurement of forward and back-
donation of electron density between molecules. Corrections
for basis set superposition error are also included in many EDA
schemes, and the theory of these will also be discussed within
this work.

One picture we may use to determine the expressive power of
the terms is through consideration of the exploratory depth of
the decomposition at hand. For example, the absolutely localized
molecular orbital1 (ALMO) and similar block-localized wavefunc-
tion2 (BLW) EDA schemes define a frozen density term at the
Hartree–Fock (HF) level of theory. This term can be represented as
the addition of the electrostatic and exchange interaction terms.
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On the other hand, a separation of terms is seen within the
earlier implementation of the natural EDA (NEDA) approach of
Glendening et al.3–6 The original ‘electrostatic’ component of the
scheme3 incorporated the polarization and exchange contributions
to the interaction energy in addition to the more commonly
understood electrostatic component. An early extension of the
scheme4 separates these terms into their isolated components.
The compounding and separation of terms may in cases hinder the
depth of analysis available to the chemist. Equally, however, such
groupings may be of benefit for other applications. In reviewing the
various EDA schemes, it is also important to be aware of complica-
tions that arise due to term inequivalencies between the schemes
despite sharing term names. Similarly, it is important to also note
term dependencies within schemes that may be present. This
includes consideration, for example, of issues surrounding the
so-called ‘mixing’ term of the Kitaura–Morokuma (KM) EDA
scheme.7 This is a residual energy term that describes a contribu-
tion to the interaction energy that is unascribable to any particular
chemical energy component.

The application of a scheme to a particular system may be
limited by the level of theory at which a scheme is implemented.
Schemes implemented at the higher levels of theory often include
dispersion and other correlation components not available at the
HF level of theory. For example, we may consider the case of the
localized molecular orbital (LMO) EDA scheme of Su and Li8 that
is implemented for restricted closed shell HF (RHF), restricted
open shell HF (ROHF), and unrestricted open shell HF (UHF)
monomer wavefunctions and the density functional theory (DFT)
equivalents of these. Treatment of intramolecular bond splitting
interactions is possible within this scheme in addition to inter-
molecular interactions. A number of the schemes have been
re-expressed at the coupled cluster (CC) level of theory, offering
the possibility of highly accurate theoretical study of systems.8–10

This review is structured as follows: firstly we introduce the
various self-consistent field (SCF) theories and charge-localized
molecular orbital (MO) descriptions used within the EDA
formalisms, and also describe a common wavefunction form
used for the expression of the various EDA methods’ theoretical
descriptions. Following this, we discuss a number of common
EDA schemes of potential interest for biomolecular system
investigations, and finally evaluate these schemes using a study
of a test set of small model systems that express key interactions
commonly found within biomolecular systems.

2 Previous applications of energy
decomposition analysis

EDA has been used in a wide range of applications in quantum
chemistry. Investigations using EDA approaches are naturally
well suited to evaluations of molecular bonding forces. The
EDA studies in literature typically feature systems of relatively
small size (up to tens of atoms) for both the variational1–6,8,11–17

and perturbation approaches,18–21 and for biomolecular systems
approaches such as molecular mechanics (MM) are sometimes

combined with the QM region.22,23 Here we discuss a number of
these applications in literature.

EDA calculations in the literature have typically been performed
to evaluate newly developed EDA methodologies, to quantify
the driving forces of association in the studied systems, or for
both reasons. The water dimer has been frequently adopted as
a theoretical test model for the purpose of evaluating new EDA
approaches1,3,5,6,11–13,24 as this system is exemplary of a typical
hydrogen bonding interaction. Other small interacting systems
also studied include the benzene dimer system,8,17,21 the water–
alkali metal cation series1,4,5,11 and the ammonia–hydrogen
fluoride12,15,18 system.

EDA calculations of drug–water clusters have also been per-
formed. For example, investigations were performed by Esrafili and
Behzadi25 on the hydrogen bonding interaction of aspirin (and
fluorine-substituted aspirin) with (water)n=1–3. This work included
symmetry-adapted perturbation theory (SAPT) and natural bond
orbital (NBO) second-order perturbation theory analyses, as well as
density partitioning using Bader’s quantum theory of atoms in
molecules (QTAIM)26 approach.

Investigations of larger biomolecules are also noted in the
EDA literature. These are typically performed by EDA calculations
on smaller derived truncated systems, rather than on the whole
biomolecular system itself. Truncated active-site systems of a
Cl�/H+ exchange transporter protein (EcClC) were studied with
KM EDA and NEDA by Church et al.27 for example. A number of
EDA investigations of cytochrome P450 have also been per-
formed.22,23,28 Thellamurege investigated the interaction of a water
molecule with cytochrome P450, specifically with the ferric heme
group and compound I intermediate of this biomolecule.28 This
investigation was performed using the LMO EDA8 and the extended
transition state (ETS) EDA developed by Ziegler and Rauk.29–31

The results revealed electrostatic and polarization effects to be
dominant in the interactions within these systems.

The possibility of EDA on larger systems also has been
evidenced. Hirao performed an EDA of the ONIOM(B3LYP:AMBER)
QM/MM interaction energy of the compound I intermediate of
cytochrome P450cam to investigate the effect of the protein
environment on this state.23 This work found electrostatics to
be the most dominant contribution to the interaction energy,
followed by van der Waals and polarization contributions. The
calculations of this investigation involved thousands of atoms
present in the protein environment, and even though this
involved a QM/MM-based variant of EDA, this study offers an
example of EDA application to an entire protein. An earlier
investigation by Hirao using this method was also performed
on the non-heme diiron enzyme myo-inositol oxygenase.22 The
aim of this investigation was to assess the effects of the protein
environment and intracluster dispersion in the process of
oxygen binding to this enzyme. This found dispersion to be
the most dominant contribution to the interaction energy,
which was enhanced to a lesser degree by electrostatic, van
der Waals, and polarization effects. This work notes that
because entropic effects do not favour the bonding of oxygen,
overall this process is almost thermoneutral. This demon-
strates a limitation of pure interaction energy investigations:
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the interaction energy (or enthalpy) itself is also one of the
components that control the thermodynamics of binding, the
other being the entropy of binding.

Another established approach to large scale energy calculations
is the fragment molecular orbital (FMO) framework of Kitaura
et al.32–35 This approach involves the partitioning of a system into a
number of smaller fragments, with the total system energy calcu-
lated using the FMOs of these fragments. This fragmentation
reduces computational cost whilst maintaining accuracy, and a
number of studies have been performed on important protein–
receptor systems using the FMO approach investigating binding
affinities and the interaction energies of fragments. Examples of
these studies include calculations performed on the human
immunodeficiency virus type 1 (HIV-1) protease complexed with
lopinavir,36,37 the HIV-1 antibody 2G12,38,39 the influenza virus
surface protein hemagglutinin,40–50 prion protein,51–53 the estro-
gen receptor,54–56 the vitamin D receptor,57–60 and the retinoid X
receptor.61–63 The pair interaction EDA (PIEDA) scheme24 has
been developed in the FMO framework, and a discussion of the
PIEDA approach is included later in this review. The PIEDA
scheme has been used to investigate contributions to stabilization
in various conformers in the evolution of amide stacking in larger
g-peptides,64 and to investigate DNA recognition modulation in
artificial zinc-finger proteins using PIEDA maps.65

Investigations are not limited to low atomic mass compositions.
EDA calculations of the bonding in more exotic systems have been
published, such as in the transition metal–oxime bond66 and the
transition metal–imine bond67 by Bayat et al., and work by Marjolin
et al.68 has sought to seek the components of interactions within
mono aqua complexes of various lanthanide and actinide cations.
This work investigating lanthanide and actinide cation interactions
was achieved using a modified constrained space orbital variation
(CSOV) EDA scheme69,70 with small and large core pseudopotentials.

Overall, the current work shows EDA to be a rapidly expanding
field of quantum chemistry. Calculations on ever larger systems
have been made possible, and many different EDA approaches now
exist. So far no systematic approach has been made to evaluating
these many approaches. It is the aim of this review to summarize
the current methods with focus on their application to bio-
molecular structures. It is also often the case that the EDA
approaches under study are applied to distinctly different
chemical compositions in literature. We have therefore decided
to evaluate the methods using test sets each containing a series
of compounds (e.g. of increasing hydrogen bonding interaction
character) to facilitate the translation of chemical expectations
into the various energy contributions.

3 Theory of self-consistent field
calculations

We now describe the term symbols used in this review.

Energies

EHF Hartree–Fock energy
EKS Kohn–Sham energy

T Electronic kinetic energy
Ts Non-interacting electronic kinetic energy
Vee Electron–electron interaction energy
J Coulombic interaction energy
Exc Exchange and correlation energy
ei Molecular orbital energy
DE Interaction energy

Operators

F̂ Fock operator
K̂ Exchange operator
Â Antisymmetrizer operator

Potentials

ueff(r) Effective potential
uext(r) External potential
uxc(r) Exchange–correlation potential

System parameters and constants

Nfrag Number of fragments in the fragment molecular
orbital system

Ns Number of doubly-occupied spatial orbitals
r,r0 Electronic coordinate
Ra Coordinate of nucleus a
Za Charge of nucleus a

Ab initio theory

f [n] Functional
n(r) Density
C(r,R),|Ci Total electron-nuclear wavefunction
ci(r),|cii Molecular orbital
fi(r),|fii Basis function/atomic orbital

Matrices and integrals

F Fock matrix
C Orbital coefficient matrix
Dx Fragment molecular orbital density matrix for

fragment(s) x
Vx Electrostatic potential of the other fragments

acting upon the fragment(s) x
Kij Exchange integral
hmg|ndi Two-electron integral

Natural bond orbitals
ofi(r),|ofii Natural atomic orbital
wi Orbital occupancy
oai Natural atomic orbital expansion coefficient
aX Polarization coefficient of natural hybrid

orbital hX

jX(r),|jXi Natural bond orbital

Fragment molecular orbitals

EFMO2 Fragment molecular orbital system energy
EI Energy of fragment I
EI
0 Internal energy of fragment I

DEint
IJ Pair interaction energy of fragments I and J
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Symmetry-adapted perturbation theory

Ŵ Møller–Plesset fluctuation operator
x,Z,z Perturbation parameters
V̂ Intermolecular Coulomb operator
v̂A(b) Coulombic potential of the nuclei of fragment

A on electron b
V0 Nuclear interaction energy between the fragments

of a system

In order to provide a unified review of EDA techniques it is
helpful to first discuss Hartree–Fock and Kohn–Sham density
functional theory with reference to EDA approaches. In this, we
have expressed the equations of the theories in terms of doubly-
occupied spatial orbitals Ns. This allows for the facile expres-
sion of the NBO theory of Weinhold et al.71,72 with extension of
the EDA theory equations to open-shell systems remaining a
relatively straightforward task. In the same vein, expression of
the EDA theory is limited to two-body systems in order to
prevent unwieldy mathematical descriptions. Also, the presen-
tation of EDA schemes typically assumes the supermolecular
approach to treat monomers at infinite separation to have
fragment nuclear geometries identical to that within complex.

3.1 Density functional theory

In Kohn–Sham (KS)73 DFT,74 the total electronic energy is
calculated using the KS energy functional,

EKS½n� ¼ Ts½n� þ
ð
nðrÞuextðrÞdrþ

1

2

ðð
nðrÞnðr0Þ
jr� r0j drdr

0 þ Exc½n�

(1)

where the electron density has the form,

nðrÞ ¼ 2
XNs

i¼1
ciðrÞj j2 (2)

where ci(r) are the one-electron KS orbitals of a fictitious
system of non-interacting electrons which is constructed in
such a way that its density is the same as the exact density of
the system of interest which has interacting electrons, and
where Ts[n] is the kinetic energy of the non-interacting reference
system, Exc[n] is the exchange–correlation energy functional and
is approximated in practice and uext is the external potential. The
KS orbitals are obtained by solving a one-electron Schrödinger
equation,

ĥKSci(r) = eici(r) (3)

with the KS Hamiltonian,

ĥKS ¼ �
1

2
r2 þ ueffðrÞ (4)

which contains an effective potential ueff. KS-DFT theory is
formally an exact theory providing the total energy of the
interacting system.

The KS effective potential has the form,

ueff ðrÞ ¼ uextðrÞ þ
ð
nðr0Þ
jr� r0jdr

0 þ uxcðrÞ (5)

with the exchange–correlation potential given by,

uxcðrÞ ¼
dExc½n�
dnðrÞ : (6)

On calculating ueff(r) from a guessed density n(r) using
eqn (5), a new density is found using eqn (2) and (3). These
equations are solved in a self-consistent manner until energy
convergence is achieved.

3.2 Hartree–Fock theory

The HF75,76 approach unlike DFT is not formally an exact theory
but can be considered as a special case of the KS equations with
ĥKS of eqn (3) replaced with the Fock operator F̂,

F̂ci(r) = eici(r) (7)

where,

F̂ ¼ �1
2
r2 þ uextðrÞ þ

ð
nðr0Þ
jr� r0jdr

0 � K̂ (8)

with the exchange operator given by,

K̂ðrÞf ðrÞ �
XNs

i¼1

ð
ci
�ðr0Þf ðr0Þ
jr� r0j dr0ciðrÞ (9)

where f (r) represents an arbitrary function.
The HF equations are also solved in a self-consistent man-

ner. A set of guess orbitals are used to construct the Fock
operator using eqn (8) which is then solved to find the orbitals
that minimize the HF energy,

EHF ¼ Ts½n� þ
ð
nðrÞuextðrÞdrþ

1

2

ðð
nðrÞnðr0Þ
jr� r0j �

XNs

i;j¼1
Kij (10)

where the exchange integral Kij is given by,

Kij ¼
ðð

ci
�ðrÞcjðrÞciðr0Þcj

�ðr0Þ
jr� r0j dr dr0

¼ hijjjii:
(11)

3.3 The localized molecular orbital description

Within the variational EDA approaches, the interaction energy
is partitioned by constructing a number of intermediate wave-
functions that express chemical phenomena between the
monomer units and calculating the energy difference between
these wavefunctions. For example, in the case of the polariza-
tion contribution this would be calculated as the energy differ-
ence between the non-polarized state and polarized state,
where the description of the polarized state necessarily
excludes any charge transfer interaction. There is a multitude
of approaches which have been followed for the needed wave-
function restriction in order to construct these polarized but
charge transfer restricted intermediate wavefunctions and so
these approaches are a defining feature of each EDA. Similarly,
unique basis set frameworks in which the EDAs are performed are
required specifically for the NEDA3–6 (NBO71,72 framework) and
PIEDA24 (FMO32–35 framework) approaches. The key theoretical
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frameworks employing localized MOs and polarized wavefunc-
tion constructions are briefly summarized here.

3.3.1 The block-localized wavefunction/absolutely localized
molecular orbital. A description of a charge transfer restricted
intermediate wavefunction is given by the ALMO EDA scheme77

and similar BLW EDA scheme of Mo et al.2,11 by restricted
expansion of the MOs in terms of only atomic orbitals (AOs)
localized to a particular fragment. This yields MOs that are
localized to each fragment and that are non-orthogonal between
the fragments. The following provides a description of the
construction of a set of ALMOs for an arbitrary number of
fragments, with the procedure for the construction of BLW
orbitals very similar.

For the subset of AOs localized to each fragment, where x
denotes a subset belonging to a fragment and m denotes the
basis function index within a given subset, the occupied MOs of
each fragment are expanded in terms of their respective
localized AOs,

|cxii = |fxmiCxm�
�xi (12)

where Cxm�
�yi represents the MO coefficients which are con-

strained to equal zero for x a y, and where |cxii represents a
MO localized on fragment x.77 This orbital expansion con-
straint ensures a localized MO description on the fragments
in a similar fashion to the localization of AOs on atoms. This
expansion also ensures no borrowing of AOs from other frag-
ments to compensate for basis set incompleteness, therefore
following this description does not result in basis set super-
position error (BSSE) and consequential artificial lowering of
interaction energy.

The theory underlying the construction of ALMOs is closely
related to that of the block-localized MOs of Mo et al.2,11 (the
BLW method). The ALMO and BLW wavefunctions may be
considered almost identical in their construction, differing by
the method of orbital optimization within the theories. The
procedure by which the ALMOs are variationally optimized is
known as SCF for molecular interactions (SCF MI).77–79 Orbital
optimization within the BLW approach may follow a similar
procedure,78,80–82 or may be achieved by successive Jacobi
rotation.83 Despite the similarities that exist in the construction
of these wavefunctions, a number of small differences are
observed in the EDA schemes they are used within as we
discuss in the sections dedicated to each method.

3.3.2 The natural bond orbital. The NBO basis of Weinhold
et al.71,72 adopted within the NEDA scheme3–6 describes a set of
almost doubly occupied localized orbitals formed by transfor-
mation of the full set of MOs. In this way an optimal Lewis
description of the electronic wavefunction under study is
produced. The vast majority of total charge density is accounted
for by the bonding NBOs, with the remainder described by
Rydberg and antibonding NBOs.

Construction of the NBO basis involves the progressive
transformation of the atomic orbital basis into localized functions.
This begins with the initial transformation of the atomic orbital
basis set into natural atomic orbitals (NAOs) of optimized occupancy
by occupancy-weighted symmetric orthogonalization (OWSO).72,84,85

For a set of atomic orbitals {|fii}, a set of NAOs {|ofii} is
constructed as,

{|ofii} = {|fii}COWSO (13)

where COWSO is a coefficient matrix that orthogonalizes the
initial basis whilst variationally minimizing the square root
deviation X

i

wi
ofi � fij j2 (14)

between this basis and the orthogonalized basis in an
occupancy-weighted manner, where wi Z 0 is the occupancy
of orbital fi. The process ensures that low occupancy orbitals
are able to freely distort in the orthogonalization transforma-
tion whilst high occupancy orbitals maintain their shape.72

This set of high-occupancy core and valence orbitals and
low-occupancy Rydberg orbitals are then linearly combined to form
an optimal orthonormal set of natural hybrid orbitals (NHOs) {hX}
which are directional and point along chemical bonds,

hXðrÞ ¼
X
i2X

oai
ofiðrÞ (15)

where oai are the expansion coefficients of the NAOs and where the
expansion spans all NAOs on the atom X.

Linear combination of the NHOs results in construction of a
set of 2-centre bonding NBOs,

jXY(r) = aXhX(r) + aYhY(r) (16)

where the polarization coefficients aX and aY satisfy aX
2 + aY

2 = 1.
Construction of similar antibonding NBOs to orthogonally
complement the bonding NBOs is achieved as,

jXY*(r) = aXhX(r) � aYhY(r). (17)

The polarization coefficients describe the polarization of the
NBO, and it is possible for one-centre NBOs to exist where aX = 1
and aY = 0.

3.3.3 The fragment molecular orbital and the pair inter-
action energy. The FMO32–35 framework is adopted within the
PIEDA approach of Fedorov and Kitaura.24 There are two
different approaches to the construction of the fragments
within FMO theory: an approach based upon the use of hybrid
orbital projection (HOP) operators32 known as the HOP
method, and an alternative approach using the adaptive frozen
orbitals (AFO)86 scheme. The FMO approach we describe here is
the HOP method which is used in PIEDA and serves as an
introduction to the FMO formalism.

In the FMO approach, selected chemical bonds are detached
at an atom with the two bonding electrons assigned to one of
the fragments. Ideally, this detachment should avoid regions of
delocalized charge such as C–N amide bonds in order to
maintain the localized nature of the fragments. The atom
retaining this bond is named the bond attached atom (BAA),
and the atom from which this bond is detached is named the
bond detached atom (BDA).86 Essentially, the HOP technique is
used in order to prevent the BDA electron density from occupy-
ing the region of the bond that is now occupied by the BAA.
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On the BAA fragment, a pseudoatom replaces the BDA to
provide the basis functions used to describe the bond and a
proton from the BDA is formally transferred to this pseudoatom.
This transfer does not affect the electrostatic field surrounding
the fragment, and so the total properties of the system remain
unaltered.

A brief description of the general FMO formalism and FMO
system energy calculation is as follows:87

(1) The system is partitioned as determined by the user into
a number of fragments with BDAs and BAAs.

(2) Initial monomer electron densities are constructed for
optimization.

(3) Monomer Fock operators are subsequently constructed
using these densities, and the monomer energies evaluated in
the electrostatic field of the surrounding fragments.

(4) These energies are self-consistently minimized to a
converged electrostatic potential.

(5) Two-fragment energy calculations (FMO2) are performed
in this potential and used to evaluate the total energy of the
system. These dimer energies are calculated using the converged
fragment densities.

(6) Three-fragment calculations (FMO3) may also be performed
and used to calculate the total system energy including three-body
effects. Similarly, these trimer energies are calculated using the
converged fragment densities.

The FMO2 total system energy is expressed as a many-body
expansion up to second-order as,

EFMO2 ¼
XNfrag

I

EI þ
XNfrag

I 4 J

EIJ � EI � EJð Þ (18)

where Nfrag is the number of fragments comprising the FMO
system, EI and EJ refer to the monomer energies of step 4, and
EIJ refers to the (non self-consistently obtained) dimer energies
of step 5. We can re-express this equation in terms of pair
interaction energies (PIEs) of the fragments by separating out
the electrostatic potential term as,

EFMO2 ¼
XNfrag

I

EI
0 þ

XNfrag

I 4 J

EIJ
0 � EI

0 � EJ
0

� �
þ
XNfrag

I 4 J

Tr DDIJVIJ
� �

(19)

where EI
0 and EJ

0 are the monomer internal energies and EIJ
0 are

the dimer internal energies which exclude the electrostatic
interaction energy of the surrounding fragments, and where
Tr(DDIJVIJ) is the interaction energy on density relaxation in the
electrostatic potential of the surrounding fragments, with the
density matrix difference DDIJ given by,

DDIJ = DIJ � DI " DJ (20)

where DI, DJ, and DIJ are the monomer and dimer density
matrices respectively and VIJ is the electrostatic potential matrix
of the other fragments acting upon the dimer IJ.88 The mono-
mer and dimer internal energies are obtained by subtracting
the electrostatic interaction energy due to the surrounding
fragments from the monomer and dimer energies EI, EJ and
EIJ respectively. For example in the case of the fragment dimer,

EIJ
0 = EIJ � Tr(DIJVIJ) (21)

where Tr(DIJVIJ) is the electrostatic interaction of the surround-
ing fragments given by their electron density and nuclei.

The FMO2 energy form of eqn (19) can be re-expressed in
terms of internal monomer energies and PIEs, DEint

IJ , as,

EFMO2 ¼
XNfrag

I

EI
0 þ

XNfrag

I 4 J

DEint
IJ : (22)

The PIE of any arbitrary fragment pair IJ is given by,

DEint
IJ = (EIJ

0 � EI
0 � EJ

0) + Tr(DDIJVIJ) (23)

and it is these interaction energies that are decomposed within
the PIEDA scheme.

3.4 Common EDA wave functions

It is useful to adopt a unified notation of the wavefunctions
(and their derived charge densities) shared between the EDA
schemes we consider in this review. Starting with the direct
calculation of the interaction energy, we define the commonly
used electronic Slater determinant wavefunctions C0,AB

A , C0,AB
B and

CAB and other related intermediate wavefunctions used to express
the EDA theory. We denote the lower index as distinguishing the
fragment(s) described by the wavefunction, and the upper index
as distinguishing the basis in which the MOs of the wavefunc-
tion are expanded. The upper index zero describes wavefunc-
tions constructed using the optimized MOs of fragments in
isolation. The Boys and Bernardi89 counterpoise (CP) corrected
binding energy calculation may be expressed as,

DE = E[CAB] � E[C0,AB
A ] � E[C0,AB

B ] (24)

where CAB, C0,AB
A , and C0,AB

B are the variationally optimized
wavefunctions for the AB complex and the isolated monomers A
and B calculated in the full AB basis. Furthermore, two similar
sets of wavefunctions C0;ABocc

A , C0;AoccB
B and C0;ABvir

A , C0;AvirB
B may

be derived to facilitate the partitioning of the CP correction into
a contribution from ghost occupied orbitals of the adjacent
fragments and from ghost virtual orbitals of the adjacent
fragments. These wavefunctions are constructed in the same
manner as C0,AB

A , and C0,AB
B , but using either the occupied or

virtual orbitals of the adjacent fragments as given by the upper
index. We define the wavefunctions for the monomers calculated
in their own basis as,

C0;A
A ¼ Â

YonA
a

ca

0

 !
(25a)

C0;B
B ¼ Â

YonB
b

cb

0

 !
(25b)

where Â is the antisymmetrizer and {ca
0} and {cb

0} represent the
optimized MOs of the isolated monomers A and B respectively.

A number of many-electron intermediate wavefunctions are
defined for the complex AB using combinations of the MOs
of the monomers A and B. The first set of wavefunctions of
this type, C0,A/B,Hartree

AB and C0,AB,Hartree
AB , are constructed as the
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Hartree product of the individual monomer Slater determinant
wavefunctions. This means that interfragmental exchange is
not included in the energies of these two wavefunctions. As
before, a key feature of these wavefunctions is the basis in
which the individual monomer MOs are optimized. The wave-
function C0,A/B,Hartree

AB is constructed using the MOs of the
individual monomers A and B optimized in isolation in their
own basis, and the wavefunction C0,AB,Hartree

AB is constructed
using the monomer MOs optimized in isolation in the full
AB basis:

C0,A/B,Hartree
AB = [C0,A

A �C0,B
B ] (26a)

C0,AB,Hartree
AB = [C0,AB

A �C0,AB
B ]. (26b)

The second set of wavefunctions of this type are C0,A/B
AB and

C0,AB
AB which are constructed in the same manner as C0,A/B,Hartree

AB and
C0,AB,Hartree

AB but taking the antisymmetric product of the monomer
MOs as,

C0,A/B
AB = Â(C0,A

A �C0,B
B ) (27a)

C0,AB
AB = Â(C0,AB

A �C0,AB
B ). (27b)

These wavefunctions may not obey the Pauli exclusion principle
due to lack of orthogonality of the MOs between the different
fragments. This presents a source of difficulty when attempting
to rigorously ascribe physical meaningfulness to energy com-
ponents that are calculated using these wavefunctions.

3.5 Common EDA charge densities

In this section we describe the charge densities corresponding
to the intermediate wavefunctions above which are used to
provide a description of the NEDA scheme theory.3–6 Similar to
the wavefunction indices’ definitions, we use the lower index to
denote the fragment(s) described by the charge density and the
upper index to denote the basis in which the density is
constructed. The construction of charge densities within the
NEDA scheme proceeds by decomposition of the charge density
of the AB supermolecule rather than by construction from the
monomer charge densities, and all charge densities of this
scheme are calculated in the full AB basis. We also distinguish
densities optimized in isolation by an upper index zero.

The charge densities nAB
AB, n0,AB

A and n0,AB
B describe the charge

densities of the fully optimized AB supermolecule and the
isolated monomers A and B respectively. The descriptions of
these charge densities complement the commonly used wave-
functions CAB, C0,AB

A and C0,AB
B respectively. The charge density

of the AB supermolecule, nAB
AB, is given by,

nAB
ABðrÞ ¼

XonA
a

Zad r� Rað Þ � 2
XonA
a

caðrÞj j2

þ
XonB
b

Zbd r� Rb
� �

� 2
XonB
a

cbðrÞj j2
(28)

where the nuclei of A and B are located at coordinates Ra and Rb

with charge Za and Zb respectively, and where {ca} and {cb} are
the MOs of A and B respectively. The isolated monomer charge

densities n0,AB
A (r) and n0,AB

B (r) are constructed in a similar
manner as,

n0;AB
A ðrÞ ¼

XonA
a

Zad r� Rað Þ � 2
XonB
a

ca

0 ðrÞ
��� ���2 (29a)

n0;AB
B ðrÞ ¼

XonB
b

Zbd r� Rb
� �

� 2
XonB
b

cb

0 ðrÞ
��� ���2 (29b)

where a and b span the MOs {ca
0} and {cb

0} of the isolated
monomers A and B, and where these MOs have been variationally
optimized in the full AB basis.

4 Variational based EDA methods
4.1 Kitaura–Morokuma EDA

The KM scheme,7,90 extended from the scheme of Morokuma,91

is one of the earliest energy decomposition analysis schemes
developed. This scheme is a widely used variational scheme
limited to the RHF level of theory and which therefore excludes
electronic correlation terms within the decomposition.

4.1.1 Theory. The decomposition of the interaction energy
within the KM EDA consists of the following terms:7,90

DE = DEES + DEEX + DEPOL + DECT + DEMIX (30)

where DEES is the electrostatic interaction between the monomers
with their charge distributions undistorted, DEEX is the exchange
repulsion contribution that describes the interaction of exchange
between the undistorted monomer charge distributions (and
includes the short-range repulsion resulting from orbital overlap
between the two fragments), DEPOL is the polarization interaction on
distorting the charge distributions of the monomers in the presence
of their neighbouring monomer, DECT is the charge transfer energy
that results from electron transfer from the occupied MOs of one
monomer into the virtual MOs of its neighbouring monomer, and
where the term DEMIX describes contributions to the interaction
energy that are not ascribable to a particular component.

We express the components of the KM EDA scheme except
the charge transfer component in terms of energy functionals of
the common wavefunctions described above. The electrostatic
energy, DEES, is evaluated as the Coulomb energy on taking the
relaxed charge densities of the monomers in isolation to complex
geometry,

DEES = E[C0,A/B,Hartree
AB ] � E[C0,A

A ] � E[C0,B
B ]. (31)

The exchange energy, DEEX, is taken as the energy on forming
the fully antisymmetrized wavefunction from the Hartree product
intermediate wavefunction,

DEEX = E[C0,A/B
AB ] � E[C0,A/B,Hartree

AB ]. (32)

The definitions of the electrostatic and exchange terms take
this general form in the majority of EDA schemes we discuss.
After calculating these two components, the energy change on
restricted variational optimization of the Hartree product inter-
mediate wavefunction leads to calculation of the polarization
energy component DEPOL,
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DEPOL = E[CA/B,Hartree
AB ] � E[C0,A/B,Hartree

AB ] (33)

where the intermediate wavefunction CA/B,Hartree
AB is constructed

by relaxation of the fragment orbitals of the Hartree product
intermediate wavefunction C0,A/B,Hartree

AB in the field of the
neighbouring monomer. This term is denoted DEPL within the
original KM EDA, but to ensure continuity with the other schemes
of this review we term this component DEPOL. A diagram of the KM
EDA scheme electrostatics, exchange and polarization components
is given within Fig. 1.

The charge transfer component is calculated as the energy
resulting from charge transfer from the occupied MOs of one
monomer to the virtual MOs of the other and vice versa. The
calculation of this component may be described as the energy
difference between two intermediate wavefunctions: one that
includes this interfragmental interaction, and one that does
not. The calculation of this energy component is more clearly
demonstrated by use of modified overlap and Fock matrices for
the AB complex. The charge transfer energy component of this
scheme is calculated by setting to zero certain blocks of the
complex Fock and overlap matrices that express specific
chemical effects during the iteration cycles. The matrices of the
complex are partitioned into blocks that involve the occupied and
virtual orbitals of each monomer. The contribution of charge
transfer effects to the interaction energy may be calculated as the
difference between the energy of an intermediate set of matrices
that have non-zero diagonal blocks which we name ‘ESX’ blocks
that give an energy EESX, and another set of intermediate
matrices that involve both the diagonal ‘ESX’ blocks and those
blocks required to describe charge transfer effects which we
name ‘CT’ blocks with energy EESX+CT. These matrices are shown
diagrammatically within Fig. 2.

DECT = EESX+CT � EESX. (34)

A remainder ‘mixing’ term is defined to describe the con-
tribution to the interaction energy not ascribable to any parti-
cular component of the scheme,

DEMIX = DE � (DEES + DEPOL +DECT + DEEX). (35)

The KM theory described herein follows the implementation
of Chen and Gordon.13 Treatment of BSSE in this scheme
applies the CP correction to the DEEX and DECT terms only
and the components DEES, DEPOL and DEMIX remain as in the
original KM EDA scheme. This treatment splits the CP correction
to the interaction energy into two: one correction for the
exchange component calculated by including the set of occupied
orbitals of the adjacent fragments, and a second correction for
the charge transfer component calculated by including the set of
virtual orbitals of the adjacent fragments. The CP corrections to
the DEEX term are given as,

DEBSSE;EXðAÞ ¼ E C0;A
A

h i
� E C0;ABocc

A

h i
(36a)

DEBSSE;EXðBÞ ¼ E C0;B
B

h i
� E C0;AoccB

B

h i
(36b)

DEBSSE,EX = DEBSSE(A) + DEBSSE(B) (36c)

and the correction to DECT is given as,

DEBSSE;CTðAÞ ¼ E C0;A
A

h i
� E C0;ABvir

A

h i
(37a)

DEBSSE;CTðBÞ ¼ E C0;B
B

h i
� E C0;AvirB

B

h i
(37b)

DEBSSE,CT = DEBSSE(A) + DEBSSE(B). (37c)

The calculations of these BSSE components are further
described within Fig. 3 and 4.

4.1.2 The extended transition state approach. It is relevant
at this point to mention Ziegler and Rauk’s equally important
ETS EDA scheme29–31 which was developed independently but
around the time of the KM EDA and which shares a number of
similarities with it. This scheme approaches the problem of
decomposing the interaction energy by describing an electrostatic
energy component (identical to the DEES energy component of the
KM EDA), a Pauli exchange repulsion energy term DEPauli, and an
orbital interaction term DEorb:

DE = DEES + DEPauli + DEorb. (38)

Fig. 1 The Kitaura–Morokuma electrostatics, exchange and polarization
EDA components for the AB complex.7,90

Fig. 2 The partitioning of the Fock and overlap matrices for the KM EDA
scheme for the evaluation of the charge transfer component.7,13 The set of
matrices (a) that involve only the diagonal exchange and electrostatics
interactions produces the energy EESX and the set of matrices (b) that
involve these diagonal blocks and also the charge transfer blocks produces
the energy EESX+CT. The labels ‘occ’ and ‘vir’ denote the sets of orbitals that
are occupied and virtual on the monomers A and B.
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This decomposition also includes a geometric deformation
energy term to distort the fragment equilibrium geometries to
their geometries when in complex. To maintain a consistent
definition of DE in this review, and due to the simple evaluation
of this component, we do not include this term within eqn (38).
The Pauli exchange repulsion term is related to the exchange
energy component of the KM EDA scheme (see eqn (32)), with
its evaluation at the DFT level calculated as the exchange–
correlation energy difference between a version of the wave-
function C0,A/B,Hartree

AB in which all the orbitals are Löwdin

orthogonalized92 and the fragment wavefunctions C0,A
A and

C0,B
B ,93

DEPauli = Exc[C0,A/B,Hartree
AB ] � (Exc[C0,A

A ] + Exc[C0,B
B ]). (39)

The final orbital interaction term contains interaction energy
information relating to the charge transfer and polarization
interaction components and other orbital mixing interactions.
This term is somewhat similar to the mixing term of the KM
EDA as it is calculated as a remainder term that is required for
the energy components to add up to the full interaction energy.

4.1.3 Assessment. A number of issues are observed that
relate to the KM EDA scheme. The definition of the mixing term
has no physical equivalent and has the potential to be even
greater in magnitude than the total interaction energy itself.94

The components of this decomposition are also observed to be
highly basis set dependent and the charge transfer and polarization
energies are numerically unstable with large basis sets and at
short intermolecular distance.95–97 This is a result of the improper
antisymmetrization of the intermediate wavefunctions used in
evaluating these terms: electrons from one fragment are permitted
to occupy space already occupied by the electrons of the other
fragment and so the Pauli exclusion principle remains unenforced.98

Later EDA schemes such as the reduced variational space (RVS)
analysis,13,99 CSOV,69,70 and NEDA3–6 schemes have been developed
which attempt to overcome these limitations.

As seen within other schemes, the description of DEES and
DEEX as individual terms remains problematic due to their
wavefunction definitions not obeying the Pauli principle. These
terms are often combined in schemes derived from the KM EDA
to produce a new term that is defined by the addition of the
electrostatic and exchange terms. This combined term avoids
the problem of using improperly antisymmetrized wavefunc-
tions in the decomposition. The DECT and DEPOL KM EDA
components are also observed to share the problem of using
improperly antisymmetrized wavefunctions in their calcula-
tion. These terms may be combined as a new DECTPLX term
which is defined by the addition of the polarization and charge
transfer components with inclusion of the exchange integral:
this is performed in an alternative scheme100 intended for the
analysis of strong transition metal–ligand interactions.

The ETS scheme has been coupled in recent years with the
natural orbitals for chemical valence (NOCV) approach101–104 in
what is termed ETS-NOCV.93 This method allows the orbital
interaction energy DEorb to be divided into its orbital origins
and visualised. In this approach, a deformation density matrix
describing the change in density of the DEorb interaction is
constructed and diagonalised to yield NOCVs.93 Complemen-
tary pairs of NOCVs are used to visualise the interactions, with
energetic estimations of these interactions computed from the
KS matrix of a transition state density (midway between the
supermolecule and fragment densities). This approach there-
fore provides both a qualitative and quantitative analysis of
chemical bonding. The ETS-NOCV scheme has been applied to
organometallic105–108 and coordination compounds,105,107–109 as
well as metal–metal bonding93,108 and boronic110,111 systems.
More unusual organometallic analyses have also been performed

Fig. 3 The treatment of BSSE13 for the exchange term within the KM EDA
scheme.7,90 A BSSE correction due to the presence of the occupied
orbitals of adjacent monomers is introduced to the exchange term.

Fig. 4 The treatment of BSSE13 for the charge transfer term within the KM
EDA scheme.7,90 A BSSE correction due to the presence of the virtual
orbitals of adjacent monomers is introduced to the charge transfer term.
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using the ETS-NOCV approach, including systems involving
gold112 and silver113 interactions for example. The ETS EDA
scheme has also been applied to purely organic molecules, for
example in investigating conjugation and hyperconjugation
stabilizations in conjugated molecules,114 benzene,116 five-
membered aromatic compounds,116 cyclic and acyclic conjugated
carbenes,116 and hetero-115,116 and anti-aromatic compounds.116

Additionally, a number of review articles have been published on
applications of the ETS scheme to both inorganic117,118 and organic
systems.14,119 Other approaches that seek to provide a measure of
the electron density delocalization between molecules include
the NBO approach,71,72,84,120,121 Bader’s QTAIM,26,122 the electron
localization function,123,124 and the Hirshfeld analysis,125 as well
as the various population analysis schemes.72,92,126

4.2 Reduced variational space

The RVS scheme13,99 corrects a number of the unsatisfactory
tendencies of the KM scheme that result as a consequence of
the terms not correctly satisfying the Pauli exclusion principle
in their calculation.98 The CSOV analysis69,70 is similar to the
RVS scheme and differs subtly in its treatment of charge
transfer and polarization. By ensuring proper antisymmetrization
of the wavefunctions of the decomposition, the Pauli exclusion
principle within the RVS scheme is enforced correctly. Effectively,
this scheme combines the electrostatics and exchange terms of
the KM EDA and modifies the evaluations of the polarization and
charge transfer components.

4.2.1 Theory. The RVS EDA method is closely related to the
KM scheme but has a small number of distinct differences. The
first is the inclusion of the electrostatic and exchange terms as
a single ESX contribution (due to the wavefunctions corre-
sponding to the isolated DEES and DEEX not obeying the Pauli
principle).13 The second is the different restrictions of varia-
tional space available for orbital optimization to the KM EDA
scheme. Lastly, the treatment of BSSE in the RVS EDA is slightly
more complicated than in the KM EDA scheme. Notably, the
equivalent mixing term, DEMIX, to that in the KM EDA scheme
has a much greater tendency to become so small that it
becomes insignificant in the RVS scheme.

The form of the RVS EDA interaction energy partitioning is,

DE = DEESX + DEPOL + DECT + DEMIX (40)

where the DEESX term is equal to the sum of the DEES and DEEX

components of the KM EDA,13,99

DEESX = E[C0,A/B
AB ] � E[C0,A

A ] � E[C0,B
B ] (41)

A number of other schemes apply this reduction of terms,
including the ALMO and BLW EDA schemes discussed within
this review.

The remaining components are modifications to their KM
EDA equivalents. The polarization energy component differs
from the KM EDA evaluation by variational optimization of the
fully antisymmetrized wavefunction C0,A/B

AB (rather than the non-
antisymmetrized wavefunction C0,A/B,Hartree

AB ). The subspace
available for variational optimization of the orbitals is reduced
by freezing (and Gram-Schmidt orthogonalizing) the occupied

orbitals of the neighbouring monomer and omitting its
virtual orbital subspace to prevent charge transfer. For the
two-fragment system AB, orbital optimization in the field
of the neighbouring monomer produces two wavefunctions
CRVS-POL(A),A/B

AB and CRVS-POL(B),A/B
AB relating to the polarized states

of fragments A and B respectively. The polarization energies for
these two wavefunctions are then calculated by subtraction of
the energy of the non-polarized state wavefunction C0,A/B

AB from
the energies of these polarized state wavefunctions. Addition
of these two polarization energies produces the total polariza-
tion energy EPOL.

DEPOL(A) = E[CRVS-POL(A),A/B
AB ] � E[C0,A/B

AB ] (42a)

DEPOL(B) = E[CRVS-POL(B),A/B
AB ] � E[C0,A/B

AB ] (42b)

DEPOL = DEPOL(A) + DEPOL(B) (42c)

This is formally a similar process to that within the KM EDA.
Within the KM scheme however, this interaction instead effec-
tively involves the simultaneous polarization of the orbitals of
each fragment in the field of their neighbouring fragment and
also excludes an interfragmental exchange contribution.

Repeating a similar process of orbital optimization but with
extension of the variational space to include the virtual orbitals of the
neighbouring fragment allows charge transfer to occur, producing
the two wavefunctions CRVS-CT(A),A/B

AB and CRVS-CT(B),A/B
AB relating

to the polarized and charge transferred states of fragments
A and B respectively. The difference between the energies
of these wavefunctions and their polarized-only counterparts,
CRVS-POL(A),A/B

AB and CRVS-POL(B),A/B
AB , provides the charge transfer

energies of fragments A and B. The BSSE contributions from
each fragment for charge transfer are introduced at this point
in the decomposition. We denote the CP corrected charge
transfer energies EBSSE,CT(A) and EBSSE,CT(B) for the CP correction
to charge transfer originating from monomers A and B respec-
tively, and the total of these two energies as DEBSSE,CT. The BSSE
contributions from each fragment are introduced in a form
similar to eqn (37a) and (37b). This CP correction is referred to
as the CP correction with virtual orbitals (VCP) in literature.13

Addition of the BSSE contributions from the fragments produces
the total charge transfer energy ECT+BSSE.

DECT+BSSE(A) = E[CRVS-CT(A),A/B
AB ] � E[CRVS-POL(A),A/B

AB ] + DEBSSE,CT(A)

(43a)

DECT+BSSE(B) = E[CRVS-CT(B),A/B
AB ] � E[CRVS-POL(B),A/B

AB ] + DEBSSE,CT(B)

(43b)

DECT+BSSE = DECT(A) + DECT(B) (43c)

In the RVS EDA literature,13 the charge transfer component is
labelled simply ECT. To reinforce that this component includes a
BSSE correction contribution we have relabelled this component
as DECT+BSSE.

The mixing component, DEMIX, of the RVS EDA is calculated
as the difference between the CP corrected interaction energy
and the total of the energy components. The form of the RVS
EDA residual energy is given as,
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DEMIX = DERVS � (DEESX + DEPOL + DECT). (44)

In the RVS literature,13 this residual energy component is termed
DERES. To maintain consistency with the naming convention of
the mixing term of the KM EDA, in this paper we refer to this
component as DEMIX.

The CP correction applied to the interaction energy is not
the full CP correction, and its calculation involves use of the
virtual orbitals of the partner monomer rather than its full set
of orbitals. The form of the RVS EDA CP corrected interaction
energy is therefore,

DERVS = E[CAB] � E[C0,A
A ] � E[C0,B

B ] + DEBSSE,CT (45)

¼ E CAB½ � � E C0;ABvir
A

h i
� E C0;AvirB

B

h i
(46)

where DEBSSE,CT is the CP correction to the charge transfer
component. As the interaction energy is defined with a partial
CP correction, the interaction energy obtained from the RVS
EDA differs to the interaction energy calculated from the KM
EDA (in which the full CP correction is applied).

4.2.2 Assessment. This approach partially remedies the
shortcomings of the KM EDA by use of fully antisymmetrized
intermediate wavefunctions, and the Pauli exclusion principle
is fully enforced within this scheme. However, by reducing the
electrostatics and exchange contributions to one term the level
of information provided by the scheme is decreased. This
advantage and disadvantage is present in all KM EDA derived
schemes in which the electrostatic and exchange terms may be
combined. Also the theoretical description of polarization is
extended to include some exchange, and this may be useful or
not depending on the chemical interpretation attributed to
this term.

Despite its improvements upon the KM EDA, this scheme is
however currently limited to the HF level of theory. The closely
related CSOV scheme typically used in the investigation of
metallic systems has been used with multi-configurational
SCF (MCSCF) wavefunctions,127 and has been extended from
its original HF implementation69,70 to the DFT level128,129 by
simply using the KS orbitals in the EDA procedure. Subtle
difference in the CSOV analysis theory cause the polarization
and charge transfer energies to be slightly dependent on their
order of evaluation. Two CSOV analyses are therefore possible
for any one system, and in some cases it is convenient to
perform both calculations to validate results.70

4.3 Absolutely localized molecular orbital/block-localized
wavefunction EDA

4.3.1 Theory. In the ALMO EDA decomposition, the total
binding energy DE is expressed by addition of the individual
decomposition components,1

DE = DEFRZ + DEPOL + DECT (47)

where the frozen density component DEFRZ describes the exchange
and electrostatic interaction of the frozen charge densities when
taken to complex geometry and is retermed the Heitler–London

energy DEHL within the BLW EDA.2 We refer to this component as
DEFRZ within this review.

In order to evaluate the polarization and charge transfer
components, intermediate wavefunctions CALMO

AB and CBLW
AB are

constructed for the system. This construction given earlier
within eqn (12) follows similar processes within both the ALMO
and BLW approaches. Relaxation of the MOs of the common
wavefunction C0,A/B

AB ensuring conformity to the restricted MO
expansion requirement of these ALMO and BLW descriptions
when applied to each fragment results in construction of the
new intermediate wavefunctions CALMO

AB and CBLW
AB respectively.

Both the ALMO and BLW EDA schemes include a geometric
distortion energy term associated with the distortion of the
monomer nuclear geometries at infinite separation to that
found when in complex which provides an additional energy
contribution to DE. Within the ALMO EDA scheme this energy
component is referred to as the geometric distortion term,
DEGD, and as the deformation energy DEdef within the BLW
EDA scheme (of significantly different physical interpretation
to that of the term of the same name in the NEDA scheme).
Including such an important term has obvious implications on
the evaluation of the interaction energy. As this term may be
considered a simple additional component to our standardized
description of the interaction energy, we will not include these
terms within our discussion of the theory of the schemes.

Similarly, a dispersion contribution DEdisp obtainable as a
simple ad hoc procedure is introduced within the BLW EDA
scheme and therefore is also not included within our theory
review. This term is simply evaluated as the difference in energy
obtained on performing higher level QM calculations that
account for correlation effects above the HF and DFT theory
EDA level of theory.

We may express the components of the ALMO and BLW EDA
schemes in terms of energy functionals of the common wave-
functions and the wavefunctions CALMO

AB and CBLW
AB described

above. The frozen density component, DEFRZ, is defined simply
as the energy change on complexation of the monomers with-
out allowing for orbital relaxation,

DEFRZ = E[C0,A/B
AB ] � E[C0,A

A ] � E[C0,B
B ]. (48)

The frozen density term may also be expressed also as a sum of
a Coulomb (DEES) term and an exchange term within HF theory
or an exchange–correlation term within DFT (DEEX/XC) as,

DEFRZ = DEES + DEEX/XC (49)

where these components are not computed explicitly in the
ALMO implementation1 but are within the BLW implementation.2

The BLW EDA descriptions of these electrostatic and exchange
contributions are noted as being identical in their evaluation to
that of their KM EDA counterparts given within eqn (31) and (32).
The exchange–correlation analogue to the Hartree product is
adopted at the DFT level to evaluate DEXC. Within the ALMO and
BLW literatures, this electrostatic component is termed DEELS and
DEele respectively.

The use of ALMOs in the expression of E[CALMO
AB ] constrains

the variations to intramolecular contributions. Charge transfer
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is prevented through use of this intermediate wavefunction
description whilst allowing polarization of the MOs. The energy
lowering from C0,A/B

AB to CALMO
AB is therefore equal to the energy

stabilization on orbital polarization,

DEPOL = E[CALMO
AB ] � E[C0,A/B

AB ]. (50)

The final energy component of the decomposition is the
charge transfer energy. The contribution of charge transfer is
calculated as,

DECT = E[CAB] � E[CALMO
AB ] + DEBSSE. (51)

This term includes the CP correction accounting for the BSSE.
The introduction of the BSSE at this stage in the decomposition
is justified by the fact that this error needs to be corrected for
and that it can be considered as an artificial type of charge
transfer. The BSSE associated with this interaction is defined as,

DEBSSE(A) = E[C0,A
A ] � E[C0,AB

A ] (52a)

DEBSSE(B) = E[C0,B
B ] � E[C0,AB

B ] (52b)

DEBSSE = DEBSSE(A) + DEBSSE(B). (52c)

Similar approaches are also taken to evaluate the DEPOL and
DECT components of the BLW scheme, instead using the
intermediate wavefunction E[CBLW

AB ] rather than E[CALMO
AB ].

The decomposition of DE into these three energy compo-
nents is shown within Fig. 5 and 6.

4.3.2 Assessment. The ALMO EDA scheme relies solely
on the use of fully antisymmetrized wavefunctions, therefore
obeying the Pauli exclusion principle and avoiding related
issues that are observed within the KM EDA and similar
schemes. The wavefunction C0,A/B,Hartree

AB adopted within the
BLW EDA scheme does not satisfy the Pauli exclusion principle
and so the electrostatic and exchange components (which this
wavefunction is used to calculate) are often combined to form
one single energy component as within the ALMO EDA to avoid
its use. It is however noted that the combining of these terms by
the ALMO EDA and other schemes may limit the information
provided, with schemes that make this separation such as the
BLW EDA scheme providing greater partitioning ability at the
cost of less well defined electrostatic and exchange energy
components.

A relatively recent extension to the ALMO EDA130 has been
developed that allows the isolation of forward and back charge
donation quantities using the concept of chemically significant
complementary occupied-virtual orbital pairs. The original
ALMO EDA scheme also provides a treatment for the charge
transfer back and forward donation energies. This involves
performing a single non-iterative Roothaan step correction to
estimate charge transfer between the fragments of the system,
with a higher order correction included to ensure the fragment
charge transfer energies add up to the full ALMO EDA charge
transfer energy.1 Charge transfer has also been quantified in
BLW EDA studies by Mulliken, Löwdin and natural population
analyses.131–133 The ability to evaluate charge transfer quantities

Fig. 5 The ALMO EDA1 and BLW EDA2 scheme for a complex AB.

Fig. 6 The treatment of charge transfer within the ALMO EDA1 and BLW
EDA2 schemes. The (positive) BSSE is introduced to the charge transfer
term because both BSSE and charge transfer are effects resulting from the
delocalization of monomer MOs, caused by including basis functions from
the neighbouring fragments.
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in addition to energies further enhances the picture of chemical
bonding these methods provide.

4.4 Natural EDA

The NBO approach of Weinhold et al.71,72 is used as the basis in
the NEDA3–6 scheme. The use of the NBO basis results in a
wavefunction which follows the classic Lewis interpretation of
bonds and lone-pairs. Although a number of the components of
this scheme are similar to those within the KM EDA scheme,
NEDA does not variationally optimize any of its intermediate
wavefunctions and this results in a number of artefacts in the
values observed when using the NEDA scheme that will be
discussed later.

4.4.1 Theory. In its latest implementation NEDA takes the
form of both a five-term energy decomposition4 and a three-term
energy decomposition5 by reformulation of the components of
the five-term energy decomposition.

4.4.1.1 The five-term NEDA. In the five-term NEDA scheme,
the decomposition of the interaction energy is of the form,

DE = DEES + DEPOL + DECT + DEEX/XC + DEDEF (53)

where DEEX/XC is the exchange or exchange–correlation con-
tribution in the HF and DFT cases respectively.

From the common charge densities described earlier, the
(CP corrected) interaction energy may be expressed using
energy functionals as,

DE = E[nAB
AB] � E[n0,AB

A ] � E[n0,AB
B ] (54)

where E[n] denotes a KS energy functional of charge density n(r)
and where n0,AB

A (r) and n0,AB
B (r) represent the charge densities of

the unperturbed monomers A and B.
The intermediate charge densities used in the evaluation of

the NEDA components are calculated after transforming the KS
matrix of the supermolecule to the NBO basis. The charge
density associated with the monomer A perturbed in the field of
the other monomer B, nAB

A (r), is calculated from the variationally
optimized AB supermolecule state and is expressed as,

nAB
A ðrÞ ¼

XonA
a

Zad r� Rað Þ � 2
XonA
a

caðrÞj j2 (55)

where summations occur over all nuclei and orbitals comprising
monomer A only and where ca are the eigenvectors of the
(diagonal) monomer A block of the full NBO KS matrix with
these orbitals mutually orthogonal across each of the individual
monomers.5,6 The equivalent charge density for monomer B,
nAB

B (r), is constructed in a similar fashion.
The localized (CT-restricted) charge density nloc,AB

AB (r) is calculated
from the charge densities associated with the individual perturbed
monomers as,

nloc,AB
AB (r) = nAB

A (r) + nAB
B (r). (56)

This differs from the total charge density of the fully interacting
state as the AB NBO KS matrix is observed to be block non-
diagonal, with the presence of off-diagonal elements representing
interfragmental delocalization interactions (as shown in Fig. 7).

From the charge densities described we can define the
charge transfer (DECT) and deformation (DEDEF) components
of the NEDA scheme as,

DECT = E[nAB
AB] � E[nloc,AB

AB ] (57)

DEDEF(A) = E[nAB
A ] � E[n0,AB

A ] (58a)

DEDEF(B) = E[nAB
B ] � E[n0,AB

B ] (58b)

DEDEF = DEDEF(A) + DEDEF(B). (58c)

Whilst the charge transfer and deformation components of
the NEDA scheme implemented at the DFT and HF levels of
theory are identical, differences exist in the interpretation
of the remaining contribution to the interaction energy.6 The
remaining contribution to the interaction energy given by
eqn (54) is shown to be that of the interaction of the perturbed
monomer charge densities,

DE � DECT � DEDEF = E[nloc,AB
AB ] � (E[nAB

A ] + E[nAB
B ]). (59)

We can consider this to represent both the classical Coulombic
interaction of the permanent and induced multipoles of the
monomer units (i.e. a combination of the electrostatic (DEES)
and polarization (DEPOL) contributions), and the quantum
exchange–correlation (DEXC) contribution,

DE � DECT � DEDEF = DEES + DEPOL + DEXC. (60)

The classical contribution to this remainder of the inter-
action energy can be expressed simply as,

DEES þ DEPOL ¼
ðð

nAB
A ðrÞnAB

B ðr0Þ
jr� r0j drdr0 (61)

The electrostatic (DEES) contribution is isolated from this
contribution as,

DEES ¼
ðð

n0;AB
A ðrÞn0;AB

B ðr0Þ
jr� r0j drdr0 (62)

where DEES describes the interaction of the unperturbed monomer
charge densities and therefore the interaction of the permanent

Fig. 7 The partitioning of the NBO Fock matrix for the AB complex
involved in the construction of the nloc,AB

AB (r) charge density.4 Delocalizing
interactions described by the hashed blocks of the Fock matrix are not
included in this charge density construction, where the labels ‘occ’ and ‘vir’
denote the sets of orbitals that are occupied and virtual on the monomers
A and B.
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multipoles of the monomer units.5 The DEPOL contribution may
similarly be partitioned and expressed as,

DEPOL ¼
ðð

nABA ðrÞnABB ðr0Þ
jr� r0j dr dr0 �

ðð
n0;ABA ðrÞn0;ABB ðr0Þ
jr� r0j dr dr0 (63)

where DEPOL describes the extra electrostatic interaction on
polarizing the charge densities of the separated fragments in
the field of the other fragments when in complex.4 In this regard,
we can consider DEPOL to be an interfragmental interaction and
DEDEF to be an intrafragmental interaction. The remaining DEXC

term accounts for the intermolecular electron exchange–correlation
interactions,

DEXC = Exc[nloc,AB
AB ] � (Exc[nAB

A ] + Exc[nAB
B ]) (64)

where within the HF/NEDA scheme this term is substituted
with the term DEEX of HF exchange origin,

DEEX ¼ �2
XonA
a

XonB
b

abjbah i (65)

which neglects the electron correlation contribution.4,6

4.4.1.2 The self polarization energy term and the three-term
NEDA. A penalty term associated with the energy cost to
polarize the unperturbed monomers to their perturbed charge
densities is also included within the NEDA scheme named the
self (polarization) energy, (DESE).5 Interpretation of the DEDEF

component is somewhat problematic as this component
includes both the contribution of Pauli repulsions to the
interaction energy, as well as the contribution from the self
energy penalty. It is sometimes useful to separate these con-
tributions as the isolation of this penalty energy from the DEDEF

component allows the reduction of the interaction energy
expression of eqn (53) into three components: an electrical
interaction (DEEL), charge transfer (DECT), and core repulsions
(DECORE).

The induced monomer charge density on monomer A,
DnA(r), is defined as the difference in the charge densities
associated with the perturbed and unperturbed monomer A,

DnAB
A (r) = nAB

A (r) � n0,AB
A (r). (66)

From this we define the self energy as the energy cost in
forming the induced monomer charge density in the presence
of the other monomers,5

DESEðAÞ ¼ �
1

2

ðð
DnAB

A ðrÞnAB
B ðr0Þ

jr� r0j drdr0 (67a)

DESE = DESE(A) + DESE(B) (67b)

where the self energy for monomer B is evaluated in a com-
plementary manner to that for monomer A. The calculation of
this interaction is also shown within Fig. 9. The reformulation
of the energy decomposition in terms of electrical interaction
(DEEL), charge transfer (DECT) and core repulsions (DECORE) is
achieved by collection of terms as,5

DEEL = DEES + DEPOL + DESE (68a)

DECORE = DEDEF + DEXC � DESE (68b)

DE = DEEL + DECT + DECORE. (68c)

The five-term NEDA scheme can also be described schematically
as within Fig. 10.

4.4.2 Assessment. A number of notable differences exist
between the NEDA and KM derived schemes. One key difference is
that the NEDA scheme undertakes the decomposition using only
wavefunctions originating from the complex and fragment Fock
matrix, avoiding use of variationally optimized intermediate wave-
functions. Lack of variational relaxation of the intermediate wave-
functions leads to a general overestimation of charge transfer values
and underestimation of polarization values:1,11 variational optimiza-
tion of the equivalent localized state used to evaluate the charge
transfer and polarization terms of the ALMO and BLW EDA schemes
avoids this problem for example.

Significantly, the polarization term of the NEDA scheme is
purely electrostatic in origin, while intramolecular electron
exchange (or exchange–correlation) effects of polarization are
captured within the deformation component DEDEF (Fig. 8),
and the remaining intermolecular exchange contribution con-
tained within a portion of the exchange component DEEX/XC.

4.5 Pair interaction EDA

The PIEDA24 scheme is a reformulation of the original KM EDA
approach in the FMO description of Kitaura et al.32–35 The PIEs
referred to by PIEDA are the interaction energies of the fragments
produced, and for this reason PIEs are also known as interfragment
interaction energies (IFIEs).87 The FMO prescription is one that is
also naturally well suited to the analyses of large systems (such as
proteins) and hence is of interest for the study of biomolecular
systems.

The FMO framework is implemented at many levels of
theory, namely the RHF, DFT, second-order Møller–Plesset
perturbation theory (MP2), CC, MCSCF, time-dependent DFT
(TDDFT), and configuration interaction (CI) theories.88 This is also
partially inherited within the PIEDA approach and the ability to
access the MP2 and CC correlated levels of theories34,88 is of merit
to the approach. The KM EDA-type energy components are however

Fig. 8 The evaluation of DEDEF for a complex AB. Non-classical effects of
polarization are captured within the DEDEF component along with intra-
fragmental electrostatic energy effects.6
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limited to evaluation at the RHF level of theory, with the addition of
a dispersion term DEDI to ensure a correct representation of the
interaction energy at these correlated levels of theories.

4.5.1 Theory. The PIEDA approach divides the interaction
in a manner derived from the KM EDA approach, with the

addition of a dispersion term for analyses at levels of theory
above RHF.

PIEDA is available in two types. The first type begins using
the densities obtained by an FMO calculation. The FMO densities
are already polarized by construction, and so PIEDA follows using
the KM EDA components described within eqn (30) but without
inclusion of the polarization component.35 Within PIEDA, the
charge transfer component is also combined with the mixing
component to produce the component DECT+MIX. An additional
dispersion component DEDI is also included in the PIEDA decom-
position. This is added in a straightforward manner when running
a PIEDA calculation at the MP2 or CC levels of theory, and describes
the correlation energy of these theories.88 PIEDA has also been
developed for system calculations in solution.134 A solvation con-
tribution DESOLV is calculated using an approach combining the
polarizable continuum model (PCM) with the FMO framework
known as PIEDA/PCM. This contribution describes the solvent
screening of the PIEs and is important for obtaining meaningful
interaction analyses.135 The full form of this PIEDA type is

DEint
IJ = DEES + DEEX + DECT+MIX + DEDI + DESOLV (69)

where the interaction energy definition used by PIEDA is the
pair interaction DEint

IJ described in eqn (23).
The second (full) type of PIEDA adds a polarization compo-

nent DEPOL to the EDA components.88 The calculation of
polarization requires an additional description of the free state
of the fragments. For molecular clusters this is simply obtained
as the molecules in isolation, however for systems that involve
bond partitioning the description is ambiguous. The state for these
bond partitioned fragments uses minimally possible caps, for
example in the case of a C–C bond a methyl cap would be used.

The polarization energy is separated into a destabilizing
contribution from the monomer internal energies EI

0, and a
stabilizing contribution from the electrostatic energy component
DEES of the first PIEDA.24 A number of polarization coupling
terms are included in this EDA, namely polarization–exchange,
polarization–dispersion, polarization–charge transfer and many-
body polarization terms.

4.5.2 Assessment. As well as the advantage the use of the
FMO framework within PIEDA provides by enabling EDA of
larger systems, the use of FMO also allows the evaluation of
EDA components for select regions of molecules through the
localized description of the FMOs. This is a particular benefit of
the PIEDA method. The PIEDA method also includes a number
of mixing and coupling terms which may be problematic to
interpret as within the KM EDA. BSSE within the PIEs is also
not treated in the original PIEDA scheme. However, attempts
have been made to reduce the BSSE within the PIEs for example
through using model core potentials136 and by using a CP
approach.51,137 A limitation of using a CP approach to estimate
BSSE in fragment based calculations is that many extra calcula-
tions are required to evaluate this. A novel approach that uses a
statistical model has also been proposed138 to estimate fragment
BSSE contributions, thereby reducing the number of additional
calculations required.

Fig. 9 The evaluation of self energy component for a monomer A in the
field of monomer B. This component is a portion of the deformation
component that is electrical in origin, with the remainder of the deforma-
tion component resulting from Pauli repulsion contributions.5

Fig. 10 The NEDA scheme for a complex AB.
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5 Perturbation based energy
decomposition analysis

The EDA schemes can be categorized by the nature of their
underlying theory. The character of the schemes may be
described as either variational in which the interaction
energy is decomposed by use of intermediate wavefunctions,
or alternatively as perturbation based in which the inter-
action between the fragments is seen as a perturbation to
the non-interacting description, and the interaction is con-
structed as corrections resulting from different physical
effects. In this section, we describe the SAPT and NBO
second-order perturbation theory approaches for interaction
energy analysis.

5.1 Symmetry-adapted perturbation theory

5.1.1 Theory. In contrast to the intermediate wavefunction
approach of the variational based EDA schemes, SAPT is pre-
sented as a perturbative expression of the interaction energy in
terms of components of chemical interest.139,140

The description of SAPT here will focus upon what is usually
termed the SAPT(0) approach. The approach assumes the
Møller–Plesset fluctuation operators, ŴA and ŴB, to not contribute
to the interaction energy and provides a concise introductory
description of the SAPT formalism.

The SAPT expression for the Hamiltonian of a complex AB is,

Ĥ = ĤA + ĤB + xŴA + ZŴB + zV̂ (70)

where the intermolecular Coulomb operator is expressed as,

V̂ ¼
XonA
a

XonB
b

1

ra � rbj j þ
XonB
b

v̂AðbÞ þ
XonA
a

v̂BðaÞ þ V0 (71)

v̂AðbÞ ¼ �
XonA
a

Za

rb � Raj j (72a)

v̂BðaÞ ¼ �
XonB
b

Zb

ra � Rb
�� �� (72b)

and V0 is the nucleus–nucleus interaction energy between
fragments A and B.141

A symmetrized Rayleigh–Schrödinger (SRS) perturbative
expansion with respect to the perturbation parameters x, Z,
and z defines the SAPT approach with the interaction energy
expressed as,

DE ¼
X1
i¼0

X1
j¼0

E
ðijÞ
ind þ E

ðijÞ
exch

� �
(73)

where the E(ij)
ind are the polarization expansion terms and j is the

monomer fluctuation potential index and i the intermolecular
perturbation index. The SRS expansion results in each E(ij)

ind term
having an associated exchange term, E(ij)

exch, to force antisymme-
trization in order to project away Pauli-forbidden components
from the interaction energy.140

Within the SAPT(0) approach, the conditions of x = Z = 0 are
enforced. This results in an interaction energy SRS expansion of
the form,

DEðzÞ ¼
C0 zV̂ÂAB

�� ��CðzÞ� �
C0 ÂAB

�� ��CðzÞ� � (74)

where C is the Hartree product of the monomer wavefunctions
and C0 is equal to C evaluated with the restriction z = 0.
The antisymmetrizer ÂAB is introduced to project away the
Pauli-forbidden components of the wavefunction C.

The SAPT(0) interaction energy up to the second-order with
renaming of terms (cf. eqn (73)) may be expressed as,

DESAPT(0) = E(1)
elst + E(1)

exch + E(2)
ind + E(2)

exch. (75)

The second-order energy correction polarization term, E(2)
ind,

is formed of an induction and a dispersion contribution,

E(2)
ind = E(2)

ind + E(2)
disp (76)

where E(2)
ind is the energy of polarizing each monomer in the

field of the frozen charge density of the other monomer, and
where E(2)

disp is the dispersion correction of the MP2 correla-
tion energy-like form. The induction energy may be
expressed as,

E(2)
ind = E(2)

ind(A ’ B) + E(2)
ind(B ’ A) (77)

where A ’ B represents polarization of the charge density of A
in the field of the frozen charge density of B and B ’ A
represents polarization of the charge density of B in the
field of the frozen charge density of A.139 Specifically for
the polarization of A in the field of the frozen charge density
of B,

E
ð2Þ
indðA BÞ ¼ 2

X
ar

tar oBð Þar (78)

where,

oBð Þar¼ ûBð Þarþ
X
b

habjrbi (79a)

tar ¼
oBð Þar
ea � er

: (79b)

The case of the polarization of B in the field of the frozen
charge density of A is of similar but opposite form. The
second-order correction for dispersion is given by,

E
ð2Þ
disp ¼ 4

XonA
ar

XonB
bs

habjrsihrsjabi
ea þ eb � er � es

: (80)

The second-order exchange correction similarly contains dis-
persion and induction components E(2)

exch–ind and E(2)
exch–disp

respectively, and the forms of these may be found in the
literature.139,140

Substituting the SAPT(0) MOs with KS MOs in the above
equations results in a method named SAPT(KS).142 The
SAPT(KS) approach is noted however as failing to properly
reproduce the dispersion energies of the original SAPT
scheme.143–146 This scheme differs from the SAPT(DFT)143–146
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approach in which the dispersion interaction of eqn (80) are
obtained from frequency-dependent density susceptibility
(FDDS) functions from TD-DFT calculations.

5.1.2 SAPT treatment of polarization and charge transfer.
Normally, the polarization and charge transfer contributions to
the interaction energy are described within the induction energy.
These components may be isolated in an ALMO-like approach
that considers the induction energy as representing solely the
polarization contribution when evaluated with the basis set of
each fragment limited to its own basis functions.18,147 This basis
is termed the monomer-centered basis set (MCBS) and the basis
with each fragment able to use all basis functions of the full
supermolecule is termed the dimer-centered basis set (DCBS).
The partitioning of the charge transfer, Ect, and polarization, Epol

of SAPT is calculated as,

Epol = E(2)
ind,MCBS (81a)

Ect = E(2)
ind,DCBS � E(2)

ind,MCBS (81b)

where E(2)
ind,MCBS and E(2)

ind,DCBS are the induction energies E(2)
ind

calculated in the MCBS and DCBS respectively. Exchange parts
of the polarization and charge transfer terms are calculated
in a similar manner from the exchange induction correction
E(2)

exch–ind in the MCBS and DCBS also.
5.1.3 Assessment. With recent developments permitting

SAPT at the DFT level of theory, this method is becoming a
viable alternative to the variational based approaches.143,145

As a perturbative treatment of the interaction energy, SAPT
inherently differs from the variational approaches in a number
of ways. Notably, the SAPT descriptions of polarization and
charge transfer differ from the variational methods we have
discussed by implicitly including dispersion contributions
within this term.1

5.2 Natural bond orbital second-order perturbation theory
analysis

A notable asset of the NBO package (of which NEDA belongs)
is its ability to calculate second-order perturbation theory
energies for a particular donor–acceptor NBO pair.85,120 This
low-order perturbative correction provides an estimate for the
charge transfer contribution of an NBO pair (from a bonding to
an anti-bonding NBO) to the total interaction energy. This
energy is expressed by the equation,

DEð2Þij ¼
�wi Fij

�� ��2
eðNLÞ
j � eðLÞi

(82)

where wi is the donor orbital occupancy (approximately 2), Fij is
Fock matrix element for the donor–acceptor orbital interaction,
and e(L)

i and e(NL)
j are the energies of the donor and acceptor

orbitals respectively. In this manner, the chemist is able to gain
useful insight into the non-Lewis interaction of an atom within
a molecule with neighbouring functional groups, and therefore
allows the study of particular functional groups of chemical
interest.

6 Applications of energy decomposition
analysis

We have investigated a number of systems of interest within the
field of drug design. These model systems express key interactions
typically found within ligand–host systems, such as hydrogen
bonding, p–p and halogen interactions. The test systems we
have included for study have been selected based on their
relevance to biomolecular studies whilst maintaining small
size. The chosen series are important to understanding trends
in the EDA results and to correlate these with chemical common
sense. Of key consideration in drug design are effects resulting
from hydrogen bonding and dispersion interactions.148,149

We have included a number of systems in our work that express
these interactions. We have arranged these systems into 6 con-
generic series test sets that are expected to follow key trends in
bonding character.

We aim to identify the EDA approaches which are most
suitable for biomolecular applications by considering a number
of criteria. These criteria include the schemes’ abilities to
describe the interaction energy with chemically useful energy
components, physically reasonable energy values, and with
minimal basis set dependence. The EDA schemes investigated
in the present study were the ALMO EDA, NEDA, KM EDA, RVS
EDA and SAPT(KS) schemes. The PIEDA scheme was deemed
inappropriate for the study of our test systems as this scheme is
essentially identical to the KM EDA for molecular fragments.
Also, because the NBO second-order perturbation theory is a
charge transfer analysis tool and not a variational or perturba-
tion EDA scheme we have not included results of this approach
in our work.

6.1 Calculation set-up

Starting geometries were chosen with the expectation that the
test sets would ideally follow a congeneric trend on geometry
optimization. Geometry optimization was performed at the
BLYP-D3/6-311G* level of theory on all structures using the
NWChem ab initio package.150 The -D3 correction for dispersion
of Grimme et al.151 was used in order to properly model the
dispersion interactions especially observed in the case of the p–p
interacting systems. The BLYP functional was chosen due to its
minimal mean absolute deviation (MAD)151 for the S22 bench-
mark dataset152 when using the -D3 correction.

EDA was subsequently performed on the geometry opti-
mized structures at the same BLYP-D3/6-311G* level of theory
at which the geometries were optimized for the ALMO EDA,
NEDA and SAPT(KS) schemes, and at the HF/6-311G* level for
the KM EDA and RVS EDA schemes. The KM EDA polarization
component does not obey the Pauli principle and it is possible
for valence electrons to collapse into the partner fragment’s
core orbitals.95–97 To prevent this and to allow energy conver-
gence, the calculations of the KM EDA and RVS EDA compo-
nents for the benzene–Li+ system were performed without d
polarization functions on the lithium atom. The optimized
geometries of the systems studied using EDA are shown within
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Table 1 The BLYP-D3/6-311G* geometry optimized systems for EDA
(intermolecular distances are given in Å)

System Figure

Test set 1: hydrogen bonding interactions

Water–water

Water–methanol

Methanol–methanol

Water–ammonia

Test set 2: water–cations

Water–ammonium

Water–Li+

Water–Na+

Water–K+

Test set 3: ammonium–p systems

Ammonium–benzenea

Table 1 (continued )

System Figure

Ammonium–thiophene

Ammonium–furan

Ammonium–pyrrole

Test set 4: p-cations

Benzene–ammoniuma

Benzene–Li+

Benzene–Na+

Benzene–K+
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Table 1, and further information of preparation of the systems
in test set 6 is provided.‡

NEDA, KM EDA and RVS EDA calculations were performed
on the structures using the GAMESS-US153 ab initio package
and ALMO EDA and SAPT(KS)141,154 calculations were per-
formed using the Q-Chem155 package. The locally-projected
SCF equations of Gianinetti77,78 were used in the ALMO
approximation of the ALMO EDA, and partitioning of the
charge transfer and polarization components of the
SAPT(KS) approach from the induction energy was achieved
using eqn (81a) and (81b).

6.2 Results and discussion

Within this section, we compare the trends of the various
EDA components within each congeneric series. Our goal is
to examine the chemical relevance of each EDA method for
the different series. An ‘ideal’ EDA would be expected to
produce results that agree with chemical intuition in obvious
cases and produce sensible energy components in more
difficult cases where chemical intuition is less obvious. Plots
of the EDA results for the test sets are given in Fig. 11 and 12.

6.2.1 Test set 1: hydrogen bonding interactions. This test
set focusses on the hydrogen bonding interactions of water
dimer derived systems, specifically the water dimer, water–
methanol, methanol–methanol, and water–ammonia systems
in the geometries shown in Table 1. A number of studies
concerning the covalency of hydrogen bonding in water have
been published.156–163 EDA allows insight into the covalency of
this interaction through the charge transfer component.

In Fig. 11(a) we observe that the electrostatics of the water dimer,
water–methanol and methanol dimer systems are similar (within
0.52 kcal mol�1 at the NEDA/SAPT(KS) level and 1.05 kcal mol�1 at
the KM EDA level), and that the water–ammonia system electrostatic
energy is more stabilizing than the water–methanol system by
3.81 kcal mol�1 at the NEDA/SAPT(KS) level and 5.44 kcal mol�1

at the KM EDA level. We would expect that as oxygen is more
electronegative than nitrogen this would give rise to a greater
dipole moment than for the final nitrogen containing ammonia
interacting system and hence a higher electrostatic component
for the first three systems. The oxygen containing molecules also
possess 2 lone pairs rather than the 1 lone pair found on the
nitrogen of ammonia, and this would also support expecta-
tions of a lower electrostatic component for the ammonia inter-
acting system. This trend therefore contradicts our chemical

Table 1 (continued )

System Figure

Test set 5: p interacting systems

Benzene–benzene (T-shaped)

Benzene–benzene
(parallel displaced)

Benzene–pyridine

Benzene–pyrimidine

Benzene–DMAb

Test set 6: halogenated systems

Benzene–fluorobenzene

Benzene–chlorobenzene

Benzene–bromobenzene

a The benzene–ammonium system of test set 3 is also contained within
test set 4. b DMA is dimethylacetamide.

‡ The systems of test set 6 were obtained in a manner that maintained a
geometric trend in the series. These were obtained by finding the BLYP-D3/6-
311G* energy minima with regard to intermolecular separation of the frozen
monomers when in the T-shaped conformation. The frozen monomer geometries
were taken as the monomer structure’s geometry optimized in isolation at the
BLYP-D3/6-311G* level. The T-shaped conformation is described by the benzene
monomer at a 901 angle to the partner halogenated benzene monomer, with the
halogen in the axis of the benzene p cloud (i.e. directly centred above the
geometric average of the benzene carbon atoms). The benzene–fluorobenzene
system is the only system of test set 6 not to have a s hole present on the halogen,
and using this approach allows us to compare the effect of the s hole feature on
the EDA components.
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expectations. A similar yet opposite in sign trend is observed for
the exchange component of Fig. 11(d), with the DEFRZ and DEESX

terms showing the electrostatic energy to be more dominant
than exchange by similar amounts for the water dimer and
water–ammonia systems. Polarization (displayed in Fig. 11(j))
is shown to become more stabilizing across the set fairly

consistently, with a gain observed in stabilization from the
methanol dimer to the water–ammonia system for all but the
NEDA (0.41 kcal mol�1 to 0.68 kcal mol�1 increase in stabili-
zation for all other schemes). For the NEDA of these two systems,
polarization (with the self-energy correction) is shown to be
less stabilizing by 1.08 kcal mol�1 for the water–ammonia system.

Fig. 11 Converged EDA component values (in kcal mol�1) of the test sets 1–3. The results of test set 1 are given by plots (a), (d), (g), (j) and (m), test set 2
by plots (b), (e), (h), (k) and (n), and test set 3 by plots (c), (f), (i), (l) and (o). The EDA results of the electrostatic components are shown within plots (a)–(c),
the exchange/exchange–correlation components within plots (d)–(f), the Heitler–London interaction components within plots (g)–(i), the polarization
components within plots (j)–(l), and the charge transfer components within plots (m)–(o). The NEDA polarization energies corrected with self energy
term are given by POL + SE within plots (j)–(l). The green bars of the polarization and charge transfer plots (j)–(o) represent the SAPT(KS) contributions,
where the non-hashed bars represent the electrostatic contribution of this term only and where the hashed bars also include exchange in this term. The
full BLYP-D3/6-311G* level interaction energy DE is given within plots (a)–(c).

Chem Soc Rev Review Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
A

pr
il 

20
15

. D
ow

nl
oa

de
d 

on
 2

/1
0/

20
26

 7
:2

0:
50

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4cs00375f


3198 | Chem. Soc. Rev., 2015, 44, 3177--3211 This journal is©The Royal Society of Chemistry 2015

This may be due to a number of reasons including lack of variational
optimization of the intermediate wavefunctions of NEDA.

We expect charge transfer to be increasingly dominant
across the first three systems due to increasing presence of
the electron donating methyl substituents. This is shown in
Fig. 11(m) and is noted to increase consistently and at a slower

rate than for the polarization component across these systems.
Charge transfer for the ammonia system is expected to be
similar to the water dimer system due to its similar size. Due
to the greater electronegativity of oxygen in comparison to
nitrogen, we may expect charge transfer to be greater from the
ammonia molecule due to its greater ability for electron donation.

Fig. 12 Converged EDA component values (in kcal mol�1) of the test sets 4–6. The results of test set 4 are given by plots (a), (d), (g), (j) and (m), test set 5
by plots (b), (e), (h), (k) and (n), and test set 6 by plots (c), (f), (i), (l) and (o). ‘Bz Bz (p-displaced)’ represents the parallel displaced benzene dimer. The EDA
results of the electrostatic components are shown within plots (a)–(c), the exchange/exchange–correlation components within plots (d)–(f), the Heitler–
London interaction components within plots (g)–(i), the polarization components within plots (j)–(l), and the charge transfer components within plots
(m)–(o). The NEDA polarization energies corrected with self energy term are given by POL + SE within plots (j)–(l). The green bars of the polarization and
charge transfer plots (j)–(o) represent the SAPT(KS) contributions, where the non-hashed bars represent the electrostatic contribution of this term only
and where the hashed bars also include exchange in this term. The full BLYP-D3/6-311G* level interaction energy DE is given within plots (a)–(c).
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These features are also observed, with charge transfer indicated
as falling for the final water–ammonia system by all schemes
but the NEDA and SAPT(KS). For all but the RVS EDA scheme,
charge transfer effects are greater for the water–ammonia
system than the water dimer system. The NEDA values for
charge transfer are also noted as being excessively large (up
to �18.35 kcal mol�1), almost an order of magnitude larger
than the other methods and do not appear chemically credible.

The results suggest electrostatics to be the most dominant
driving force of hydrogen bonding, with exchange greatly
countering this contribution. Charge transfer remains the next
most dominant driving force, except for the SAPT(KS) for which
on including exchange corrections the polarization component
is slightly more dominant across the set (up to 0.49 kcal mol�1

more dominant). Overall our results therefore suggest the
hydrogen bonding interactions of this set to be characterized
by dominance of the electrostatic energy component but with
significant contribution from the charge transfer component
and minimal polarization contribution. This is a very interesting
observation as hydrogen bonds are often described by necessity
(e.g. force-fields) as arising only due to electrostatics without
involvement of charge transfer effects. Notably, Weinhold and
Klein164 recently characterized a set of hydrogen bonding com-
plexes in which the electrostatic interaction is interpreted as
repulsive. Such ‘‘anti-electrostatic’’ hydrogen bonding complexes
include interacting fluoride and bicarbonate anions, with the
hydrogen bond presence evidenced by near linearity of the FHO
unit bond (157.11), significant vibrational red shift at nOH,
Bader’s QTAIM26 analysis and natural bond critical point analy-
sis. There exists a significant repulsive penalty in order to form
the bond (56.75 kcal mol�1 at the B3LYP/aug-cc-pVTZ level), with
a shallow metastable ‘‘hydrogen bond’’ local minimum DE =
�0.05 kcal mol�1. This is also further supported by our own
ALMO EDA calculations at the B3LYP/aug-cc-pVTZ level and
using the same geometry as Weinhold and Klein, in which we
observe a strongly repulsive frozen density interaction of
64.27 kcal mol�1 with relatively small polarization (�8.49 kcal mol�1)
and charge transfer (�3.81 kcal mol�1) contributions. A
re-examination of the electrostatic and resonance phenomena
of this system by Frenking and Caramori165 using the ETS
EDA29–31 at the B3LYP-D3/TZ2P+ level gave a deeper energy
well (�0.77 kcal mol�1) which was interpreted as a stabilizing
electrostatic interaction. In reply to Frenking and Caramori,
Weinhold and Klein166 argue that their viewpoint is different.
This is a clear example that within the chemistry community a
variety of EDA interpretations are in use which are not always
compatible. This class of systems demonstrates the complex
nature of hydrogen bonding (and equally the complex nature of
EDA interpretations also), and shows that the presence of
stabilizing electrostatic interactions may not be necessary for
hydrogen bonding between molecules.

6.2.2 Test set 2: water–cations. With the presence of
charged monomers in the systems, we would expect this set
to be dominated by electrostatic interactions. We would addi-
tionally expect the contribution of electrostatics to fall with
increasing cation mass due to the increased intermolecular

distance. This is observed in the EDA results, with the electro-
static energy contributions ranging between �44.14 kcal mol�1

and �23.66 kcal mol�1 across the set as displayed in Fig. 11(b),
where we consider interactions between water and ammonium,
lithium, sodium and potassium cations in the geometries
shown in Table 1.

The trend in exchange (which may include both processes of
electron exchange and implicit orbital orthogonalization, and
hence describe a Pauli repulsion-type contribution) shown in
Fig. 11(e) remains slightly less clear in its origin, as factors of
intermolecular distance, electron count and energy costs of
orthogonalization all contribute to the value of this component.
Nonetheless, we can rationalize the EDA results as both the
energy cost of orthogonalization and the exchange itself decay
with increasing intermolecular distance.

For the alkali metals, we expect polarization to be most
significant for the lithium interacting system due again to the
strong electrostatic energy interaction seen for this system as
discussed above. The lithium ion is the smallest of the metals
and hence is able to approach the water fragment more closely.
We would therefore expect this ion to be able to polarize the
water molecule charge density more effectively than the
remaining metals. This trend is observed within the EDA
results as shown in Fig. 11(k).

Polarization is observed to be less stabilizing for the ammonium
interacting system than for the lithium interacting system, whilst
charge transfer is conversely observed to be the most stabilizing
(excluding SAPT(KS)) for the ammonium interacting system as
shown in Fig. 11(n). The decrease in polarization contribution is
possibly a result of the increased r(O–N+) distance in comparison to
the r(O–Li+) distance, and the greater charge transfer contribution
of this system may arise through the ability of the ammonium
molecule to diffuse its charge over a much larger volume than the
alkali cations.

For the charge transfer component of the alkali metals, we
again expect the properties of the lithium ion to be significant
in determining the trend observed. We would expect the
lithium ion to be more effective at withdrawing charge from
the partner water molecule, and hence expect the EDA results to
display a more stabilizing charge transfer component for the
lithium ion that decreases down the group 1 metals. This is
observed to an extent in Fig. 11(n): between the lithium and
sodium ion interacting systems the charge transfer contribu-
tion falls for all but the SAPT(KS) scheme without the exchange
correction. We also note that for the RVS EDA scheme the
charge transfer energy is positive and unphysical for these two
systems (0.05 kcal mol�1 and 0.34 kcal mol�1 for the lithium
and sodium ion interacting systems respectively), seemingly
through overcorrection by the CP correction. Interestingly, we
observe charge transfer to increase between the sodium and
potassium ion interacting systems for all but the NEDA and
SAPT(KS) schemes. It is unclear why this is observed, however
through the analysis of the charge transfer BSSE contributions
of the schemes that display this unexpected trend it appears
that the increase also arises due to an artefact of these schemes’
CP corrections.
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The charge transfer KM EDA component is indicated as
increasing for the final water–potassium system. This observed
break from the trend may be due to the known instability of the
KM EDA with larger basis sets and smaller intermolecular
distances,95–97 whereby a state with occupied orbital occupation
number greater than 2 is possible. Whilst the water–cation
distance is the greatest for the potassium system, the increase
in the extension of the 6-311G* basis with the extra electron shell
may be large enough to give rise to this artefact of the KM EDA
scheme. This highlights the contradictory observation that using
an incomplete basis set with the KM EDA can give rise to results
with more physical relevance.

6.2.3 Test set 3: ammonium–p systems. We have considered
the interactions of ammonium with benzene, thiophene, furan
and pyrrole in the geometries shown in Table 1. The results
suggest electrostatic effects to be the most dominant inter-
actions for this set followed by exchange, as shown in
Fig. 11(c) and (f). Polarization followed by charge transfer are
observed to be the next most dominant interactions as shown in
Fig. 11(l) and (o). These observations are supported by a similar
EDA analysis of this test set by Aschi et al.16 using the RVS EDA
method. The electrostatics of the benzene and thiophene are
observed to be similar in magnitude and lie between the
interaction magnitudes of the furan and pyrrole interacting
systems, closer to the furan system. In fact the thiophene and
benzene interacting systems display similar EDA component
profiles across the range of the EDA schemes, evidencing their
similar bonding character and possible functional group inter-
changeability within drug design. The similar components seen
for these two systems are expected through the very similar
electronegativities of carbon and sulphur and the similar aro-
matic structures of these systems.

We would chemically expect the vast majority of polarization
to result by effect of the ammonium ion on the aromatic
fragment. Aschi et al.16 support this expectation quantitatively
with greater than 98.5% of polarization contributed by the
aromatic fragment and describe the polarization interaction
as ‘‘exclusively an ion-induced multipole interaction’’. Polariza-
tion is observed to fall slightly (up to 0.59 kcal mol�1) between
the benzene and thiophene interacting systems, and again
between the thiophene and furan interacting systems (up to
1.31 kcal mol�1). For the pyrrole interacting system polarization
is observed to increase in stability. The NEDA scheme predicts
this stability increase to be small (0.23 kcal mol�1) with the
contribution of polarization lying between the thiophene and
furan contributions. However, for the remaining schemes this
is suggested to be more significant, with the polarization
contribution of the pyrrole interacting system the greatest for
this set.

The magnitude of charge transfer effects is dependent on
the electron donating ability of the aromatic system. Based
purely on the electronegativities of carbon, sulphur, oxygen and
nitrogen (and therefore their electron donating ability into the
aromatic ring), we would expect charge transfer to the ammonium
to be of the order furan o pyrrole o benzene = thiophene. Our
expectations using this model partially confirm this, with the trend

supporting similar charge transfer values for the benzene and
thiophene interacting systems, and smaller furan charge transfer
than for pyrrole. Our model does not account for the less clear
effects resulting from the aromatic geometries and constituents
however, and this may be the reason for the inaccuracy of our
expectations. For the ALMO, KM and RVS EDAs and SAPT(KS),
charge transfer is indicated as within a reasonably small range
across the set (within 2.60 kcal mol�1) but increasing significantly
from �12.33 kcal mol�1 to �18.89 kcal mol�1 for the NEDA
scheme. This large range of NEDA charge transfer energies is
unexpected and indicates a lack of stability of this component.

6.2.4 Test set 4: p–cations. In this set we consider the
interactions of benzene with ammonium, lithium, sodium
and potassium cations in the geometries shown in Table 1.
The set is similar to the systems in test set 2 through shared
cation molecules, and similar component profiles are observed
as a result of this. From a chemical perspective, we would
expect similar but less stabilizing electrostatic components for
the benzene interacting systems of this set than the water
interacting systems of test set 2. This is due to a more strongly
interacting dipole moment of water in comparison to the
quadrupole moment of benzene with the cations. This is
confirmed by electrostatic energies between �6.94 kcal mol�1

to �22.61 kcal mol�1 across test set 4 compared with electro-
static energies between�23.66 kcal mol�1 to�44.14 kcal mol�1

for test set 2.
Exchange effects (Fig. 12(d)) are expected to be generally less

significant than for test set 2 due to the greater intermolecular
distances of the systems of test set 4. This is observed across the
set, notably however exchange is not shown to fall in a
consistent manner. This observation possibly arises due the
comparatively small intermolecular benzene–lithium separa-
tion that results in a greater exchange component.

Polarization within test set 4 (Fig. 12(j)) is shown to be
approximately twice the magnitude of polarization within test
set 2 (Fig. 11(k)). This observation is explained from a chemical
perspective by the greater polarizability of benzene (a =
10.74 Å3) in comparison to water (a = 1.45 Å3).167 The polariza-
tion component of the lithium interacting system is shown to
stabilize the system by more than 400 kcal mol�1 through the
KM EDA using the 6-311G* basis set. Removing d polarization
functions from the lithium basis reduces this component to a
more reasonable value (�25.86 kcal mol�1). This artefact is
believed to originate in the ability of valence electrons to
collapse from one fragment into the core orbitals of the other
fragment, enabled through the use of intermediate wavefunc-
tions that do not satisfy the Pauli exclusion principle.95–97 As
the completeness of the basis set increases, the polarization
component becomes extreme in magnitude as this process of
collapse becomes more significant. We have also included
results using the balanced 6-311G basis set in the ESI.† These
results support the use of the modified unbalanced basis as
reliable as an approximation to the 6-311G* basis used in the
remaining calculations.

Interestingly, charge transfer (Fig. 12(m)) does not follow the
same trend as within test set 2 (Fig. 11(n)) and the ammonium
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and lithium cations are reversed in their charge transfer con-
tribution trends. This observation is expected, as the hydrogen
atom of the ammonium molecule interacting with benzene is
directed into the low electron region of the p cloud whereas for
the water–ammonium system an ammonium hydrogen atom is
directed towards the oxygen of the water molecule.

Charge transfer within the benzene–lithium system is indicated
as highly contributing in comparison to the systems of the other
sets. This contribution is possibly due to the cation being able to
access the electron-rich p cloud of the benzene by siting itself
within this on binding, and due to the charge of the cation
interacting with the benzene. A more rapid decrease in charge
transfer contribution with increasing cation mass is observed than
for the water–cation systems of test set 2. This may be a result of the
geometry of the set: the rate of fall in intermolecular distance
across the p–cation set (1.90 Å range of r) is greater than across the
water–cation set (0.77Å range of r).

6.2.5 Test set 5: p interacting systems. In this set we
consider a number of systems interacting with the p ring
of benzene. Specifically we consider the parallel displaced
and T-shaped benzene dimers, and pyridine, pyrimidine and
dimethylacetamide (DMA) interacting with benzene in the
geometries shown in Table 1.

A number of predictions can be made based on the compo-
sitions of the structures of study. We would expect the energy
components to increase in magnitude when going from the
benzene T-shaped to the parallel displaced conformers due to
the smaller intermolecular distance between the molecules.
Generally this is observed in the results. Notably, however,
stabilization through the KM EDA electrostatic component is
shown to fall by over 1 kcal mol�1 as shown in Fig. 12(b). The
charge transfer components of the ALMO EDA and SAPT(KS)
(with exchange correction) schemes are also observed to fall
fractionally between these two systems as shown in Fig. 12(n),
however these energy changes are so small that they may be
considered negligible.

The three p–p interacting parallel displaced systems are
structurally very similar and so deducing the expected component
trends for these systems is slightly less clear. With an increase in
the number of nitrogen constituent atoms on the interacting
molecules we observe an increase in charge transfer effects, as also
shown in Fig. 12(n). This is expected: with increased substitution
through benzene, pyridine and pyrimidine the electron withdraw-
ing abilities of these molecules also increase, and so are able to
withdraw more charge density from the p cloud of the partner
benzene molecule. In considering polarization effects within these
three systems, we would expect a more significant electric moment
in the plane of the benzene interacting system with increased
substitution to provide a more polarizing field for the benzene
molecule. Polarization across these three systems is predicted to be
enhanced through this effect. However, the polarizabilities of these
molecules themselves are shown to fall across the three systems
(a = 10.74 Å3, 9.15 Å3 and 8.53 Å3 for benzene, pyridine and
pyrimidine respectively),167 and so the final polarization contribution
becomes a balance of these two opposing factors of polarizability
and field strength. As shown in Fig. 12(k), polarization falls across

the three systems for all but the NEDA scheme, therefore
indicating that the effect of falling polarizabilities outweighs
the effect of more significant polarizing electric fields for the
benzene.

For the final DMA interacting system, we observe moderately
increased electrostatic and exchange energy contributions as
shown in Fig. 12(b) and (e) respectively. This is interesting to
note as the DMA molecule to benzene distance is similar to the
intermolecular distances seen within the other systems. We
may expect a greater polarization contribution for this system
due to the more extended structure of the DMA molecule in
comparison to the cyclic structures of the other interacting
systems. This is supported by the results shown in Fig. 12(k) for
all but the NEDA scheme. We expect the proton positioned
above the p cloud to act as a means for electron transfer to the
DMA molecule, with the oxygen acting as an electron sink
stabilized through resonance of the amide bond. As a result
of this, we predict charge transfer to be greater for this system.
This is observed for all but the HF level schemes (KM and RVS
EDA), as shown in Fig. 12(n).

6.2.6 Test set 6: halogenated systems. We have considered
a selection of halogenated benzene systems interacting with
another benzene molecule in test set 6. The halogens we have
selected are fluorine, chlorine and bromine and the system
geometries are shown in Table 1. The systems have been
constrained in a T-shaped geometry, with the halogens directly
interacting with the p ring through the halogen s hole.168 For
all our structures the energy minimization procedure we
employed did not use the CP correction. We note that the (BSSE
corrected) interaction energy of the benzene–fluorobenzene system
is positive as shown in Fig. 12(c), with this arising due to the CP
correction raising the interaction energy to the point that the
interaction becomes repulsive. Natural population analysis of these
systems at the BLYP-D3/6-311G* level reveals natural charges on the
fluoro-, chloro- and bromobenzene halogens as �0.326e, �0.007e,
0.061e respectively, correlating with the presence of a s hole on the
bromine and chlorine atoms. The s hole arises due to three
unshared electron pairs on the halogen arranging to produce a
belt of negative potential around the bond axis on the halogen,
leaving a region of positive potential on the halogen opposite to the
halogen bond.168 The presence of the s holes on the bromine and
chlorine atoms is expected to affect the EDA profiles of the systems
of test set 6, most significantly through enhanced electrostatics in
the systems containing these atoms.

We predict the electrostatic energy to increase from the
fluorobenzene interacting system through to the bromobenzene
interacting system. This is because going through the series the
charge on the halogen becomes more positive, and so the
electrostatic interaction of the halogenated benzene molecule
with the quadrupole of the benzene will become more favour-
able. We expect the s hole on the chlorine and bromine atoms to
enhance this effect, as the positive potential on these atoms is
therefore concentrated to a region on the halogen that gives a
more favourable electrostatic interaction with the benzene p
cloud. In fact, due to lack of a s hole on the fluorobenzene
molecule we may expect the electrostatic interaction in this
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system to be destabilizing. We also expect the increasing inter-
molecular distances through the series to contribute to a decrease
in electrostatic component energy magnitudes. This factor opposes
our expectations of increasing electrostatics through the series due
to increasing halogen charge. The electrostatic component results
are shown in Fig. 12(c). It appears that the increase in electrostatics
through the series arises due to increasing halogen charge, which
more than compensates for any weakening of this component
through increased intermolecular distance.

The exchange component is expected to fall through
the series due to increased intermolecular separation of the
molecules. As halogen electronegativity decreases through the
series, we expect the charge on the halogenated benzene
molecule to become more localized on the p ring. This is
expected to additionally reduce the contribution of exchange,
as exchange is distance dependent and the electrons are now
further from the partner benzene molecule. We observe a slight
fall in exchange that is in agreement with our predictions
between the fluorinated and chlorinated systems as shown in
Fig. 12(f). However, exchange is approximately as strong for the
brominated system as the fluorinated system. This arises due to
the greater number of electrons on bromobenzene than on
fluorobenzene. With more electrons on the bromobenzene
available to exchange with the benzene electrons, the exchange
interaction for bromobenzene can therefore be stronger despite
the greater intermolecular separation for this system.

Whilst polarization effects are expected to increase through
the set as a result of increasing polarizabilities of the haloge-
nated benzene molecules, the increase in intermolecular
separations of the systems is also expected to have an impact
on this component. The polarizability of fluorobenzene (a =
10.3 Å3) is less than that of chlorobenzene (a = 14.1 Å3) and
bromobenzene (a = 14.7 Å3).167 However, the benzene p ring to
halogen distance is more than 0.42 Å shorter for the fluorinated
system than for the chlorinated and brominated systems as
shown in Table 1. The enhancement of polarization through
the smaller benzene–fluorobenzene intermolecular separation
could be reasonably similar to the enhancement in the benzene–
bromobenzene through the effect of greater bromobenzene polar-
izability, however we cannot predict by chemical reasoning alone
which factor dominates. The intermolecular separations of the
chlorinated and brominated systems are reasonably similar, and
we expect that polarization effects will be greater in the brominated
system than the chlorinated system solely as a result of differences
in molecular polarizabilities. The polarization results are shown in
Fig. 12(l). The NEDA results show polarization to be smallest for the
fluorinated system (�1.22 kcal mol�1 with the self-energy correc-
tion), indicating the smaller intermolecular separation within this
system to offer little enhancement to polarization. However, NEDA
overestimates polarization by an order of magnitude compared to
the other schemes. More importantly all other schemes show
polarization to be slightly greater for the fluorinated system and
therefore instead indicate the smaller intermolecular separation to
enhance polarization to a small degree. Our prediction of increased
polarization from the chlorinated system to the brominated system
is in agreement with all the EDA scheme results.

We expect the presence of a s hole on the chlorine and
bromine atoms to enhance charge transfer to a degree in these
systems. This is due to the s holes being located in the high
electron region of the benzene p ring. We predict the strongly
electron withdrawing nature of the fluorine atom to be more
important than the presence of a s hole in enhancing charge
transfer effects. Also, the smaller benzene–halogen separation
in the benzene–fluorobenzene system (2.97 Å) is also expected
to enhance charge transfer effects in this system. The inter-
molecular separation is slightly greater within the bromo-
benzene system than within the chlorobenzene system, and
chlorine is more electronegative than bromine. We therefore
predict the charge transfer interaction to be weaker for the
bromobenzene system than the chlorobenzene system. Our
results of charge transfer for this test set are shown in
Fig. 12(o). The results of the SAPT(KS) scheme shows charge
transfer to increase in strength going through the set from the
fluorinated system to the brominated system. This indicates
charge transfer to be weakest in the benzene–fluorobenzene
system despite this system’s smaller intermolecular separation
and the greater electronegativity of the fluorine atom compared
to the other halogens, and therefore suggests the presence of a
s hole to be significant in determining charge transfer in these
systems. The other schemes generally show similar or greater
charge transfer effects for the fluorinated system than for the
brominated and chlorinated systems. These schemes therefore
instead suggest the presence of a s hole on the halogen to
contribute at least slightly to charge transfer effects in the
chlorinated and brominated systems. All schemes show an
increase in charge transfer between the chlorinated and bro-
minated systems, confirming our predictions for these two
systems.

6.2.7 Dispersion energy treatments. In this section we
consider the results of the various treatments of the dispersion
energy contribution to the interaction energy. The dispersion
component is described as an explicit component of the
SAPT(KS) scheme, but as an ad hoc correction term to the
interaction energy of the other EDA schemes provided by
the empirical -D3 correction of Grimme.151 The results of our
calculations using these approaches are shown in Fig. 13. The
form of the -D3 correction is dependent on the choice of density
functional used and therefore we note that it is more suitable
for the energies of this component to be considered with
respect to other -D3 energy values, rather than in direct
comparison to the SAPT(KS) dispersion energy values. Overall
the SAPT(KS) and -D3 approaches to measuring dispersion are
generally in agreement with one another, except in the case of
the metallic cation systems of test set 4 shown in Fig. 13(d) for
which the results differ quite substantially. This inconsistency
will be discussed below, in addition to the dispersion compo-
nent observations for the other test sets.

The dispersion interaction arises as a result of instanta-
neous polarization dipoles in the monomers forming and
interacting. We would therefore expect greater dispersion con-
tributions for systems where both monomers have high polar-
izabilities, as this would enable larger instantaneous dipoles to
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arise. Chemically this component is also highly dependent on
the intermolecular separation R, with its magnitude decaying
as R�6.

For test set 1, we expect the determining factor of the trends
to be the molecular polarizabilities. This is because the inter-
molecular separations observed in this set are similar, as
shown in Table 1. The polarizability of methanol (a =
3.29 Å3)167 is more than twice that of water (a = 1.45 Å3)167

and therefore an increase in dispersion across the first three
systems of this set is expected. The polarizability of methanol is
greater than that of ammonia (a = 2.10 Å3)167 and so we would
expect dispersion within the water–methanol system to be
greater than within the water–ammonia system. The results
of the dispersion component for these systems are shown in
Fig. 13(a), and our predictions are generally confirmed. We note
that our prediction of a greater dispersion component for the
water–methanol system than the water–ammonia system is
observed in the results of the -D3 component, however for the
SAPT(KS) scheme dispersion remains nearly constant between
these two systems.

We expect the induced electric dipole moment of the
ammonium molecules to be greater than for the metal cations
for test set 2. This is because despite the presence of more

diffuse electrons on the metal cations, the ammonium mole-
cule is much larger and so we expect a larger dipole for this
molecule to be able to be induced. The intermolecular separa-
tions of the ammonium molecule and metal cations are similar
as shown in Table 1, and we therefore predict dispersion for the
ammonium interacting system to be the strongest. This is
confirmed by the results by both dispersion methods as shown
in Fig. 13(b). In this set the intermolecular distance between
the potassium ion and the water molecule is 0.77 Å greater than
for the lithium ion interacting system. As dispersion forces are
very close range interactions decaying as R�6, this component
would fall to less than 1/8th of its original size if this geometric
displacement were applied to the lithium ion. The polarizability
of a potassium atom (a = 43.4 Å3)167 is nearly twice that of
lithium (a = 24.33 Å3)167 and we expect the difference in
polarizability of their ions to be similar in size. We would
therefore expect that the strong dependence on intermolecular
distance for dispersion outweighs the greater polarizability of
potassium, resulting in a fall in dispersion across the set.
Interestingly, however, the opposite is observed in our results
and dispersion instead increases across the set.

As previously stated for our analysis of the remaining energy
components of test set 3, we expect the systems of this set to

Fig. 13 The -D3 correction for dispersion (blue), and SAPT(KS) dispersion (green) energy values (in kcal mol�1). The energy values for test sets 1–6 are
given by plots (a)–(f) respectively. ‘Bz Bz (p-displaced)’ represents the parallel displaced benzene dimer. The non-hashed green bar represents the
electrostatic contribution of dispersion only and the hashed bar represents the exchange plus electrostatic contribution of this term.
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display similar dispersion energy values due to the similar
geometries and compositions of the structures. The polarizabilities
(a) of benzene,167 thiophene,169 furan169 and pyrrole170 are 10.74 Å3,
9.96 Å3, 7.20 Å3, and 8.27 Å3 respectively. We therefore expect a
slight fall in dispersion contributions from benzene to furan, and
for pyrrole to have a dispersion energy value between thiophene
and furan. The results for this set shown in Fig. 13(c) are in close
agreement with our predictions, however for the final pyrrole
interacting system we observe a greater than expected contribution
by the SAPT(KS) approach and a slightly lesser than expected
contribution by the -D3 component.

We expect the systems of test set 4 to show similar disper-
sion component values to the systems of test set 2 because
these sets differ only through the interaction of benzene rather
than water. Our expectations for test set 2 were of a greater
dispersion energy for the ammonium interacting system, and a
decrease in dispersion through the metal cation interacting
systems due to the significant intermolecular dependence of
dispersion. The increase in intermolecular distances through
the metal cation interacting systems of test set 4 is much
greater than in test set 2, and so we expect an even greater fall
in dispersion through these systems in test set 4 than in test set
2. Our prediction of a greater dispersion component for the
ammonium interacting system is supported by the results
shown in Fig. 13(d), however the trends observed for the
remaining metal cation interacting systems are significantly
less supportive. In comparison to the results of the metal cation
interacting systems of test set 2 (Fig. 13(b)), the greater increase
in intermolecular distance through test set 4 appears to cause a
comparatively weaker contribution of dispersion to the potassium
interacting system by the SAPT(KS) scheme. Interestingly the
opposite is shown for the -D3 component, with this energy
unexpectedly increasing significantly across the metal cation
interacting systems of test set 4 despite the rapid increase in
intermolecular distances.

We note a significant dispersion contribution for the systems
of test set 5 as shown in Fig. 13(e). This is expected considering
the p interacting chemical nature of these systems. For the
SAPT(KS) results of the benzene dimer, dispersion for the
parallel displaced conformation is almost double than when in
the T-shaped conformation. This is rationalized by the fact that
the sum of the intermolecular atomic distances for the parallel
displaced benzene dimer system is less than in the T-shaped
system. It is also noted that the parallel displaced benzene dimer
system features close proximity of the p rings of the benzene
molecules. This is also expected to contribute to the dispersion
interaction. For the three p–p interacting parallel displaced
systems our chemical expectations are mixed. Polarizability is
noted to fall from benzene to pyrimidine (a = 10.74 Å3 and
8.53 Å3 respectively167), and so we expect dispersion to fall across
these benzene interacting molecules. However, the fall in inter-
molecular distances across these systems is expected to enhance
the contribution of the dispersion energy due to its significant
dependence on this parameter. The increase in dispersion across
these three systems indicates that the decrease in intermolecular
distances is more significant than the fall in polarizabilities of

the molecules. For the DMA interacting system, we expect
dispersion to be approximately as contributing as in the other
systems. However it is difficult to give a precise prediction of this
system’s relative value due to the many possible chemical factors
that affect dispersion. There exists delocalized p systems in all
the molecules of this set. In DMA the presence of this feature is
in the delocalized amide bond, and for the remaining molecules
this is in their aromatic p rings. However, for DMA the amide
bond is located further away from the p ring of benzene and so
dispersion resulting from this delocalized feature is expected to
be smaller. The structure of DMA is noted to be more extended
than the other molecules in this set, and therefore greater
dipoles are expected to be able to be induced in this molecules.
This factor would be expected to favour a greater dispersion
contribution in this system. The intermolecular separations of
the systems (excluding the T-shaped benzene dimer system) are
similar and therefore the balance of the above two features is
difficult to predict. For the -D3 component dispersion is shown
to increase moderately, whereas for the SAPT(KS) scheme this
component falls by at most only 0.25 kcal mol�1.

Within test set 6 we expect dispersion to be most contribut-
ing in the fluorinated system, followed by the chlorinated
system, and finally the brominated system. The polarizabilities
of chlorobenzene (a = 14.1 Å3) and bromobenzene (a = 14.7 Å3)
are similar, with the polarizability of fluorobenzene much
smaller (a = 10.3 Å3).167 However, the intermolecular separation
for the fluorinated system (5.69 Å) is also smaller than for the
chlorinated (6.50 Å) and brominated systems (6.75 Å), as also
shown in Table 1. Due to the significant dependence of disper-
sion on distance we expect dispersion to be relatively strong in
the fluorinated system. For the chlorinated and brominated
systems, we expect the chlorinated system to show the greater
dispersion contribution. The strong dependence of dispersion
on intermolecular separation combined with the similar polar-
izabilities of chlorobenzene and bromobenzene leads us to
expect the chlorinated system to show a greater dispersion
contribution than the brominated system. Our results shown in
Fig. 13(f) display opposite trends to our predictions. The -D3
component shows an increase in dispersion from the fluori-
nated system (�2.54 kcal mol�1) to the chlorinated system
(�3.50 kcal mol�1) and to the brominated system (�4.15 kcal mol�1).
The SAPT(KS) results show an increase in dispersion from the
fluorinated system to the chlorinated system of over 0.8 kcal mol�1,
and from the chlorinated system to the brominated system of
over 1 kcal mol�1. It is interesting to note the greater dispersion
contribution shown by the EDA results for the benzene–
bromobenzene system, and the less than expected dispersion
contribution for the benzene–fluorobenzene system.

6.2.8 Observed EDA scheme advantages and weaknesses.
In this section, we compare the features and artefacts of the
different EDA schemes studied in this review, as emerging by
the theory and our tests. Our general observations of the
schemes are summarised in Table 2.

6.2.8.1 General observations. The CP correction is known to
overestimate the BSSE171,172 and many of the schemes we have
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included in our investigation apply the CP correction to energy
terms. It is important to note that as a result this correction has
the potential to give rise to unphysical results, as is observed in
the case of the charge transfer energies in the group 1 metal ion
interacting systems of test set 2 for example. Overcorrection of
the RVS EDA charge transfer energies results in a positive and
unphysical energy for the lithium and sodium ion interacting
systems, as shown in Fig. 11(n). Also, on applying the CP
correction to the ALMO, KM and RVS EDA scheme charge
transfer energy components the trend between the sodium
and potassium ion interacting systems reverses. This serves
to highlight the possible issues that may arise when applying
the CP correction to EDA energy components.

6.2.8.2 KM EDA. The KM EDA7,90 requires an unphysical
residual mixing term DEMIX to account for the difference
between the energy components and the total interaction
energy. This is a significant weakness as the mixing component
values are at times observed to be of the same magnitude as the
chemically meaningful terms. For example when including
BSSE corrections, in the case of the metal cation interacting
systems of test set 2 the mixing component is greater than the
charge transfer term, and for test set 6 this component is
greater than the magnitude of the polarization term. Attempts
to reduce this problem have been discussed and implemented
within the RVS and CSOV schemes, and the problem altogether
avoided in other schemes such as the ALMO EDA and NEDA.

Numerical instability problems of the charge transfer and
polarization energies with large basis sets and at short inter-
molecular distances95–97 are evidenced in our results. For the
benzene–Li+ system of test set 4 convergence issues are
observed when using the 6-311G* basis set. For this system

the intermolecular separation is particularly small (1.88 Å) and
gives rise to unphysical polarization and mixing component
energies. This is likely due to valence electrons collapsing from
one fragment into the core orbitals of the other fragment.95–97

6.2.8.3 RVS EDA. The RVS EDA13,99 is similar to the KM EDA,
but with modification to the calculations of the polarization
and charge transfer energies to use fully antisymmetric wave-
functions in attempt to remedy the numerical instability pro-
blems associated with these components in the KM EDA.

The DEESX component of the RVS EDA scheme (and similar
DEFRZ component of the ALMO scheme) presents a problem in
terms of the analytic information provided. This is because this
energy component conceals the magnitudes of its electrostatic
and exchange parts. The combined term does however provide
useful indication of the dominance of its parts. For example, if
this component is highly repulsive this might indicate Pauli
repulsions to be significant. Avoiding the use of Hartree product
intermediate wavefunctions involved in expressing the separated
components may be desired, however, due to it not obeying the
Pauli principle.

The RVS EDA scheme shares a component of the KM EDA
that describes a residual energy to the interaction energy. In our
calculations the magnitude of the RVS mixing component is
typically less than 0.1 kcal mol�1 and therefore much smaller
than the KM EDA mixing component. However, for systems
containing an ammonium molecule the RVS mixing component
is noted to increase significantly, for example the ammonium–
pyrrole system of test set 3 has an RVS mixing component of
�0.44 kcal mol�1. Whilst the magnitude of this term is only a
fraction of the KM EDA mixing term (3.76 kcal mol�1 with BSSE
correction), this does indicate that a notable level of ambiguity

Table 2 A summary of the EDA approaches investigated

EDA
scheme

MO
localizationa

Additional energy
componentsb

Level of
theory Component artefacts and notes

KM EDA — DEMIX HF only Presence of the DEMIX energy unascribable to any particular component. Problems
of numerically unstable charge transfer and polarization energies with large basis
sets and at short intermolecular distance.95–97

RVS EDA — DEMIX HF only Unphysical DEMIX present. Typical magnitude is insignificant, but possible for
non-negligible magnitudes to be seen.

ALMO ALMO — HF/correlated Combined electrostatics and exchange description of the frozen density
component may reduce chemical insight.

NEDA NBO DEDEF, DESE
c HF/correlated Theoretical overestimation of charge transfer and underestimation of

polarization.1,11 Observed to provide unphysical charge transfer values.

PIEDA FMO — HF/correlatedd Shares similar theoretical weaknesses of the KM EDA.

SAPT(KS) — E(2)
disp, E(2)

exch–disp
e HF/correlated Observed overestimation of polarization and underestimation of charge transfer.

SAPT(KS) overestimation of second-order energy components (induction and
dispersion) with the B3LYP functional.142

a Localization methods include adopting an alternate basis to the MO basis (the NBO basis), an MO constraining method (ALMO), or a different
energy calculation method (FMO). b Additional energy components to the electrostatics, exchange, polarization and charge transfer (or similar)
interaction components. c Additional core repulsions (DECORE) and electrical interaction (DEEL) terms are also included in this scheme as
combinations of other energy components of this scheme. d The PIEDA scheme is implemented at the HF level (as the basis of this scheme is the
KM EDA), with the dispersion component added as an additional term, DEDI.

e SAPT descriptions of polarization and charge transfer are calculated
from the MCBS and DCBS induction energies (see eqn (81a) and (81b)).
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can still remain in the origin of a proportion of the interaction
energy. Overall, however, the magnitude of the mixing term for
any given system is more often than not negligible, and this
helps to correct a major weakness of the KM EDA.

In the RVS EDA scheme the BSSE is only partially treated and
this may be considered a weakness of the scheme. The inter-
action energy that is obtained in this scheme omits the
exchange BSSE correction of eqn (36a) and (36b) that is treated
in the KM EDA. By adopting the KM EDA BSSE correction for
the exchange component, it is possible to remedy this. This is
possible because the origin of the exchange component energy
of these two schemes are the same, and so the RVS exchange
energy is compatible with this BSSE correction and will give the
fully BSSE corrected interaction energy.

6.2.8.4 ALMO EDA. The ALMO EDA scheme1 used in our
calculations provided overall chemically sensible results. There
are two possible disadvantages we note of this scheme however.
Firstly, as discussed regarding the DEESX component of the RVS
EDA scheme above, the ALMO EDA DEFRZ component similarly
has the potential to be limited in the analytic information it
provides. Secondly, it is theoretically possible for the charge
transfer contribution to be repulsive on inclusion of the CP
BSSE correction. This is because the CP correction has a
tendency to overestimate the BSSE171,172 as discussed above.
As noted by Mo et al.,11 it may be appropriate to consider the
ALMO (and BLW) EDA charge transfer energies with and with-
out the BSSE energy correction as the upper and lower bounds
of this energy. Our results otherwise show the ALMO EDA
scheme to consistently provide results in good agreement with
chemical expectations.

6.2.8.5 NEDA. Our calculations using the NEDA scheme3–6

have shown this to give often very large charge transfer and
polarization energy contributions. Theoretically the NEDA
scheme is expected to generally overestimate charge transfer
contributions and underestimate polarization.1,11 This is
because in NEDA, the polarization and charge transfer terms
are calculated from the monomer and supermolecule charge
densities without variational optimization to an intermediate
state. If we consider an alternative scheme such as the ALMO
EDA scheme (in which an intermediate state is produced in a
constrained optimization procedure) we can see that the NEDA
description of the intermediate state is likely less desirable.

Another key observation of the NEDA scheme is its descrip-
tion of polarization effects. The polarization term includes only
electrostatic contributions as shown in eqn (63), and the
exchange contribution is contained within the deformation
component. Furthermore, an electrostatic self energy penalty
is also included in the NEDA scheme that describes the energy
cost of charge polarization. This partitioning of polarization in
NEDA may be advantageous or not depending on the situation
at hand.

6.2.8.6 SAPT(KS). The results of the SAPT(KS) scheme139,140

are observed to remain in keeping with the trends shown by the
other schemes and generally show chemically relevant magnitudes.

Polarization energies of the SAPT(KS) scheme are typically
second in magnitude only to the NEDA scheme polarization
energies. The SAPT(KS) is noted as overestimating the second-
order energy components (induction and dispersion) with the
B3LYP functional.142 This is suggested to arise due to the poor
suitability of DFT canonical virtual orbital energies in the SAPT
scheme. The first-order terms (electrostatics and exchange) are
not affected by this as their values depend on use of the occupied
set of MOs only.

The arrangement of the SAPT energy components is different
to within the variational based EDA methods. This organisation
is arguably more intuitive than in the other EDA schemes, with
the SAPT approach separating the energy terms at the different
orders into exchange and electrostatic contributions. Equally,
however, the theory of SAPT is also more complicated than the
variational based EDA methods and many energy terms can be
involved in describing the interaction energy. For example, Stone
et al.18 have noted that in some cases exchange uncorrected
SAPT(DFT) charge transfer terms are overestimated by up to an
order of magnitude. The inclusion of the exchange part corrects
and almost cancels the charge transfer term. Indeed, this large
correction to charge transfer by the exchange part is observed in
many of the results of our SAPT(KS) calculations. For example, in
the case of our hydrogen bonding water dimer system, SAPT(KS)
charge transfer is �5.60 kcal mol�1 and the exchange correction
is 4.75 kcal mol�1 giving an overall corrected charge transfer
energy of �0.85 kcal mol�1. In this case, the additional separa-
tion may have the potential to mislead. As discussed above, the
lack of consistency of term definitions between the EDA schemes
(whether variational or perturbational) can become problematic.
For example, one scheme may include exchange contributions in
certain energy components while another scheme may not. In
SAPT, by partitioning each component into electrostatic and
exchange parts, the term descriptions are more clearly described
as the terms are explicitly partitioned into their classical and
quantum energy contributions.

Whereas the variational EDA approaches we have studied do
not include dispersion contributions within the decomposition,
the SAPT scheme explicitly includes this energy as E(2)

disp. This
additional description of dispersion is of merit to this scheme.
Our results comparing the SAPT(KS) dispersion energies to the
-D3 component energies showed reasonable correlation between
the two approaches, as shown in Fig. 13.

7 Concluding remarks

During the past several decades, a wide range of EDA approaches
have been developed that decompose the interaction energy into
many different chemically useful forms. Many of these methods
have evolved from the early KM EDA of Kitaura and Morokuma.7,90

These variational based approaches sometimes share the pro-
blems of the KM EDA, such as the RVS EDA retaining a residual
unascribable energy as part of the decomposition. However, the
problem of energy component instability in the KM EDA has
generally been solved in the more recent schemes that build
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upon the KM EDA. Alternatively, perturbation based approaches
such those of the SAPT family may be used in which the
interaction energy is constructed as perturbative corrections to
the isolated monomers.

In this review we have compared popular currently used EDA
schemes of interest to biomolecular application on six congeneric
series test sets. The model systems of these test sets were selected
to express key interactions typically found within ligand–host
systems such as hydrogen bonding, p–p and halogen interactions.
In the variational approaches BSSE has been treated very differently
between the EDA schemes we have discussed. Whereas the NEDA
scheme avoids the issue of BSSE by calculating all energies in the
full supermolecule basis set, the KM, RVS, and ALMO EDA schemes
treat BSSE by applying a CP correction to the energy components.
The KM and RVS EDA schemes both share similar approaches in
which partial CP corrections are applied to specific energy compo-
nents. These corrections are calculated by partitioning the set of
ghost orbitals used in the calculation by their occupancies. The
ALMO EDA instead applies the full CP correction to the charge
transfer component only. These treatments are unique and provide
further subtle differences in the definitions of the energy compo-
nents of the schemes.

One common problem that arises is the issue of energy
component consistency. It is often the case that an energy term
described by one EDA scheme is significantly different from
that of another. Polarization, for example, can be described as
an electrostatic-only effect or as also including exchange within its
description. These different descriptions can result in substantially
different results. For example, on including the exchange part of
the energy components in the SAPT(KS) results, we observe the
energy components to often become a fraction of their original size.
In fact, SAPT arguably decomposes the energy components more
intuitively in some regards, since each component is split into its
electrostatic and exchange constituent. The general inconsistency
of term definitions is not necessarily ‘wrong’ as such, but this point
highlights the complications that may arise through different
descriptions of chemical processes.

Despite the term definitions sometimes lacking consistency,
we note a number of meritable features of certain EDA
schemes. The KM EDA, despite its theoretical weaknesses, is
observed to provide overall reasonably fair energy component
values. However, the KM EDA charge transfer energy was
extreme and chemically unsound in the case of the benzene–
lithium system with the larger 6-311G* basis set. This problem
is important to note as it counterintuitively implies that using
more complete basis sets reduces the accuracy of the KM EDA
results.

The RVS EDA scheme also performed well, and succeeds the
KM EDA by its improved theory that results in better numerical
stability of the energy components. Both the RVS and KM EDA
schemes are limited to the RHF level of theory. However in
systems where correlation effects are important, it may be
feasible to perform an additional supermolecular interaction
energy calculation at a higher level of theory to evaluate this
contribution. Alternatively, the CSOV EDA scheme of Bagus
et al.69,70 (closely related to the RVS scheme) may provide a

useful alternative for treating correlation effects in the energy
components as this has been implemented for use with MCSCF
wavefunctions127 and extended to the DFT level.128,129

The NBO based NEDA scheme at times displays issues
regarding the magnitudes of its energy components: in many
cases these are extremely large and chemically unrealistic for
our test systems. The approach taken by NEDA to decomposing
the interaction energy is somewhat different to the other KM
EDA derived schemes. In this, additional energy components of
less obvious chemical origin are described such as the defor-
mation and self energy terms. Also the method does not involve
intermediate wavefunctions that are variationally optimized.
The polarization and charge transfer components are therefore
calculated directly from the monomer and supermolecular charge
densities. The NEDA scheme may perform better in its three
component form, decomposing the interaction energy into electro-
static, charge transfer, and core repulsions energy components. As
the other schemes considered in this review did not share equiva-
lent energy components to these three energy components we have
not evaluated the NEDA scheme in this form.

SAPT is seen to give chemically sensible results and arguably
provides a more intuitive decomposition than the other
schemes as stated above. However, relating the theoretical
processes of this scheme and their chemical equivalents can
at times be more conceptually complicated than for the varia-
tional based schemes. It is also noted that a number of more
recent SAPT schemes have been developed that may be more
preferable than the SAPT(KS) used in this work. These include
the SAPT(DFT)143–146 scheme that also describes the monomers
using TD-DFT response functions not present within the SAPT(KS)
scheme, and also a new CC treatment of intrafragmental correla-
tion in what has been termed the SAPT(CC) scheme.173–180

Overall the ALMO EDA scheme is shown to provide the most
chemically sensible EDA results for our systems relevant to
drug optimization. This is mostly due to its use of the ALMO
description for the charge transfer restricted polarized state. It
is noted that the charge transfer BSSE correction may be
problematic as it is theoretically possible for ‘repulsive’ charge
transfer energies to arise as a result of its use. Also, this scheme
combines the electrostatic and exchange energy components to
form the frozen density component which may reduce the
information provided in the analysis. The related BLW EDA2

instead separates these terms. However, the wavefunction used
in expressing the separated terms is constructed as a Hartree
product and avoiding its use may be desired.

Abbreviations

EDA Energy decomposition analysis
QM Quantum mechanical
ALMO Absolutely localized molecular orbital
BLW Block-localized wavefunction
HF Hartree–Fock
KM Kitaura–Morokuma
LMO Localized molecular orbital
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RHF Restricted closed shell HF
ROHF Restricted open shell HF
UHF Unrestricted open shell HF
DFT Density functional theory
CC Coupled cluster
SCF Self-consistent field
MO Molecular orbital
NEDA Natural EDA
MM Molecular mechanics
SAPT Symmetry-adapted perturbation theory
NBO Natural bond orbital
QTAIM Quantum theory of atoms in molecules
ETS Extended transition state
FMO Fragment molecular orbital
PIEDA Pair interaction energy decomposition analysis
CSOV Constrained space orbital variation
KS Kohn–Sham
AO Atomic orbital
BSSE Basis set superposition error
SCF MI SCF for molecular interactions
NAO Natural atomic orbital
NHO Natural hybrid orbital
OWSO Occupancy-weighted symmetric orthogonalization
HOP Hybrid orbital projection
AFO Adaptive frozen orbitals
BAA Bond attached atom
BDA Bond detached atom
CP Counterpoise
PIE Pair interaction energy
RVS Reduced variational space
VCP CP correction with virtual orbitals
MCSCF Multi-configurational self-consistent field
IFIE Interfragment interaction energy
MP2 Second-order Møller–Plesset perturbation

theory
TDDFT Time-dependent density functional theory
CI Configuration interaction
PCM Polarizable continuum model
SRS Symmetrized Rayleigh–Schrödinger
FDDS Frequency-dependent density susceptibility
MCBS Monomer-centered basis set
DCBS Dimer-centered basis set
MAD Mean absolute deviation
DMA Dimethylacetamide
CAFI Configuration analysis for fragment interactions
FILM Fragment interaction analysis based on local

MP2
XPol Explicit polarization
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