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Synthetic biology for the directed evolution
of protein biocatalysts: navigating sequence
space intelligently

Andrew Currin,abc Neil Swainston,acd Philip J. Dayace and Douglas B. Kell*abc

The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify

the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up

many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern

methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo,

allow an unprecedented ability to engineer proteins with novel functions. However, the number of

possible proteins is far too large to test individually, so we need means for navigating the ‘search space’ of

possible protein sequences efficiently and reliably in order to find desirable activities and other properties.

Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have

blended design (for binding, specificity and active site modelling) with the more empirical methods of

classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest

values), especially with regard to residues distant from the active site and where the functional linkages

underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the ‘best’ amino

acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of

this review is to highlight some of the approaches that are being developed to allow us to use directed

evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a

number of ways from natural evolution, including in particular the available mechanisms and the likely

selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map

sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein

landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously,

this offers opportunities for protein improvement not readily available to natural evolution on rapid

timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to

the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that

are both highly active and robust.

Introduction

Much of science and technology consists of the search for desirable
solutions, whether theoretical or realised, from an enormously
larger set of possible candidates. The design, selection and/or
improvement of biomacromolecules such as proteins represents

a particularly clear example.1 This is because natural molecular
evolution is caused by changes in protein primary sequence that
(leaving aside other factors such as chaperones and post-
translational modifications) can then fold to form higher-order
structures with altered function or activity; the protein then
undergoes selection (positive or negative) based on its new
function (Fig. 1). Bioinformatic analyses can trace the path of
protein evolution at the sequence level2–4 and match this to the
corresponding change in function.

Proteins are nature’s primary catalysts, and as the unsustain-
ability of the present-day hydrocarbon-based petrochemicals
industry becomes ever more apparent, there is a move towards
carbohydrate feedstocks and a parallel and burgeoning interest
in the use of proteins to catalyse reactions of non-natural as well
as of natural chemicals. Thus, as well as observing the products
of natural evolution we can now also initiate changes, whether
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in vivo or in vitro, for any target sequence. When the experi-
menter has some level of control over what sequence is made,
variations can be introduced, screened and selected over several
iterative cycles (‘generations’), in the hope that improved variants
can be created for a particular target molecule, in a process
usually referred to as directed evolution (Fig. 2) or DE. Classically
this is achieved in a more or less random manner or by making a
small number of specific changes to an existing sequence (see
below); however, with the emergence of ‘synthetic biology’ a
greater diversity of sequences can be created by assembling the
desired sequence de novo (without a starting template to amplify
from). Hence, almost any bespoke DNA sequence can be created,
thus permitting the engineering of biological molecules and

systems with novel functions. This is possible largely due to the
reducing cost of DNA oligonucleotide synthesis and improve-
ments in the methods that assemble these into larger fragments
and even genomes.5,6 Therefore, the question arises as to what
sequences one should make for a particular purpose, and on what
basis one might decide these sequences.

In this intentionally wide-ranging review, we introduce the
basis of protein evolution (sequence spaces, constraints and
conservation), discuss the methodologies and strategies that
can be utilised for the directed evolution of individual biocatalysts,
and reflect on their applications in the recent literature. To restrict
our scope somewhat, we largely discount questions of the directed
evolution of pathways (i.e. series of reactions) or gene clusters
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(e.g. ref. 7 and 8) and of the choice9 or optimization of the host
organism or expression conditions in which such directed
evolution might be performed or its protein products expressed,

nor the process aspects of any fermentation or biotransformation.
We also focus on catalytic rate constants, albeit we recognize the
importance of enzyme stability as well. Most of the strategies we
describe can equally well be applied to proteins whose function is
not directly catalytic, such as vaccines, binding agents, and the like.
Consequently we intend this review to be a broadly useful resource
or portal for the entire community that has an interest in the
directed evolution of protein function. A broad summary is given as
a mind map in Fig. 3, while the various general elements
of a modern directed evolution program, on which we base
our development of the main ideas, appears as Fig. 4.

The size of sequence space

An important concept when considering a protein’s amino acid
sequence is that of (its) sequence space, i.e. the number of
variations of that sequence that can possibly exist. Straight-
forwardly, for a protein that contains just the 20 main natural
amino acids, a sequence length of N residues has a total
number of possible sequences of 20N. For N = 100 (a rather
small protein) the number 20100 (B1.3 � 10 130) is already far
greater than the number of atoms in the known universe. Even
a library with the mass of the Earth itself – 5.98 � 1027 g – would
comprise at most 3.3 � 1047 different sequences, or a miniscule
fraction of such diversity.10 Extra complexity, even for single-subunit
proteins, also comes with incorporation of additional structural
features beyond the primary sequence, like disulphide linkages,
metal ions,11 cofactors and post-translational modifications, and
the use of non-standard amino acids (outwith the main 20). Beyond
this, there may be ‘moonlighting’ activities12 by which function is
modified via interaction with other binding partners.

Considering sequence variation, using only the 20 ‘common’
amino acids, the number of sequence variants for M substitu-

tions in a given protein of N amino acids is
19M �N!

ðN �MÞ!M!
.13 For a

protein of 300 amino acids with random changes in just 1, 2 or
3 amino acids in the whole protein this is 5700, ca. 16 million
and ca. 30 billion, while even for a comparatively small protein
of N = 100 amino acids, the number of variants exceeds 1015

when M = 10. Insertions can be considered as simply increasing
the length of N and the number of variants to 21 (a ‘gap’ being
coded as a 21st amino acid), respectively.

Consequently, the search for variants with improved function
in these large sequence spaces is best treated as a combinatorial
optimization problem,1 in which a number of parameters must
be optimised simultaneously to achieve a successful outcome. To
do this, heuristic strategies (that find good but not provably
optimal solutions) are appropriate; these include algorithms
based on evolutionary principles.

The ‘curse of dimensionality’ and the sparseness or ‘closeness’
of strings in sequence space

One way to consider protein sequences (or any other strings of
this type) is to treat each position in the string as a dimension
in a discrete and finite space. In an elementary way, an amino

Fig. 2 The essential components of an evolutionary system. At the outset,
a starting individual or population is selected, and one or more fitness
criteria that reflect the objective of the process are determined. Next, the
ability to rank these fitnesses and to select for diversity is created (by
breeding individuals with variant sequences, introduced typically by muta-
tion and/or recombination) in a way that tends to favour fitter individuals,
this is repeated iteratively until a desired criterion is met.

Fig. 1 Relationship between amino acid sequence, 3D structure (and
dynamics) and biocatalytic activity. Implicitly, there is a host in which these
manipulations take place (or they may be done entirely in vitro). This is not a
major focus of the review. Typically, a directed evolution study concentrates
on the relationships between protein sequence, structure and activity, and
the usual means for assessing these are outlined (within the boxes). Many
methods are available to connect and rationalise these relationships and
some examples are shown (grey boxes). Thorough directed evolution
studies require understanding of each of these parameters so that the
changes in protein function can be rationalised, thereby to allow effective
search of the sequence space. The key is to use emerging knowledge from
multiple sources to navigate the search spaces that these represent.
Although the same principles apply to multi-subunit proteins and protein
complexes, most of what is written focuses on single-domain proteins that,
like ribonuclease,1342,1343 can fold spontaneously into their tertiary struc-
tures without the involvement of other proteins, chaperones, etc.
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acid X has one of 20 positions in 1-dimensional space, an
individual dimer XkYl has a specified position or represents a
point (from 400 discrete possibilities) in 2D space, a trimer

XkYlZm a specified location (from 8000) in 3D space, and so on.
Various difficulties arise, however (‘the curse of dimensionality’14,15)
as the number of dimensions increases, even for quite small

Fig. 3 A ‘mind map’1344 of the contents of this paper; to read this start at ‘‘twelve o’clock’’ and read clockwise.

Fig. 4 An example of the basic elements of a mixed computational and experimental programme in directed evolution. Implicit are the choice of
objective function (e.g. a particular catalytic activity with a certain turnover number) and the starting sequences that might be used with an initial or ‘wild
type’ activity from which one can evolve improved variants. The core experimental (blue) and computational (red) aspects are shown as seven steps of an
iterative cycle involving the creation and analysis of appropriate protein sequences and their attendant activities. Additional facets that can contribute to
the programme are also shown (connected using dotted lines).
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numbers of dimensions or string length, since the dimensionality
increases exponentially with the number of residues being changed.
One in particular is the potential ‘closeness’ to each other of various
randomly selected sequences, and how this effectively diverges
extremely rapidly as their length is increased.

Imagine (as in ref. 16) that we have examples uniformly
distributed in a p-dimensional hypercube, and wish to surround
a target point with a hypercubical ‘neighbourhood’ to capture a
fraction r of all the samples. The edge length of the (hyper)cube
will be ep(r) = r(1/p). In just 10 dimensions e10(0.01) = 0.63 and
e10(0.1) = 0.79 while the range (of a unit hypercube) for each
dimension is just 1. Thus to capture even just 1% or 10% of
the observations we need to cover 63% or 80% of the range
(i.e. values) of each individual dimension. Two consequences for
any significant dimensionality are that even large numbers of
samples cover the space only very sparsely indeed, and that most
samples are actually close to the edge of the n-dimensional
hypercube. We shall return later to the question of metrics for the
effective distance between protein strings and for the effectiveness
of protein catalysts; for the latter we shall assume (and discuss
below) that the enzyme catalytic rate constant or turnover number
(with units of s�1, or in less favourable cases min�1, h�1, or d�1) is
a reasonable surrogate for most functional purposes.

Overall, it is genuinely difficult to grasp or to visualise the
vastness of these search spaces,17 and the manner in which
even very large numbers of examples populate them only
extremely sparsely. One way to visualise them18–22 is to project
them into two dimensions. Thus, if we consider just 30mers of
nucleic acid sequences, and in which each position can be A, T, G
or C, the number of possible variants is 430, which is B1018, and
even if arrayed as 5 mm spots the array would occupy 29 km2!23 The
equivalent array for proteins would contain only 14mers, in that

there are more than 1018 possible proteins containing the 20 natural
amino acids when their length is just 14 amino acids.

The nature of sequence space
Sequence, structure and function

One of the fundamental issues in the biosciences is the elucidation
of the relationship between a protein’s primary sequence, its
structure and its function. Difficulties arise because the relationship
between a protein’s sequence and structure is highly complex, as
is the relationship between structure and function. Even single
mutations at an individual residue can change a protein’s
activity completely – hence the discovery of ‘inborn errors of
metabolism’.24,25 (The same is true in pharmaceutical drug
discovery, with quite small changes in small molecule structure
often leading to a dramatic change in activity – so-called ‘activity
cliffs’26–33 – and with similar metaphors of structure–activity
relationships, rather than those of sequence-activity, being
equally explicit.34–37) Annotation of putative function from
unknown sequences is largely based upon sequence homology
(similarity) to proteins of known characterised function and
particularly the presence of specific sequence/structure motifs
(such as the Rossmann fold38 or the P-loop motif39). While there
have been great advances in predicting protein structure from
primary sequence (see later), the prediction of function from
structure (let alone sequence) remains an important (if largely
unattained) aim.40–54

How much of sequence space is ‘functional’?

The relationship between sequence and function is often considered
in terms of a metaphor in which their evolution is seen as akin to

Fig. 5 A fitness landscape and its navigation. The initial or wild-type activity denotes the starting point (initialisation) for a directed evolution study (red
circle). Accumulation of mutations that increase activity is represented by four routes to different positions in the landscape. Route 1 successfully
increases activity through a series of additive mutations, but becomes stuck in a local optimum. Due to the nature of rugged fitness landscapes some of
the shorter paths to a maximum possible (global optimum) fitness (activity) can require movement into troughs before navigating a new higher peak
(route 2). Alternatively, one can arrive at the global optimum using longer but typically less steep routes without deep valleys (equivalent over flat ground
to neutral mutations – routes 3 and 4).
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traversing a ‘landscape’,55 that may be visualised in the same
way as one considers the topology of a natural landscape,56,57

with the ‘position’ reflecting the sequence and the desirable
function(s) or fitness reflected in the ‘height’ at that position in
the landscape (Fig. 5).

Given the enormous numbers for populating sequence
space, and the present impossibility of computing or sampling
function from sequence alone, it is clear that natural evolution
cannot possibly have sampled all possible sequences that
might have biological function.58 Hence, the strategy of a DE
project faces the same questions as those faced in nature: how
to navigate sequence space effectively while maintaining at
least some function, but introducing sufficient variation that
is required to improve that function. For DE there are also the
practical considerations: how many variants can be screened
(and/or selected for) and analysed with our current capabilities?

The first general point to be made is that most completely
random proteins are practically non-functional.10,56,59–66 Indeed,
many are not even soluble,67,68 although they may be evolved to
become so.69 Keefe and Szostak noted that ca. 1 in 1011 of
random sequences have measurable ATP-binding affinity.70

Consistent with this relative sparseness of functional protein
space is the fact that even if one does have a starting structure-
(/function), one typically need not go ‘far’ from such a structure
to lose structure quite badly,71 albeit that with a ‘density’ of only
1 in 1011 proteins being functional this implies that all such
functional sequences are connected by trajectories involving
changes in only a single amino acid72 (and see ref. 58). This is
also consistent with the fact that sequence space is vast, and only
a tiny fraction of possible sequences tend to be useful and hence
selected for by natural evolution. One may note70,73 that at least
some degree of randomness will be accompanied by some
structure,74,75 functionality or activity. For proteins, secondary
structure is understood to be a strong evolutionary driver,76

particularly through the binary-patterning (arrangement of
hydrophilic/hydrophobic residues),64,77–84 and so is the (some-
what related) packing density.85–89 In a certain sense, proteins
must at some point have begun their evolution as more or less
random sequences.90 Indeed ‘‘Folded proteins occur frequently
in libraries of random amino acid sequences’’,91 but quite small
changes can have significantly negative effects.92 Harms and
Thornton give a very thoughtful account of evolutionary bio-
chemistry,4 recognizing that the ‘‘physical architecture {of pro-
teins both} facilitates and constrains their evolution’’. This
means that it will be hard (but not impossible), especially
without plenty of empirical data,93 to make predictions about
the best trajectories. Fortunately, such data are now beginning to
appear.57,94 Indeed, the leitmotiv of this review is that under-
standing such (sequence-structure–activity) landscapes better
will assist us considerably in navigating them.

What is evolving and for what purpose?

In a simplistic way, it is easy to assume that protein sequences
are being selected for on the basis of their contribution to the
host organism’s fitness, without normally having any real
knowledge of what is in fact being implied or selected for.

However, a profound and interesting point has been made by
Keiser et al.95 to the effect that once a metabolite has been
‘chosen’ (selected) to be part of a metabolic or biochemical
network, proteins are somewhat constrained to evolve as
‘slaves’, to learn to bind and react with the metabolites that
exist. Thus, in evolution, the proteins follow the metabolites as
much as vice versa, making knowledge of ligand binding96,97

and affinity98 to protein binding sites a matter of primary
interest, especially if (as in the DE of biocatalysts) we wish to
bind or evolve catalysts for novel (and xenobiotic) small molecule
substrates. In DE we largely assume that the experimenter has
determined what should be the objective function(s) or
fitness(es), and we shall indicate the nature of some of the
choices later; notwithstanding, several aspects of DE do tend to
differ from those selected by natural evolution (Table 1). Thus,
most mutations are pleiotropic in vivo,99,100 for instance. As DNA
sequencing becomes increasingly economical and of higher
throughput101,102 a greater provenance of sequence data enables
a more thorough knowledge of the entire evolutionary landscape
to be obtained. In the case of short sequences most103 or all104

of the entire genotype-fitness landscape may be measured
experimentally. We note too (and see later) that there are
equivalent issues in the optimization and algorithms of evolutionary
computing (e.g. ref. 105–107), where strategies such as uniform
cross-over,108 with no real counterpart in natural or experimental
evolution, have been shown to be very effective.

However, in the case of multi-objective optimisation (e.g.
seeking to optimise two objectives such as both kcat and thermo-
stability, or activity vs. immunogenicity109), there is normally no
individual preferred solution that is optimal for all objectives,110

but a set of them, known as the Pareto front (Fig. 6), whose
members are optimal in at least one objective while not being
bettered (not ‘dominated’) in any other property by any other
individual. The Pareto front is thus also known as the non-
dominated front or ‘set’ of solutions. A variety of algorithms in
multi-objective evolutionary optimisation (e.g. ref. 111–116) use
members of the Pareto front as the choice of which ‘parents’ to
use for mutation and recombination in subsequent rounds.

Protein folds and convergent and divergent evolution

What is certain, given that form follows function, is that natural
evolution has selected repeatedly for particular kinds of secondary
and tertiary structure ‘domains’ and ‘folds’.128,129 It is uncertain as
to how many more are ‘common’ and are to be found via the
methods of structural genomics,130 but many have been expertly
classified,131 e.g. in the CATH,132–134 SCOP135–137 or InterPro138,139

databases, and do occur repeatedly.
Given that structural conservation of protein folds can occur for

sequences that differ markedly from each other, it is desirable that
these analyses are done at the structural (rather than sequence)
level (although there is a certain arbitrariness about where one fold
ends and another begins140,141). Some folds have occurred and
been selected via divergent evolution (similar sequences
with different functions)142 and some via convergent evolution
(different sequences with similar functions).143,144 This latter
in particular makes the nonlinear mapping of sequence to
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function extremely difficult, and there are roughly two unrelated
sequences for each E.C. (Enzyme Commission classification)
number.145 As phrased by Ferrada and colleagues,146 ‘‘two
proteins with the same structure and/or function in our
data. . .{have} a median amino acid divergence of no less than
55 percent’’. However, normally information is available only for
extant molecules but not their history and precise evolutionary

path (in contrast to DE). One conclusion might be that conven-
tional means of phylogenetic analysis are not necessarily best
placed to assist the processes of directed evolution, and we argue
later (because a protein has no real ‘memory’ of its full evolu-
tionary pathway) that modern methods of machine learning that
can take into account ensembles of sequences and activities may
prove more suitable. However, we shall first look at natural
evolution.

Constraints on globular protein evolution structure in natural
evolution

In gross terms, a major constraint on protein evolution is
provided by thermodynamics, in that proteins will have a
tendency to fold up to a state of minimum free energy.147–149

Consequently, the composition of the amino acids has a major
influence over protein folding because this means satisfying, so
far as is possible, the preference of hydrophilic or polar amino
acids to bind to each other and the equivalent tendency of
hydrophobic residues to do so.150–152 Alteration of residues,
especially non-conservatively, often leads to a lowering of
thermodynamic folding stability,153 which may of course be
compensated by changes in other locations. Naturally, at one
level proteins need to have a certain stability to function, but

Table 1 Some features by which natural evolution, classical DE of biocatalysts, and directed evolution of biocatalysts using synthetic biology differ from
each other. Population structures also differ in natural evolution vs. DE, but in the various strategies for DE they follow from the imposed selection in ways
that are difficult to generalize

Feature Natural evolution Classical DE DE with synthetic biology

Objective function
and selection
pressure

Unclear; there is only a weak relation
of a protein’s function with organismal
fitness;117 kcat is not strongly
selected for. Although presumably
multi-objective, actual selection and
fitness are ‘composites’. If there is no
redundancy, organisms must retain
function during evolution.58,118

Typically strong selection weak
mutation (rarely was sequencing done
so selection was based on fitness only).
Can select explicitly for multiple
outputs (e.g. kcat, thermostability).

Much as with classical DE, but diversity
maintenance can be much enhanced
via high-throughput methods of DNA
synthesis and sequencing.

Mutation rates Varies with genome size over orders
of magnitude,119 but typically (for
organisms from bacteria to humans)
o10�8 per base per generation.120,121

Can itself be selected for.122

Mutation rates are controlled but often
limited to only a few residues per
generation, e.g. to 1/L where L is the aa
length of the protein; much more can
lead to too many stop codons.

Library design schemes that permit
stop codons only where required mean
that mutation rates can be almost
arbitrarily high.

Recombination
rates

Very low in most organisms
(though must have occurred in cases
of ‘horizontal gene transfer’); in some
cases almost non-existent.123

Could be extremely high in the various
schemes of DNA shuffling, including
the creation of chimaeras from
different parents.

Again it can be as high or low as
desired; the experimenter has
(statistically) full control.

Randomness of
mutation

Although there are ‘hot spots’,
mutations in natural evolution are
considered to be random and not
‘directed’.124

In error-prone PCR, mutations are seen
as essentially random. Site-directed
methods offer control over mutations
at a small number of specified
positions.

As much or as little randomness may
be introduced as the experimenter
desires by using defined mixtures of
bases for each codon, e.g. NNN or NNK
as alternatives to specific subsets such
as polar or apolar.

Evolutionary
‘memory’

For individuals (cf. populations125)
there is no ‘memory’ as such,
although the sequence reflects the
evolutionary ‘trace’ (but not normally
the pathway – cf. ref. 126 and 127).

Again, there is no real ‘memory’ in the
absence of large-scale sequencing, but
there is potential for it.56

With higher-throughput sequencing
we can create an entire map of the
landscape as sampled to date, to help
guide the informed assessment of
which sequences to try next.

Degree of epistasis It exists, but only when there is a more
or less neutral pathway joining the
epistatic sites.

It is comparatively hard to detect at low
mutation rates.

Potentially epistasis is much more
obvious as sites can be mutated
pairwise or in more complex designed
patterns.

Maintenance of
individuals of lower
or similar fitness in
population

They are soon selected out in a ‘strong
selection, weak mutation’ regime; this
limits jumps via lower fitness, and
enforces at least neutral mutations.

It is in the hands of the experimenter,
and usually not done when only
fitnesses are measured.

Again it is entirely up to the
experimenter; diversity may be
maintained to trade exploration
against exploitation.

Fig. 6 A two-objective optimisation problem, illustrating the non-dominated
or Pareto front. In this case we wish to maximise both objectives. Each
individual symbol is a candidate solution (i.e. protein sequence), with the filled
ones denoting an approximation to the Pareto front.
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they also need to be flexible to effect catalysis. This is coupled
to the idea that proteins are marginally stable objects in the
face of evolution.154–159 Overall, this is equivalent to ‘evolution
to the edge of chaos’,160,161 a phenomenon recognizing the
importance of trading off robustness with evolvability that can
also be applied162,163 to biochemical networks.164–170 Thermo-
stability (see later) may also sometimes (but not always171–173)
correlate with evolvability.174,175

Given the thermodynamic and biophysical157,176,177 con-
straints, that are related to structural contacts, various models
(e.g. ref. 147 and 178) have been used to predict the distribution
of amino acids in known proteins. As regards to specific
mechanisms, it has been stated that ‘‘solvent accessibility is the
primary structural constraint on amino acid substitutions and
mutation rates during protein evolution.’’,148 while ‘‘satisfaction of
hydrogen bonding potential influences the conservation of polar
sidechains’’.179 Overall, given the tendency in natural evolution
for strong selection, it is recognized that a major role is played by
neutral mutations180–182 or neutral evolution183–188 (see Fig. 5
and 7). Gene duplication provides another strategy, allowing
redundancy followed by evolution to new functions.189

Coevolution of residues

Thus far, we have possibly implied that residues evolve (i.e. are
selected for) independently, but that is not the case at all.190–192

There can be a variety of reasons for the conservation of sequence
(including correlations between ‘distant’ regions193), but the
importance to structure and function, and functional linkage
between them, underlie such correlations.194–209 Covariation in
natural evolution reflects the fact that, although not close in
primary sequence, distal residues can be adjacent in the tertiary
structure and may represent an interaction favourable to protein
function. Covariation also provides an important computational
approach to protein folding more generally (see below).

The nature, means of analysis and traversal of protein fitness
landscapes

Since John Holland’s brilliant and pioneering work in the 1970s
(reprinted as ref. 210), it has been recognized that one can
search large search spaces very effectively using algorithms that
have a more or less close analogy to that of natural evolution.
Such algorithms are typically known as genetic or evolutionary
algorithms (e.g. ref. 106 and 211–213, and their implementation is
referred to as evolutionary computing.106,214–216 The algorithms can
be classified according to whether one knows only the fitnesses
(phenotypes) of the population or also the genotypes (sequences).107

Since we cannot review the very large literature, essentially
amounting to that of the whole of molecular protein evolution,
on the nature of (natural) protein landscapes, we shall therefore seek
to concentrate on a few areas where an improved understanding of
the nature of the landscape may reasonably be expected to help
us traverse it. Importantly, even for single objectives or fitnesses,
a number of important concepts of ruggedness, additivity, pro-
miscuity and epistasis are inextricably intertwined; they become
more so where multiple and often incommensurate objectives
are considered.

Additivity. Additivity implies simple continuing fixing of
improved mutations,217–220 and follows from a model in which
selection in natural evolution quite badly disfavours lower fit-
nesses,221 a circumstance known from Gillespie222,223 as ‘strong
selection, weak mutation’ (SSWM, see also ref. 224–229). For
small changes (close to neutral in a fitness or free energy sense),
additivity may indeed be observed,230,231 and has been exploited
extensively in DE.232–236 If additivity alone were true, however
(and thus there is no epistasis for a given protein at all) then a
rapid strategy for DE would be to synthesise all 20L amino acid
variants at each position (of a starting protein of length L) and
pick the best amino acid at each position. However, the very
existence of convergent and divergent evolution implies that
landscapes are rugged237 (and hence epistatic), so at the very
least additivity and epistasis must coexist.236,238

Epistasis. The term ‘epistasis’ in DE covers a concept in
which the ‘best’ amino acid at a given position depends on the
amino acid at one or more other positions. In fact, we believe
that one should start with an assumption of rather strong
epistasis,238–248 as did Wright.55 Indeed the rugged fitness
landscape is itself a necessary reflection of epistasis and vice
versa. Thus, epistasis may be both cryptic and pervasive,249 the
demonstrable coevolution goes hand in hand with epistasis, and
‘‘to understand evolution and selection in proteins, knowledge
of coevolution and structural change must be integrated’’.250

Promiscuity. The concept of enzyme promiscuity mainly implies
that some enzymes may bind, or catalyse reactions with, more than
one substrate, and this is inextricably linked to how one can
traverse evolutionary landscapes.251–270 It clearly bears strongly on
how we might seek to effect the directed evolution of biocatalysts.

NK landscapes as models for sequence-activity landscapes

A very important class of conceptual (and tunable) landscapes
are the so-called NK landscapes devised by Kauffman161,271 and

Fig. 7 Some evolutionary trajectories of a peptide sequence undergoing
mutation. Mutations in the peptide sequence can cause an increase in
fitness (e.g. enzyme activity, green), loss of fitness (salmon pink) or no
change in fitness (grey). Typically, improved fitness mutations are selected
for and subjected to further modification and selection. Neutral mutations
keep sequences ‘alive’ in the series, and these can often be required for
further improvements in fitness, as shown in steps 2 and 3 of this trajectory.
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developed by many other workers (e.g. ref. 220, 221, 237 and
272–278). The ‘ruggedness’ of a given landscape is a slightly
elusive concept,279 but can be conceptualized56,220 in a manner
that implies that for a smooth landscape (like Mt Fuji280,281)
fitness and distance tend to be correlated, while for a very
‘rugged’ landscape the correlation is much weaker (since as one
moves away from a starting sequence one may pass through
many peaks and troughs of fitness). In NK landscapes, K is the
parameter that tunes the extent of ruggedness, and it is
possible to seek landscapes whose ruggedness can be approxi-
mated by a particular value of K, since one of the attractions of
NK is that they can reproduce (in a statistical sense) any kind of
landscape.282 Indeed, we can use the comparatively sparse data
presently available to determine that experimental sequence-fitness
landscapes reflect NK landscapes that are fairly considerably (but
not pathologically) rugged,23,57,104,241,251,274,276,283 and that there is
likely to be one or more optimal mutation rates that themselves
depend on the ruggedness (see later). Note too that the landscapes
for individual proteins, as discussed here, are necessarily more
rugged than are those of pathways or organisms, due to the more
profound structural constraints in the former.57,157 (Parenthetically,
NK-type landscapes and the evolutionary metaphor have also
proved useful in a variety of other ‘complex’ spheres, such as
business, innovation and economics (e.g. ref. 278 and 284–295,
though a disattraction of NK landscapes in evolutionary biology
itself is that they do not obey evolutionary rules.224)

Experimental directed protein
evolution

A number of excellent books and review articles have been
devoted to DE, and a sampling with a focus on biocatalysis
includes.296–334 As indicated above, DE begins with a population
that we hope contains at least one member that displays some kind
of activity of interest, and progresses through multiple rounds of
mutation, selection and analysis (as per the steps in Fig. 4).

Initialisation; the first generation

During the preliminary design of a DE project the main objective
and required fitness criteria must be defined and these criteria
influence the experimental design and screening strategy.

We consider in this review that a typical scenario is that one
has a particular substrate or substrate class in mind, as well as
the chemical reaction type (oxidation, hydroxylation, amination
and so on) that one wishes to catalyse. If any activity at all can
be detected then this can be a starting point. In some cases one
does not know where to start at all because there are no
proteins known either to catalyse a relevant reaction or to bind
the substrate of interest. For pharmaceutical intermediates, it
can still be useful to look for reactions involving metabolites, as
most drugs do bear significant structural similarities to known
metabolites,335,336 and it is possible to look for reactions involving
the latter. A very useful starting point may be the structure-function
linkage database http://sfld.rbvi.ucsf.edu/django/.337 There are also

‘hub’ sequences that can provide useful starting points,338

while Verma,330 Nov339 and Zaugg340 list various computational
approaches. If one has a structure in the form of a PDB file one
can try HotSpotWizard http://loschmidt.chemi.muni.cz/hot
spotwizard/.341 Analysing the diversity of known enzyme
sequences is also a very sensible strategy.342,343 Nowadays, an
increasing trend is to seek relevant diversity, aligned using tools
such as Clustal Omega,344,345 MUSCLE,346 PROMALS,347,348 or
other methods based on polypharmacology,141,349,350 that one
may hope contains enzymes capable of effecting the desired
reaction. Another strategy is to select DNA from environments
that have been exposed to the substrate of interest, using the
methods of functional metagenomics.351,352 More commonly,
however, one does have a very poor protein (clone) with at least
some measurable activity, and the aim is to evolve this into a
much more active variant.

In general, scientific advance is seen in a Popperian view
(see e.g. ref. 353–357) as an iterative series of ‘conjectures’ and
‘refutations’ by which the search for scientific truth is ‘narrowed’
by finding what is not true (may be falsified) via predictions
based on hypothetico-deductive reasoning and their anticipated
and experimental outcomes. However, Popper was purposely coy
about where hypotheses actually came from, and we prefer a
variant358–362 (see also ref. 363 and 364) that recognises the equal
contribution of a more empirical ‘data-driven’ arc to the ‘cycle of
knowledge’ (Fig. 8).

In a similar vein, many commentators (e.g. ref. 365–368)
consider the best strategy for both the starting population and
the subsequent steps to be a judicious blend between the more
empirical approaches of (semi-)directed evolution and strategies
more formally based on attempts to design369 (somewhat in the
absence of fully established principles) sequences or structures
based on what is known of molecular interactions. We concur
with this, since at the present time it is simply not possible to
design enzymes with high activities de novo (from scratch, or
from sequence alone), despite progress in simple 4-helix-bundle
and related ‘maquettes’.370–373 David Baker, probably the leading

Fig. 8 The ‘cycle of knowledge’ in modern directed evolution. Both
structure-based design and a more empirical data-driven approach can
contribute to the evolution of a protein with improved properties, in a
series of iterative cycles.
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expert in protein design, considers that design is still incapable
of predicting active enzymes even when the chemistry and active
sites appear good.374,375 Several reviews attest to this,329,376–379

but crowdsourcing approaches have been shown to help,380 and
computational design (and see below) certainly beats random
sequences.381 Overall, the fairest comment is probably that we
can benefit from design for binding, specificity and active site
modelling, but that for improving kcat we need the more empirical
methods of DE, especially (see below) of residues distant from the
active site.

Scaffolds

Because natural evolution has selected for a variety of motifs
that have been shown in general terms to admit a wide range of
possible enzyme activities, a number of approaches have
exploited these motifs or ‘scaffolds’.382 Triose phosphate isomerase
(TIM) has proved a popular enzyme since the pioneering work of
Albery and Knowles383 and more recent work on TIM energetics,384

and TIM (ba)8 barrels can be found in 5 of 6 EC classes.146 TIM
and many (but not all) such natural enzymes are most active as
dimers,385,386 caused by a tight interaction of 32 residues of each
subunit in the wild type, though functional monomers can be
created.387,388

Thus, (ba)8 barrel enzymes389–402 have proven particularly
attractive as scaffolds for DE.403–407 Some use or need cofactors
like PLP, FMN, etc.,392,408 and their folding mechanisms are to
some degree known.385,409–411 We note, however, that virtual
screening of substrates against these412 has shown a relative lack
of effectiveness of consensus design because of the importance
of correlations (i.e. epistasis).386

a/b and (a/b)2 barrels have also been favoured as scaf-
folds,395,413–417 while attempts at automated scaffold selection
can also be found.374,418,419 A very interesting suggestion420 is
that the polarity of a fold may determine its evolvability.

Although not focused on biocatalysis, other scaffolds such
as lipocalins421–426 and affibodies427–437 have proved useful for
combinatorial biosynthesis and directed evolution.

Computational protein design

While computational protein design completely from scratch
(in silico) is not presently seen as reasonable, probably (as we
stress later) because we cannot yet use it to predict dynamics
effectively, significant progress continues to be made in a number
of areas,373,438–456 including ‘fold to function’,457 combinatorial
design,458 and a maximum likelihood framework for protein
design.459 Notable examples include a metalloenzyme for organo-
phosphate hydrolysis,460,461 aldolase462,463 and others.464–468

Theozymes469–472 (theoretical catalysts, constructed by computing
the optimal geometry for transition state stabilization by model
functional) groups represent another approach.

Arguably the most advanced strategies for protein design
and manipulation in silico are Rosetta374,473–483 and Rosetta-
Backrub,484,485 while more ‘bottom-up’ approaches, based on some
of the ideas of synthetic biology, are beginning to appear.486–492 It is
an easy prediction that developments in synthetic biology will have
highly beneficial effects on de novo design, and vice versa.

Docking

If one is to find an enzyme that catalyses a reaction, one might
hope to be able to predict that it can at least bind that substrate
using the methods of in silico docking.493 To date, methods based on
Autodock,494–499 APoC,500 Glide501–503 or other programs504–511 have
been proposed, but this strategy is not yet considered mainstream
for the DE of a first generation of biocatalysts (and indeed is subject
to considerable uncertainty512). Our experience is that one must have
considerable knowledge of the approximate answer (the binding site
or pocket) before one tries these methods for DE of a biocatalyst.

Having chosen a member (or a population) as a starting
point, the next step in any DE program is the important one of
diversity creation. Indeed, the means of creating and exploiting
suitable libraries that focus on appropriate parts of the protein
landscape lies at the heart of any intelligent search method.513

Diversity creation and library design

A diversity of sequences can be created in many ways,514 but
mutation or recombination methods are most commonly used
in DE. Some are purely empirical and statistical (e.g. N mutations
per sequence), while others are more focused to a specific part of the
sequence (Fig. 9). Strategies may also be discriminated in terms of
the degree of randomness of the changes and their extensiveness
(Fig. 10). Two useful reviews include515 and,516 while others334,517–519

cover computational approaches. A DE library creation bibliography
is maintained at http://openwetware.org/wiki/Reviews:Directed_
evolution/Library_construction/bibliography.

Effect of mutation rates, implying that higher can be better

In classical evolutionary computing, the recognition that most
mutations were or are deleterious meant that mutation rates
were kept low. If only one in 103 sequences is an improvement
when the mutation rate is 1/L per position (L being the length of
the string), then (in the absence of epistasis) only 1 in 106 is at
2/L. (Of course 1/L is far greater than the mutation rates
common in natural evolution, which scales inversely with
genome size,119 may depend on cell–cell interactions,520 and
is normally below 10�8 per base per generation for organisms
from bacteria to humans.119–121) This logic is persuasive but
limited, since it takes into account only the frequency but not
the quality of the improvement (and as mentioned essentially
does not consider epistasis). Indeed there is evidence that
higher mutation rates are favoured both in silico220,521–524 and
experimentally.525–528 This is especially the case for directed
mutagenesis methods (especially those of synthetic biology),
where stop codons can be avoided completely. We first discuss
the more classical methods.

Random mutagenesis methods

Error-prone PCR (epPCR) is probably the most commonly used
method for introducing random mutations. PCR amplification
using Taq polymerase is performed under suboptimal condi-
tions by altering the components of the reaction (in particular
polymerase concentration, MgCl2 and dNTP concentration, or
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supplementation with MnCl2 (ref. 529)) or cycling conditions
(increased extension times).530 Although epPCR is the simplest
to implement and most commonly used method for library
creation, it is limited by its failure to access all possible amino
acid changes with just one mutation,339,531–533 a strong bias
towards transition mutations (AT to GC mutations),531 and an
aversion to consecutive nucleotide mutations.532,534

Refinement of these methods has allowed greater control over
the mutation bias, rate of mutations530,535–537 and the development
of alternative methodologies like Mutagenic Plasmid Amplifica-
tion,538 replication,539 error-prone rolling circle540 and indel541–543

mutagenesis. Typically, for reasons indicated above, the epPCR
mutation rate is tuned to produce a small number of mutations per
gene copy (although orthogonal replication in vivo may improve

this544), since entirely random epPCR produces multiple stop
codons (3 in every 64 mutations) and a large proportion of non-
functional, truncated or insoluble proteins.545 The library size
also dictates that a large number of mutants must be screened
to test for all possibilities, which may also be impractical
depending on the screening strategy available. While random
methods for library design can be successful, intelligent searching
of the sequence space, as per the title of this review, does not
include purely random methods.546 In particular, these methods
do not allow information about which parts of the sequence have
been mutated or whether all possible mutations for a particular
region of interest have been screened.

Site-directed mutagenesis to target specific residues

Since the combinatorial explosion means that one cannot try every
amino acid at every residue, one obvious approach is to restrict the
number of target residues (in the following sections we will discuss
why we do not think this is the best strategy for making faster
biocatalysts). Indeed, mutagenesis directed at specific residues,
usually referred to as site-directed mutagenesis,547,548 dates from
the origins of modern protein engineering itself.549

In site-directed mutagenesis, an oligonucleotide encoding
the desired mutation is designed with flanking sequences
either side that are complementary to the target sequence
and these direct its binding to the desired sequence on a
template. This oligomer is used as a PCR primer to amplify
the template sequence, hence all amplicons encode the desired
mutation. This control over the mutation enables particular
types of mutation to be made by using mixed base codons, i.e.

Fig. 9 Overview of the different mutagenesis strategies commonly employed to create variant protein libraries. Random methods (pink background)
can create the greatest diversity of sequences in an uncontrolled manner. Mutations during error-prone PCR (A) are typically introduced by a polymerase
amplifying sequences imperfectly (by being used under non-optimal conditions). In contrast, directed mutagenesis methods (blue background)
introduce mutations at defined positions and with a controlled outcome. Site-directed mutagenesis (B) introduces a mutation, encoded by
oligonucleotides, onto a template gene sequence in a plasmid. However, gene synthesis (C) can encode mutations on the oligonucleotides used to
synthesise the sequence de novo, hence multiple mutations can be introduced simultaneously. X = random mutation, N = controlled mutation. -= PCR
primer.

Fig. 10 A Boston matrix of the different strategies for variant libraries.
Methods are identified in terms of the randomness of the mutations they
create and the number of residues that can be targeted.
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codons that contain a mixture of bases at a specified position
(e.g. N denotes an equal mixture of A, T, G or C at a single
position). Fig. 11 shows a compilation of the more common
types of mixed codons used. These range from those capable of
encoding all 20 amino acids (e.g. NNK) to a small subset of
residues with a particular physicochemical property (e.g. NTN
for nonpolar residues only).

The most common method (QuikChange and derivatives
thereof) uses mutagenic oligonucleotides complementary to
both strands of a target sequence, which are used as primers
for a PCR amplification of the plasmid encoding the gene.
Following DpnI digestion of the template, the PCR product is
transformed into E. coli and the nicked plasmid is repaired
in vivo.550,551 Despite its popularity, QuikChange is somewhat
limited by aspects like primer design and efficiency, and a
variety of derivatives have been published that improve upon
the original method.552,553

Given that site-directed mutagenesis provides a way of mutating a
small number of residues with high levels of accuracy, several
approaches have been developed to identify possible positions to
target to increase the hit rate and success. Combinatorial alanine
scanning554,555 is well known, while other flavours include the
Mutagenesis Assistant Program,531,556 and the semi-rational
CASTing and B-FIT approaches323,557 that employ a Mutagenic
Plasmid Amplification method.558

In addition to these more conventional methods, new
approaches are continually being developed to improve efficiency
and to reduce the number of steps in the workflow, for example

Mutagenic Oligonucleotide-Directed PCR Amplification (MOD-
PCR),559 Overlap Extension PCR (OE-PCR),560–564 Sequence Satura-
tion Mutagenesis,565–571 Iterative Saturation Mutagenesis,557,572–579

and a variety of transposon-based methods.580–583 However, a
common issue with site-directed mutagenesis methods is the large
number of steps involved and the limited number of positions that
can be efficiently targeted at a time. The ability to mutate residues
in multiple positions in a sequence is of particular interest as this
can be used to address the question of combinatorial mutations
simultaneously. Hence, methods like those by Liu et al.,584 Seyfang
et al.,585 Fushan et al.586 and Kegler-Ebo et al.587 are important
developments in mutagenesis strategies. Rational approaches have
been reviewed,588 including from the perspective of the necessary
library size.589 As a result, there is significant interest in the
development of novel methodologies that can address these issues
to produce accurate variant libraries, with larger numbers of
simultaneous mutations in an economical workflow.

Optimising nucleotide substitutions

Following the selection of residues to target for mutation an
important choice is the type of mutation to create. This choice
is not obvious but determines the type of mutations that are
made and the level of screening required. The experimenter
needs to consider the nature of the mutations that they want to
introduce for each position and this relates to the objective of
the study. Using the common mixed base IUPAC terminology590

(Fig. 11) there are a large number of codons that can be chosen,
ranging from those encoding all 20 amino acids (the NNK or

Fig. 11 Examples of some of the common degenerate codons used in DE studies. A codon containing specific mixed bases is used to encode a
particular set of amino acids, ranging from all twenty amino acids (NNN or NNK) to those with particular properties. Hence, choice of degenerate codons
to use depends on the design and objective of the study. In the IUPAC terminology590 K = G/T, M = A/C, R = A/G, S = C/G, W = A/T, Y = C/T, B = C/G/T,
D = A/G/T, H = A/C/T, V = A/C/G, N = A/C/G/T. (*Typically with low codon usage; suppressor mutation may be used to block it. **Typically with low
codon usage, especially in yeast; suppressor mutation may be used to block it).
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NNS codons), to a particular characteristic (e.g. NTN encodes
just nonpolar residues64) and a limited number of defined
residues (GAN encoding just aspartate or glutamate). Importantly,
choosing to use these specified mixed base codons in mutagenesis
can reduce the possibility of premature stop codons and increase
the chance of creating functional variants. For example, if a wild-
type sequence encodes a nonpolar residue at a particular position
then the number of functional variants is likely to be higher if the
nonpolar codon NTN is used, encoding what are conserved sub-
stitutions, compared to encoding all possible residues with the
NNK codon.591,592

Indeed, it is known to be better to search a large library
sparsely than a small library thoroughly.593 Thus, a general
strategy that seeks to move the trade-off between numbers of
changes and numbers of clones to be assessed recognizes that
one can design libraries that cover different general amino acid
properties (such as charged, hydrophobic) while not encoding
all 20 amino acids, thereby reducing (somewhat) the size of
the search space. These are known as reduced library designs
(see Fig. 11).

Reduced library designs

One limitation with the use of single degenerate codons is that
for some sequences not all amino acids are equally represented
and sometimes rare codons or stop codons are encoded. To
circumvent this issue ‘‘small-intelligent’’ or ‘‘smart’’ libraries
have been developed to provide equal frequency of each amino
acid without bias.594 Using a mixture of oligonucleotides, Kille
et al.595 created a restricted library with three codons NDT, VHG
and TGG that encode 12, 9 and 1 codon, respectively. Together
these encode 22 codons for all 20 amino acids in equal
frequency, which provides good coverage of possible mutations
but reduces the screening effort required to cover the sequence
space. Alternative methods with the same objective include the
MAX randomisation strategy596 and using ratios of different
degenerate codons designed by software (DC-Analyzer597).
Alternatively, the use of a reduced amino acid alphabet can
also search a relevant sequence space whilst reducing the
screening effort further. For example, the NDT codon encodes
12 amino acids of different physicochemical properties without
encoding stop codons and has been shown to increase the
number of positive hits (versus full randomization) in directed
evolution studies.324 Overall, a considerable number of such
strategies have been used (e.g. ref. 64, 67, 68, 81, 82, 324, 513,
556, 592 and 596–603).

The opposite strategy to reduced library designs is to
increase them by modifying the genetic code. While one may
think that there is enough potential in the very large search
spaces using just 20 amino acids, such approaches have led to
some exceptionally elegant work that bears description.

Non-canonical amino acid incorporation

If the existing protein synthetic machinery of the host cell is
able to recognise a novel amino acid, it is possible to take an
auxotroph and add the non-canonical amino acid (NCAA)604

that is thereby incorporated non-selectively. If one wishes to

have site specificity, there are two main ways to increase the
number of amino acids that can be incorporated into proteins.605

First, the specificity of a tRNA molecule (e.g. one encoding a stop
codon) can be modified to accommodate non-canonical amino
acids; in this way, the use of the relevant codon can introduce an
NCAA at the specified position.606,607 Using this method, eight
NCAAs were incorporated into the active site of nitroreductase
(NTR, at Phe124) and screened for activity. One Phe analogue,
p-nitrophenylalanine (pNF), exhibited more than a two-fold
increase in activity over the best mutant containing a natural
amino acid substitution (P124K), showing that NCAAs can produce
higher enzyme activity than is possible with natural amino acids.608

The other, considerably more radical and potentially
ground-breaking, is effectively to evolve the genetic code and
other apparatus such that instead of recognising triplets a subset of
mRNAs and the relevant translational machinery can recognise and
decode quadruplets.609–619 To date, some 100 such NCAAs have
been incorporated. However, the incorporation of NCAAs can often
impact negatively on protein folding and thermostability, an
issue that can be addressed through further rounds of directed
evolution.620

Recombination

In contrast to the mutagenesis methods of library creation
outlined above, but entirely consistent with our knowledge
from strategies used in evolutionary computing (e.g. ref. 106),
recombination is an alternative (or complementary) and effective
strategy for DE (Fig. 12). Recombination techniques offer several
advantages that reflect aspects of natural evolution that differ
from random mutagenesis methods, not least because such
changes can be combinatorial and hence able to search more
areas of the sequence space in a given experiment. Recombina-
tion for the purposes of DE was popularized by Stemmer and his
colleagues under the term ‘DNA shuffling’.621–625 This used a
pool of parental genes with point mutations that were randomly
fragmented by DNAseI and then reassembled using OE-PCR.
Since then, a variety of further methods have been developed
using different fragmentation and assembly protocols.626–629

Parental genes for DNA shuffling can be generated by random
mutagenesis (epPCR) or from homologous gene families; such
chimaeras may be particularly effective.630–633

Despite its advantages for searching wider sequence space,
however, such recombination does not yield chimaeric proteins
with balanced mutation distribution. Bias occurs in crossover
regions of high sequence identity because the assembly of these
sequences is more favourable during OE-PCR.634,635 As a result,
this reduces the diversity of sequences in the variant library.
Alternative methods like SCRATCHY636,637 generate chimaeras
from genes of low sequence homology and so may help to
reduce the extent of bias at the crossover points.

In addition to these more traditional methods of DNA
shuffling, a number of variations have been developed (often
with a penchant for a quirky acronym), such as Iterative
Truncation for the Creation of HYbrid enzymes (ITCHY638,639),
RAndom CHImeragenesis on Transient Templates (RACHITT),640

Recombined Extension on Truncated Templates (RETT),641
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One-pot Simple methodology for CAssette Randomization and
Recombination) OSCARR,642,643 DNA shuffling Frame shuf-
fling,644 Synthetic shuffling,645 Degenerate Oligonucleotide
Gene Shuffling (DOGS),646 USERec,647,648 SCOPE649–651 and
Incorporation of Synthetic Oligos duRing gene shuffling
(ISOR).652,653 Other methods of recombination that have been
used for the improvement of proteins include the Protamax
approach,654 DNA assembler,655,656 homologous recombination
in vitro657 and Recombineering (e.g. ref. 658 and 659). Circular
permutation, in which the beginning and end of a protein are
effectively recombined in different places, provides a (perhaps
surprisingly) effective strategy.17,660–667

There has long been a recognition that the better kind of
chimaeragenesis strategies are those that maintain major
structural elements,668,669 by ensuring that crossover occurs
mainly or solely in what are seen as structurally the most
‘suitable’ locations. This is the basis of the OPTCOMB,670,671

RASPP,672 SCHEMA (e.g. ref. 673–683) and other types of
approach.109,684–691

Thus, in the directed evolution of a cytochrome P450, Otey
et al.674 utilized the SCHEMA algorithm to approximate the
effect of recombination with different parent P450s on the
protein structure. SCHEMA provided a prediction of preferred
positions for crossovers, which enabled the creation of a mutant
with a 40-fold higher peroxidase activity.673,678 Similarly, the
recombination of stabilizing fragments was also able to increase
the thermostability of P450s using the same approach.692

Cell-free synthesis

Although the majority of the mutations and recombinations
described above have been performed in vitro, the actual
expression of the proteins themselves, and the analysis of their
functionalities, is usually done in vivo. However, we should
mention a series of purely in vitro strategies that have also been

used to identify good sequences when coupled to suitable
in vitro translation systems with functional assays.693–700

Synthetic biology for directed
evolution

With the recent improvements in DNA synthesis technology and
reducing costs it is becoming increasingly feasible to synthesise
sequences on a large scale. The most widely used methods for
DNA synthesis continue to be short single-stranded oligodeoxy-
ribonucleotides (typically 10–100 nt in length, often abbreviated to
oligonucleotides or oligos) using phosphoramidite chemistry,701,702

although syntheses from microarrays have particular pro-
mise.546,703–708 Following synthesis, these oligonucleotides are
assembled into larger constructs using enzymatic methods.

Hence, the foundation of synthetic biology is based on the
ability to design and assemble novel biological systems ‘from
the ground up’, i.e. synthetically at the DNA level.709–713 As a
result, gene synthesis and genome assembly methods have
been developed to create novel sequences of several kilobases
in length.714 In particular, Gibson et al. recently assembled
sections of the Mycoplasma genitalium genome (each 136 to
166 kb) using overlapping synthesised oligonucleotides.5,6

These developments in DNA synthesis technology (and
lowered cost) can greatly benefit directed evolution studies. In
particular, gene synthesis using overlapping oligonucleotides
presents a particularly promising method for introducing con-
trolled mutations into a gene sequence. As these methods
assemble the gene de novo, multiple mutations at different
positions in the gene can be introduced simultaneously in a
single workflow, decreasing the need for iterative rounds of
mutagenesis.

In this process, oligonucleotide sequences are designed to
be overlapping and span the length of the gene of interest,

Fig. 12 The traditional recombination method for diversity creation. Recombination requires a sample of different variants of a gene (parents), which can
be derived from a family of homologous genes or generated by random mutagenesis methods. The random fragmentation of these genes (using DNase I
or other method) cleaves them into small constituent parts. Importantly, as the parental genes are all homologous, the fragments overlap in sequence
thus allowing them to be reassembled by overlap extension PCR (OE-PCR) producing products that encode a random mixture of the parental genes. A
key advantage of recombination methods is the improved ability to create combinatorial mutations. This is illustrated using two mutations (present in two
different parental sequences) that when recombined separately produce no fitness improvement, but when combined together produce a variant with
improved fitness.
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following synthesis they are assembled by either PCR-based715,716 or
ligation-based717–720 methods. Variant libraries can be created using
this process by encoding mixed base codons on the oligonucleotides
and at multiple positions if required.721 However, a limitation of the
conventional gene synthesis procedure is the inherent error rate
(primarily single base inserts or deletions),722,723 which arises from
errors in the phosphoramidite synthesis of the oligonucleotides. As a
result, clones encoding the desired sequence must be verified by
DNA sequencing and an error-correction procedure is often required.
Several error-correction methods are used, including site-directed
mutagenesis,724 mismatch binding proteins725 and mismatch
cleaving endonucleases.726,727 Of these, mismatch endonucleases
are the most commonly used, and they are amenable to high
throughput and automation.

SpeedyGenes and GeneGenie: tools for synthetic biology
applied to the directed evolution of biocatalysts

Mismatch endonucleases recognise and cleave heteroduplexes in a
DNA sequence. Consequently, they can be used as an effective
method for the removal of errors during gene synthesis. However,
when using mixed-base codons in directed evolution this is proble-
matic, as these mixed sequences will form heteroduplexes and so
will be heavily cleaved, thus preventing assembly of the required
full-length sequence. Hence, we have developed an improved gene
synthesis method, SpeedyGenes, which both improves the accurate
synthesis of larger genes and can also accommodate mixed-base
codon sequences.728 SpeedyGenes integrates a mismatch endonu-
clease step to cleave mismatched bases and, anticipating complete
digestion of the mixed-base sequences, then restores these mixed
base sequences by reintroducing the oligonucleotides encoding the
mutation back into the PCR (‘‘spiking in’’) to allow the full length,
error corrected gene to be synthesised. Importantly, multiple
variant codons can be encoded at different positions of the gene
simultaneously, enabling greater search of the sequence space
through combinatorial mutations. This was illustrated728 by the
synthesis of a monoamine oxidase (MAO-N) with three contiguous
mixed-base codons mutated at two different positions in the gene.
The known structure of MAO-N showed that the side chains of
these residues were known to interact, hence these libraries could
be screened for combinatorial coevolutionary mutations.

As with most synthetic biology methods, the use of sequence
design in silico is crucial to the successful synthesis in vitro. In
the case of SpeedyGenes, a parallel, online software design tool,
GeneGenie, was developed to automate the design of DNA
sequences and the desired variant library.729 By calculating
the melting temperature (Tm) of the overlapping sequences,
and minimising the potential mis-annealing of oligomers,
GeneGenie greatly improves the success rate of assembly by
PCR in vitro. In addition, codons are selected according to the
codon usage of the expression host organism, and cloning
sequences can be encoded ab initio to facilitate downstream
cloning. Importantly, any mixed base codon can be added to
incorporate into the designed sequence, hence automating the
design of the variant library. As an example, a limited library of
enhanced green fluorescent protein (EGFP) were designed to
encode two variant codons (YAT at Y66 and TWT at Y145), the

product of which would encode a limited variant library of
green and blue variants of EGFP728 (Fig. 13).

Genetic selection and screening

An important aspect of any experiment exploiting directed
evolution for the development of improved biocatalysts is
how one determines which of the many millions (or more) of
the different clones that are created is worth testing further
and/or retaining for subsequent generations. If it is possible to
include a (genetic) selection step prior to any screening, this is
always likely to prove valuable.303,730–732

Genetic selection

Most strategies for selection are unique to the protein of
interest, and hence need to be designed empirically. Generally, this
entails selection of a clone containing a desirable protein because it
leads the cell to have a higher fitness.599,733 Examples including
those based on enantioselectivity,734,735 substrate utilisation,736

chemical complementation,737,738 riboswitches,739–743 and counter-
selection744 can be given. An ideal is when the selection rescues cells
from a toxic insult that would otherwise kill them745 (see Fig. 14) or
repairs a growth defect746–748). Two such examples749,750 of genetic
selection are based on transporter engineering. However, most of the
time it is quite difficult to develop such a genetic selection assay, so
one must resort to screening.

Screening

Microtitre plates are the standard in biomolecular screening,
and this is no different in DE.751 Herein, clones are seeded such
that one clone per well is cultured, the substrates added, and
the activity or products screened, primarily using chromogenic
or fluorogenic substrates. This said, flow cytometry and
fluorescence-activated cell sorting (FACS) have the benefit of
much higher throughputs and have been widely applied (e.g.
ref. 415 and 752–790) (and see below for microchannels and
picodroplets). 2D arrays using immobilized proteins may also be
used.791,792 However, not all products of interest are fluorescent,
and these therefore need alternative methods of detection.

Thus, other techniques have included Raman spectroscopy
for the chemical imaging of productive clones,793,794 while IR
spectroscopy has been used to assess secondary structure (i.e.
folding).795 Various constructs have been used to make non-
fluorescent substrates or product produce a fluorescence signal.796

These include substrate-induced gene expression screening797–799

and product-induced gene expression,800 fluorescent RNAs,801

reporter bacteria,773,802 the detection of metabolites by fluorogenic
RNA aptamers,803–811 colourimetric aptamers and Au particles,812

or appropriate transcription factors.787 Riboswitches that respond
to product formation,742,743 chemical tags,813,814 and chemical
proteomics815 have also been used as reporters for the production
of small molecules.

Solid-phase screening with digital imaging is another alternative
used for the engineering of biocatalysts. These methods generally
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use microbial colonies expressing the protein of interest to screen
for activity directly in situ.816–818 Advantages to this include the
ability to use enzyme-coupled assays (like HRP)819,820 or substrates
of poor solubility or viscosity.821

Microfluidics, microdroplets and microcompartments

Sometimes the ‘host’ and the screen are virtually synonymous, as
this kind of miniaturisation can also offer considerable
speeds.822–825 Thus, there are trends towards the analysis of
directed evolution experiments in microcompartments,766,826–831

using suitable microfluidics777,832–838 or picodroplets.831,839–843

Agresti et al.844 have shown that microfluidics using picolitre-
volume droplets can screen a library of 108 HRP mutants in
10 hours. Although further refinement of microfluidics-based
screening is required before its use becomes commonplace, it is
clear that it has the capability to process the larger and more
diverse libraries that one wishes to investigate.

Assessment of diversity and its
maintenance

By now we have acquired a population of clones that are ‘better’
in some sense(s) than those of their parents. If we measure only
fitnesses, however, as we have implicitly done thus far, we have
only half the story, and we now return to the question of using
knowledge of where we are or have been in a search space to
optimize how we navigate it. There is of course a considerable
literature on the role of ‘genetic’ and related searches in all

Fig. 13 GeneGenie and SpeedyGenes: synthetic biology tools for the purposes of directed evolution. The integration of computational design and
accurate gene synthesis methodology provide a strong platform that can be utilised for directed evolution. As an example, the design, synthesis and
screening of a small library of EGFP variants is shown. Mixed base codons are used to encode the green and blue variants of EGFP in a single library. (A)
GeneGenie (www.gene-genie.org/) designs overlapping oligonucleotides for a given protein together with any specific mixed base codon (here YAT
denoting C/T,A,T). (B) SpeedyGenes assembles the gene sequence using these oligonucleotides, accurately (using error correction) producing variant
libraries with the desired mutations. (C) Direct expression (no pre-selection) of the library in E. coli yielded colonies with the desired mutations (green or
blue fluorescence).

Fig. 14 The principle of genetic selection, here illustrated with a trans-
porter gene knockout mutant in competition with others749 that does not
take up toxic levels of an otherwise cytotoxic drug D.
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kinds of single and multi-objective optimisation (see e.g.
ref. 106, 107, 110, 113, 116, 210–213 and 845–858), all of which
recognises that there is a trade-off between ‘exploration’ (looking
for productive parts of the landscape) and ‘exploitation’ (performing
more local searches in those parts). Methods or algorithms
such as ‘efficient global optimisation’859 calculate these explicitly.
Of course ‘where’ we are in the search space is simply encoded by
the protein’s sequence.

There is thus an increasing recognition that for the assess-
ment860–863 and maintenance864 of diversity under selection
one needs to study sequence-activity relationships. When DNA
sequencing was much more expensive, methods were focused
on assessing functionally important residues (e.g. ref. 865–868).
As sequences became more readily available, methods such as
PROSAR219,232,233,869 were used to fix favourable amino acids, a
strategy that proved rather effective (albeit that it does not
consider epistasis). Now (although sequence-free methods are
also possible340,870–872), as large-scale DNA (including ‘next-
generation’) sequencing becomes commonplace in DE,873–876

we may hope to see large and rich datasets becoming openly
available to those who care to analyse them.

Sequence-activity relationships and machine learning

A historically important development in what is nowadays usually
known as machine learning (ML)877–879 was the recognition that it
is possible to learn relationships (in the form of mathematical
models) between paired inputs and outputs – in the classical case
between mass spectra and the structures of the molecules that had
generated them880–884 – and more importantly that one could apply
such models successfully in a predictive manner to molecules and
spectra not used in the generation of the model. Such models are
thus said to ‘learn’, or to ‘generalise’ to unseen samples (Fig. 15).

In a similar vein, the first implementation of the idea that one
could learn a mathematical model that captured the (normally
rather nonlinear) relationships between a macromolecule’s
sequence and its activity in an assay of some kind, and thereby
use that model to predict (in silico) the activities of untested
sequences, seems to be that of Jonsson et al.885 These authors885

used partial least squares regression (a statistical model rather
than ML – for the key differences see ref. 886) to establish a
‘quantitative sequence-activity model’ (QSAM) between (a
numerical description of) 68-base-pair fragments of 25 E. coli
promoters and their corresponding promoter strengths. The
QSAM was then used to predict two 68 bp fragments that it was
hoped would be more potent promoters than any in the
training set. While extrapolation, to ‘fitnesses’ beyond what
had been seen thus far, was probably a little optimistic, this
work showed that such kinds of mappings were indeed possible
(e.g. ref. 887–891). We have used such methods for a variety of
protein-related problems, including predicting the nature and
visibility of protein mass spectra.892–894

As a separate example, we used another ML method known as
‘random forests’895 to learn the relationship between features of
some 40 000 macromolecular (DNA aptamer) sequences and
their activities,23 and could use this to predict (from a search
space some 14 orders of magnitude greater) the activities of
previously untested sequences. While considerable work is going
on in structural biology, we are always going to have very many
more (indeed increasingly more) sequences than we have struc-
tures; thus we consider that approaches such as this are going to
be very important in speeding up DE in biocatalysis and improv-
ing the functional annotation of proteins. In particular, those
performing directed evolution can have simultaneous access to
all sequences and activities for a given protein.896,897 In contrast,
an individual protein undergoing natural evolution cannot in
any sense have a detailed ‘memory’ of its evolutionary past or
pathway and in any event cannot (so far as is known, but cf.
ref. 122 and 898) itself determine where to make mutations (only
what to select on the basis of a poorly specified fitness). Machine
learning methods seem extremely well suited for searching
landscapes of this type.23,56,107,677,899 Overall, this is a very important
difference between natural evolution and (Experimenter-) Directed
Evolution.

The objective function(s): metrics for
the effectiveness of biocatalysts

This is not a review of enzyme kinetics and kinetic mechan-
isms,549,900–902 and for our purposes we shall mainly assume
that we are dealing with enzymes that catalyse thermodynamically
favourable reactions, operating via a Michaelis–Menten type of
reaction whose kinetic properties can largely be characterized via
binding or Michaelis constants plus a (slower) catalytic rate
constant kcat that is equivalent to the enzyme’s turnover number
(with units of reciprocal time). Much literature (e.g. ref. 549, 902
and 903) summarises the view that an appropriate measure of
the effectiveness of an enzyme is a high value of kcat/Km, effected
via the transduction of the initial energy of substrate/cofactor
binding.903–905 Certainly the lowering of Km alone is a very poor
target for most purposes in directed evolution where initial
substrate concentrations are large. Better (as an objective func-
tion) than enantiomeric excess for chiral reactions producing a
preferred R form (preferred over the S form) is a P factor or E

Fig. 15 The principles of building and testing a machine learning model,
illustrated here with a QSAR model. We start with paired inputs and outputs
(here sequences and activities) and learn a nonlinear mapping between the
two. Methods for doing this that we have found effective include genetic
programming1345 and random forests.23 In a second phase, the learned
model is used to make predictions on an unseen validation and/or test
set1346 to establish that the model has generalized well.
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factor (kcat,R/Km,R)/(kcat,S/Km,S)906 of a product. For industrial
purposes, we are normally much more interested in the overall
conversion in a reactor, rather than any specific enzyme kinetic
parameter. Hence, the space-time yield (STY) or volume–time
output (VTO) over a specified period, whose units are expressed
in amount � (volume � time)�1 (e.g. ref. 907–911) has also been
preferred as an objective function. This is clearly more logical
from the engineering point of view, but for understanding how
best to drive directed evolution at the molecular level, it is
arguably best to concentrate on kcat, i.e. the turnover number,
which is what we do here.

The distribution of kcat values among natural proteins

Not least because of the classic and beautiful work on triose
phosphate isomerase, an enzyme that is operating almost at the
diffusion-controlled limit,383,912 there is a quite pervasive view
that natural evolution has taken enzymes ‘as far as they can go’
to make ‘proficient’ enzymes (e.g. ref. 913–915). Were this to be
the case, there would be little point in developing directed
evolution save for artificial substrates. However, it is not; most
enzymes operate in vivo (and in vitro) at rates much lower than
diffusion-controlled limits916,917 (online databases of enzyme
kinetic parameters include BRENDA918 and SABIO-RK919). One
assumes that this is largely because evolution simply had no
need (i.e. faster enzymes did not confer sufficient evolutionary
advantage)920 to select for them to increase their rates beyond
that necessary to lose substantial flux control (a systems
property921–925). It is this in particular that makes it both
desirable and possible to improve kcat or kcat/Km values over
what Nature thus far has commonly achieved.

In biotransformations studies, most papers appear to report
processes in terms of g product � (g enzyme � day)�1; while
process parameters are important,907 this serves (and is probably
designed) to hide the very poor molecular kinetic parameters that
actually pertain. Km is largely irrelevant because the concentrations
in use are huge; thus our focus is on kcat. While DE has been
shown to be capable of improving enzyme turnover numbers
significantly, calculations show that even the ‘poster child’
examples (prositagliptin ketone transaminase,926 B0.03 s�1;
halohydrin dehydrogenase,219 B2 s�1; isopropylmalate dehydro-
genase,927 B5 s�1; lovD,368 B2 s�1) have turnover numbers that
are very poor compared to those typical of primary metabolism,
let alone the diffusion-controlled rates (depending on Km) of
nearer 106–107 s�1.916,917

What enzyme properties determine kcat values?

Almost since the beginning of molecular enzymology, scientists
have come to wonder what particular features of enzymes are
‘responsible’ for enzyme catalytic power (i.e. can be used to
explain it, from a mechanistic point of view).928–930 It is
implausible that there will be a unitary answer, as different
sources will contribute differently in different cases. Scientifically,
one may assume from the many successes of protein engineering
that comparing various related sequences (and structures) by
homology will be productive for our understanding of enzymology.
Directed evolution studies increase the opportunities massively.

In general terms (e.g. ref. 930–933), preferred contributions to
mechanisms have their different proponents, with such contribu-
tions being ascribed variously to a ‘Circe effect’,904 strain or distor-
tion,934 electrostatic pre-organisation,933,935–939 hydrogen
tunneling,940–947 reorganization energy,948 and in particular various
kinds of fluctuations and enzyme dynamics.254,379,930,942,944–946,949–978

Less well-known flavours of dynamics include the idea that solitons
may be involved.979,980 Overall, we consider that the ‘dynamics’ view
of enzyme action is especially attractive for those seeking to increase
the turnover number of an enzyme.

This is because what is not in doubt is that following
substrate binding at the active site (that is dominantly responsible
for substrate affinity and the degree of specificity), the binding
energy has been ‘used up’ (Fig. 16) and is not thereby available to
drive the catalytic step in a thermodynamic sense. This means that
the protein must explore its energy landscape via conformational
fluctuations that are essentially isoenergetic,951,966,981 before
finding a configuration that places the active site residues into
positions appropriate to effect the chemical catalysis itself, that
happens as a ‘protein quake’981,982 in picoseconds or less.983 The
source of these motions, whether normal mode or other-
wise,984,985 can only be the protein and solvent fluctuations in
the heat bath, and this means that their origins can lie in any
parts of the protein, not just the few amino acids at the active
site. Two exceedingly important corollaries of this follow. The
first is that one may hope to predict or reflect this through the
methods of molecular dynamics even when the active site is
essentially unchanged, and this has recently been shown368).
The second corollary is that one should expect it to be found that
successful directed evolution programs that increase kcat lead to

Fig. 16 A standard representation of an energy diagram for enzyme
catalysis. Substrate binding is thermodynamically favourable, but to effect
the catalytic reaction thermal energy is used to take the reaction to the
right, often shown as a barrier represented by one or more ‘transition
states’. Changes in the Km and Kd (affecting substrate affinity) can be
influenced most directly by mutagenesis of the residues at the active
site whilst changes in the kcat occur primarily from mutagenesis of
residues away from the active site (which can affect the fluctuations in
enzyme structure required either for crossing the transition state ES‡ or
by tunnelling under the barrier). At all points there are multiple roughly iso-
energetic conformational (sub)states. Figure based on elements of those in
ref. 930 and 966.
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many mutations that are very distant from the active site. This can
also serve, at least in part, to account for why surface post-
translational modifications such as glycosylation can have significant
effects on turnover (e.g. ref. 986).

The importance of non-active-site
mutations in increasing kcat values

In general terms, it is known that there is a considerable
amount of long-range allostery in proteins,987 such that distant
mutations couple to the active site.988 Indeed, most mutations
(and amino acid residues) are necessarily distant from the
active site, and there is a lack of correlation between a muta-
tion’s influence on kcat and its proximity to the active site989

(by contrast, specificity is determined much more by the
closeness to the active site990). We still do not have that much
data, since we require 3D structural information on many
related variants; however, a number of excellent examples
(Table 2) are indeed consistent with this recognition that
effective DE strategies that raise kcat require that we spread
our attention throughout the protein, and do not simply con-
centrate on the active site (Fig. 17). Indeed mutants with major
improvements in kcat may display only minor changes in active
site structure.368,938,974,991

What if we lack the structure? Folding
up proteins ‘from scratch’

A very particular kind of dynamics is that which leads a protein to
fold into its tertiary structure in the first place, and the purpose of
this brief section is to draw attention to some recent advances that
might allow us to do this computationally. Advances in specialist
computer hardware (albeit not yet widely available) can now make a
prediction of how a given (smallish) protein sequence will fold up
‘ab initio’.998–1002 However, there are many more protein sequences
than there are structures, and this gap is destined to become
considerably wider1003 as sequencing methods continue to increase
in speed.102 The need for methods that can fold up proteins

accurately ‘de novo’ (from their sequences) is thus acute.1004 How-
ever, despite a number of advances (e.g. ref. 1000, 1005 and
1006) this is not yet routine. The problem is, of course, that
the search space of possible structures is enormous,1 and
largely unconstrained. As well as using more powerful hard-
ware, the real key is finding suitable constraints. An important
recognition is that the covariance of residues in a series of
homologous functional proteins provides a massive constraint
on the inter-residue contacts and thus what structures they
might adopt, and substantial advances have recently been
made by a number of groups197,199,1007–1011 in this regard.
Directed evolution supplies an obvious means of creating and
assessing suitable sequences.

Metals

As mentioned above, many proteins use metals and cofactors
to aid the chemistry that they can catalyse, and while we shall

Table 2 Some examples of improvements in biocatalytic activities that have been achieved using directed evolution, focusing on examples where most
relevant mutations are in amino acids that are distal to the active site

Target
Fold improvement
over starting point Ref. Other notes

Cytochrome P450 9000 56 and 992 20 from generation 5, more than
15 away from active site

Diels–Alderase kcat 108-fold; catalytic
power 9000-fold

993 21 aa, 16 outside active site

Glycerol dehydratase 336 994 2 aa, both very distant from active site
Glyphosate acyltransferase 200 in kcat 995 21 mutations, only 4 at active site
Halohydrin dehalogenase 4000 in volumetric productivity 219 35 mutations, only 8 at active site
3-Isopropylmalate dehydrogenase 65 927 8 mutations, 6 distant from active site
LovD 41000 368 29 mutations, 18 on enzyme surface
Phosphotriesterase 25 996 7, only 1 at active site
Prositagliptin ketone transaminase N (no starting activity) 926 27 mutations, 17 binding substrate. 200 g L�1, 499.5 ee
Triose phosphate isomerase 410 000 386 36 mutations, only 1 at active site

(NB effects on dimerisation, also implying distant effects)
Valine aminotransferase 21 000 000 997 17 mutations, only 1 at active site

Fig. 17 The residues that influence kcat tend to be distributed throughout
an enzyme. The amino acid side chains of each of the 24 mutations
obtained993 by the directed evolution of a Dielsalderase (PDB: 4O5T) are
highlighted. The active site pocket is shown in grey, while all mutated
residues within 5 Å of the ligand (blue) are differentiated from those more
than 5 Å away (red). This illustrates that the majority of mutations influen-
cing kcat are not in close proximity to the active (substrate-binding) site.
The figure was prepared using PyMol.
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not discuss cofactors, a short section on metalloenzymes is
warranted, not least since nearly half of natural enzymes
contain metals,1012 albeit that free metals can be quite
toxic.1013–1015

To this end, if one wishes to keep open the possibility of
incorporating metals into proteins undergoing DE (sometimes
referred to as hybrid enzymes1016–1019), it is necessary to under-
stand the common mechanisms, residues and structures
involved.460,461,1020–1042

Some specific and unusual examples include high-valent
metal catalysis,1043 multi-metal designs as in a di-iron hydryla-
tion reaction,1044 a protein whose fluorescence is metal-
dependent1045 and various chelators, quantum dots and so
on1046–1050 and metallo-enzymes based on (strept)avidin–biotin
technology.1051–1053

A particular attraction of DE is that it becomes possible to
incorporate metal ions that are rarely (or never) used in living
organisms, to provide novel functions. Examples include iridium,1054

rhodium1055 and uranium (uranyl).1056,1057

Enzyme stability, including
thermostability

In general, the rates of chemical reactions increase with temperature,
and if we evolve kcat to high levels we may create processes in
which temperature may rise naturally anyway (and some processes
may simply require it1058). In a similar vein, protein stability
tends to decrease with increasing temperature, and there is
commonly1059–1061 (though not always1062) a trade-off between
kcat and thermostability, including at the cellular level.1063 This
relationship depends effectively on the evolutionary pathway
followed.1062 As discussed above, thermostability may also
sometimes (but not always171–173) correlate with evolvability,175

and is the result of multiple mutations each contributing a
small amount.1064–1069

Of course the ‘first law’ of directed evolution is that you get
what you select for (even if you did not mean to). Thus if
thermostability is important one must incorporate it into one’s
selection regime, typically by screening for it.1070,1071 Of course
if one uses a thermophile such as T. thermophilus then in vivo
selection is possible, too.1072

As rehearsed above, protein flexibility (a somewhat ill-defined
concept87,1073) is related to kcat, and most residues involved in
improving kcat are away from the active site, at the protein
surface (where they are bombarded by solvent thermal fluctua-
tions). The connection between flexibility and thermostability is
not well understood, and it does not always follow that less
flexibility provides greater stability.1074,1075 However, one might
suppose that some residues that contribute flexibility are most
important for (i.e. contribute significantly to) thermostability
too. This is indeed the case.989,1076,1077 Indeed, the same blend
of design and focused (thus semi-empirical) DE that has proved
valuable for improving kcat values seems to be the best strategy
for enhancing thermostability too.1078–1080

Some aspects of thermostability1081–1087 can be related to
individual amino acids (e.g. an ionic or H-bond formed by an
arginine is of greater strength than that formed by a corres-
ponding lysine, or thermophilic enzymes have more charged
and hydrophobic but fewer polar residues1088,1089). However,
some aspects are best based on analyses of the 3D struc-
ture,456,1090,1091 e.g. intra-helix ion pairs1092,1093 and packing den-
sity.1068,1094 Thus, Greaves and Warwicker1095 conclude that
‘‘charge number relates to solubility, whereas protein stability is
determined by charge location’’. The choice of which residues to
focus on can be assisted (if a structure is available) by looking at
the local flexibility via methods such as mutability1096,1097 or via
B-factors,1062,1098,1099 or via certain kinds of mass spectro-
metry.1100–1108 Constraint Network Analysis1109 provides a useful
strategy for choosing which residues might be most important for
thermostability. Unnatural amino acids may be beneficial too; thus
fluoro-aminoacids can increase stability.1110–1112

To disentangle the various contributions to kcat and ther-
mostability, what we need are detailed studies of sequences
and structures as they relate to both of these, and published
ones remain largely lacking. However, the goal of finding
sequence changes that improve both kcat and thermostability
is exceptionally desirable. It should also be attainable, on the
grounds that protein structural constraints that increase the
rate of desirable conformational fluctuations while minimiz-
ing those that do not help the enzyme to its catalytically active
confirmations must exist and will tend to have this precise
effect.

Finally, thermal stresses are not the only stresses that may
pertain during a biocatalytic process, albeit sometimes the same
mutations can be beneficial in both (e.g. in permitting resistance
to oxidation1113,1114 or catalysis in organic solvents1115).

Solvency

While our focus is on evolving proteins, those that are catalyzing
reactions are always immersed in a solvent, and we cannot
ignore this completely. Although ‘bulk’ measurements of solvent
properties are typically unsuitable for molecular analyses of
transport across membranes,269,335,356,362,1116–1119 it is the case
that some of the binding energy used in enzyme catalysis is
effectively used in transferring a substrate from a usually hydro-
philic aqueous phase to a usually more ‘hydrophobic’ protein
phase. In general, the increased mass/hydrophobicity is also
accompanied by a changed value for Km.916 This can lead to
some interesting effects of organic solvents, and solvent mixtures,1120

on the specificity,1121–1126 equilibria1127 and catalytic rate con-
stants1128,1129 of enzymes, for reasons that are still not entirely
understood. However, because the intention of many DE pro-
grams is the production of enzymes for use in industrial
processes, the ability to function in organic solvents is often
another important objective function, and can be solved via the
above strategies.577 One recent trend of note is the exploitation
of ionic liquids1130,1131 and ‘deep eutectic solvents’1132–1135 in
biocatalysis.
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Reaction classes

Apart from circumstances involving extremely reactive substrates
and products, there is no known reason of principle why one
might not be able to evolve a biocatalyst for any more-or-less
simple (i.e. one-step, mono- or bi-molecular) chemical reaction.
Thus, one’s imagination is limited only by the reactions chosen
(nowadays, for a more complex pathway, via retrosynthetic and
related strategies (ref. 1136–1148)). Given that these are practically
limitless (even if one might wish to start with ‘core’ mole-
cules1149,1150), we choose to be illustrative, and thereby provide a
table of some of the kinds of reaction, reaction class or products for
which the methods of DE have been used, with a slight focus on
non-mainstream reactions. (Curiously, a convenient online data-
base for these is presently lacking.) Our main point is that there
seems no obvious limitation on reactions, beyond the case of very
highly reactive substrates, intermediates or products, for which an
enzymatic reaction cannot be evolved. Since the search space of
possible enzymes can never be tested exhaustively, it is a safe
prediction that we should expect this to hold for many more, and
more complex, chemistries than have been tried to date, provided
that the thermodynamics are favourable.

While the focus of this review is about how best to navigate
the very large search spaces that pertain in directed enzyme
evolution, we recognize that a number of processes including
enzymes evolved by DE are now operated industrially.327,328

Examples include sitagliptin,926 generic chiral amine APIs,1151

bio-isoprene,1152 and atorvastatin.1153

Concluding remarks and future
prospects

In our review above, we have developed the idea that the most
appropriate strategy for improving biocatalysts involves a judicious
interplay between design and empiricism, the former more focused
at the active site that determines binding and specificity, while the
latter might usefully be focussed more on other surface and non-
active-site residues to improve kcat and (in part) (thermo)stability. As
our knowledge improves, design may begin to play a larger role in
optimising kcat, but we consider that this will still require a con-
siderable improvement in our understanding of the relationships
between enzyme sequence, structure and dynamics. Thus, protein
improvement is likely to involve the creation of increasingly ‘smart’
variant libraries over larger parts of the protein.

Another such interplay relates to the combination of experi-
mental (‘wet’) and computational (‘dry’) approaches. We detect
a significant trend towards more of the latter,519 for instance in
the use368,1235,1296,1297 of molecular dynamics to calculate prop-
erties that suggest which residues might be creating internal
friction1298,1299 and hence lowering kcat. These examples help to
illustrate that predictions and simulations in silico are likely to
play an increasingly important role in predicting strategies for
mutagenesis in vitro.

The increasing availability of genomic and metagenomic
data, coupled to improvements in the design and prediction of

protein structures (and maybe activities) will certainly contri-
bute to improving the initialisation steps of DE. The availability
of large sets of protein homologues and analogues will lead to a
greater understanding of the relationships (Fig. 1) between
protein sequence, structure, dynamics and catalytic activities,
all of which can contribute to the design of DE experiments.
Together with the development of improved synthetic biology
methodology for DNA synthesis and variation, the tools for
designing and initialising DE experiments are increasing
greatly.

Specifically, the availability of large numbers of sequence-
activity pairs may be used to learn to predict where mutations
might best be tested. This decreases the empiricism of entirely
random mutations in favour of synthetic biology strategies in
which one has (at least statistically) more or less complete
control over which sequences to make and test. Thus we see a
considerable role for modern versions of sequence-activity
mapping based on appropriate machine learning methods as a
means of predicting where searches might optimally be con-
ducted; this can be done in silico before creating the sequences
themselves.23 No doubt many useful datasets of this type exist in
the databases of commercial organisations, but they need to
become public as the likelihood is that crowdsourcing analyses
would add value for their originators1300 as well as for the common
good.1301

In terms of optimisation algorithms, we have already pointed
out that very few of the modern algorithms of evolutionary
optimisation have been applied to the DE problem,107 and the
advent of synthetic biology now makes their development and
comparison (given that no one size will fit all1302–1306) a worth-
while and timely endeavour. Complex DE algorithms that have
no real counterpart in natural evolution can also now be carried
out using the methods of synthetic biology.

Searching our empirical knowledge of reactions is becoming
increasingly straightforward as it becomes digitised. As implied
above, we expect to see an increasing cross-fertilisation between
the fields of bioinformatics and cheminformatics1307,1308 and
text mining;1309–1311 a very interesting development in this
direction is that of Cadeddu et al.1136

Conspicuous by their absence in Table 3 are the members of
one important set of reactions that are widely ignored (because
they do not always involve actual chemical transformations).
These are the transmembrane transporters, and they make up
fully one third of the reactions in the reconstructed yeast1312

and human25,1313 metabolic networks. Despite a widespread
and longstanding assumption (e.g. ref. 1314) that xenobiotics
simply tend to ‘float’ across biological membranes according to
their lipophilicity, it is here worth highlighting the consider-
able literature (that we have reviewed elsewhere, e.g. ref. 269,
335, 356, 357, 362, 1116–1119 and 1315), including a couple of
experimental examples (ref. 749 and 750), that implies that the
diffusion of xenobiotics through phospholipid bilayers in intact
cells is normally negligible. It is now clear that transporters
enhance (and are probably required for) the transmembrane
transport even of hydrophobic molecules such as alkanes,1316–1321

terpenoids,1319,1322,1323 long-chain,1324–1328 and short-chain1329–1332
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Table 3 Some reactions, reaction classes or product types for which DE has proved successful. We largely exclude the very well-established
programmes such as ketone and other stereoselective reductases, which along with various other reactions aimed at pharmaceutical intermediates have
recently been reviewed in e.g. ref. 326, 328 and 1154–1162. Chiralities are implicit

Reaction (class) or substrate/product Illustrative ref.

Aldolases e.g. R1CHO + R2C(QO)R3 " R1C(QO)CH2C(O)R3 462, 1163 and 1164

Alkenyl and arylmalonate decarboxylases e.g. HOOCC(R1R2)COOH - HC(R1R2)COOH 1165
Amines 1166–1169

Amine dehydrogenase RC(QO)Me + NH3 + NADH + H+ - RCHNH2Me + H2O + NAD+ 1167

Antifreeze proteins 1170

Azidation RH - RN3 1171 and 1172

Baeyer–Villiger monooxygenases 1173 and 1174

Beta-keto adipate HOOCCH2CH2C(QO)CH2COOH 1175

Carotenoid biosynthesis 1176

Chlorinase Ar–H - Ar–Cl 1177–1180

Chloroperoxidase RH + Cl� + H2O2 - RCl + H2O + OH� 1181–1187

CO groups 1157

Cytochromes P450 e.g. R–H - R–OH 56, 366, 632, 633, 674, 692, 992 and 1188–1208

Diels–Alderases e.g. CH2QCHCHQCH2 + CH2QCH2 - cyclohexene 378, 380, 993, 1209 and 1210

DNA polymerase 1211 and 1212

Endopeptidases 769

Esterase enantioselectivity 1213

Epoxide hydrolase 947

Flavanones 1214–1221

Fluorinase 1178 and 1222 (and see ref. 1223)

Fatty acids 1224–1226

Glyphosate acyltransferase HOOCCH2NHCH2PO3
2� +

AcCoA - HOOCCH2N(CH3CQO)CH2PO3
2� + CoA

995 and 1227–1229
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fatty acids, and even CO2.1333,1334 This may imply a significantly
enhanced role for transporter engineering in whole cell biocatalysis.

The recent introduction of the community standard Synthetic
Biology Open Language (SBOL) will certainly facilitate the sharing
and re-use of synthetic biology designed sequences and modules.
Beginning in 2008, the development of SBOL has been driven by an
international community of computational synthetic biologists,
and has led to the introduction of an initial standard for the
sharing of synthetic DNA sequences1335 and also for their

visualisation. A recent proposal has introduced a more complete
extension to the language, covering interactions between synthetic
sequences, the design of modules and specification of their overall
function.1336 Just as with the Systems Biology Markup Lan-
guage,1337 the Systems Biology Graphical Notation,1338 and related
controlled vocabularies, metadata and ontologies for knowledge
exchange in systems biology1339,1340 and metabolomics,1341 the
availability of these kinds of standards will help move the field
forward considerably.

Table 3 (continued )

Reaction (class) or substrate/product Illustrative ref.

Glycine (glyphosate) oxidase HOOCCH2NHCH2PO3
2� + O2 -

OHC–COOH + H2NCH2 PO3
2� + H2O2

1229–1231

Haloalkane dehalogenase R1C(HBr)R2 + H2O - R1C(HOH)R2 + H+ + Br� 1232–1235

Halogenase Ar–H - Ar–Hal 1236–1239

Hydroxytyrosol 2–NO2–Ph–CH2CH2OH + O2 - 2–OH, 3–OH–Ph–CH2CH2OH + NO2 1240

Kemp eliminase 377 and 1241–1247

Ketone reductions R1–C(QO)–R2 - R1–CH(OH)–R2 1248 and 1249

Laccase 1250–1252

Michael addition R–CH2CHO + Ph–CHQCHNO2 - OHC–CH(R)–CH(Ph)CH2NO2 1253

Monoamine oxidase R1R2CHCH2NR3R4 + 1/2O2 -
R1R2CQNR3 (R4 = H) or R1R2CHQN+R3R4 (R4 = alkyl) + H2O

728, 1151 and 1254–1256

Nitrogenase N2 + 3H2 - 2NH3 1257

Nucleases 1258

Old yellow enzyme (activated alkene reductions) 664, 1259 and 1260

Paraoxonase R1(R2O)(R3O)–PQO - R1(R2O)(HO)PQO + R3OH 1261–1263

Peroxidase 1264 and 1265

Phospho(mono/di/tri)esterases 255, 831 and 1266–1271

Polyketides 1272–1275

Polylactate 1276

Redox enzymes 1277–1279

Reductive cyclisation 1280

Restriction protease 1281

Retro-aldolase e.g. R1C(QO)CH2C(O)R3 " R1CHO + R2C(QO)R3 463 and 1282

Sesquiterpene synthases 1283

Tautomerases Ar–CHQC(OH)COOH " Ar–CH2COCOOH 1284

Terpene synthase/cyclase 1285–1287

Transaldolase erythrose-4-phosphate + fructose-6-phosphate -
glyceraldehyde-3-phosphate + sedoheptulose-7-phosphate

1288 and 1289

Transketolase RCHO + HOCH2COCOOH - RCH(OH)COCH2OH 1290–1293

Zinc finger proteins 1294 and 1295
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Overall, we conclude that existing and emerging knowledge-
based methods exploiting the strategies and capabilities of
synthetic biology and the power of e-science will be a huge
driver for the improvement of biocatalysts by directed evolu-
tion. We have only just begun.
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405 B. Höcker, Directed evolution of (betaalpha)(8)-barrel
enzymes, Biomol. Eng., 2005, 22, 31–38.

406 A. Fischer, T. Seitz, A. Lochner, R. Sterner, R. Merkl and
M. Bocola, A fast and precise approach for computational
saturation mutagenesis and its experimental validation

by using an artificial (betaalpha)8-barrel protein, Chem-
BioChem, 2011, 12, 1544–1550.

407 S. Eisenbeis, W. Proffitt, M. Coles, V. Truffault,
S. Shanmugaratnam, J. Meiler and B. Höcker, Potential
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scaffold selection for enzyme design, Proteins, 2009, 77,
74–83.

420 E. Dellus-Gur, A. Toth-Petroczy, M. Elias and D. S. Tawfik,
What makes a protein fold amenable to functional inno-
vation? Fold polarity and stability trade-offs, J. Mol. Biol.,
2013, 425, 2609–2621.

421 M. Gebauer and A. Skerra, Anticalins small engineered
binding proteins based on the lipocalin scaffold, Methods
Enzymol., 2012, 503, 157–188.

422 M. Gebauer, A. Schiefner, G. Matschiner and A. Skerra,
Combinatorial design of an Anticalin directed against the
extra-domain B for the specific targeting of oncofetal
fibronectin, J. Mol. Biol., 2012, 425, 780–802.

423 A. M. Hohlbaum and A. Skerra, Anticalins: the lipocalin
family as a novel protein scaffold for the development of
next-generation immunotherapies, Expert Rev. Clin.
Immunol., 2007, 3, 491–501.

424 S. Schlehuber and A. Skerra, Anticalins as an alternative
to antibody technology, Expert Opin. Biol. Ther., 2005, 5,
1453–1462.

425 A. Skerra, Anticalins as alternative binding proteins for
therapeutic use, Curr. Opin. Mol. Ther., 2007, 9, 336–344.

426 A. Skerra, Alternative binding proteins: anticalins - har-
nessing the structural plasticity of the lipocalin ligand
pocket to engineer novel binding activities, FEBS J., 2008,
275, 2677–2683.

427 E. Gunneriusson, K. Nord, M. Uhlen and P. A. Nygren,
Affinity maturation of a Taq DNA polymerase specific
affibody by helix shuffling, Environ. Prot. Eng., 1999, 12,
873–878.

428 E. Gunneriusson, P. Samuelson, J. Ringdahl, H. Gronlund,
P. A. Nygren and S. Stahl, Staphylococcal surface display of
immunoglobulin A (IgA)- and IgE-specific in vitro-selected
binding proteins (affibodies) based on Staphylococcus
aureus protein A, Appl. Environ. Microbiol., 1999, 65,
4134–4140.

429 G. Kronvall and K. Jonsson, Receptins: a novel term for an
expanding spectrum of natural and engineered microbial
proteins with binding properties for mammalian pro-
teins, J. Mol. Recognit., 1999, 12, 38–44.

430 K. Nord, E. Gunneriusson, J. Ringdahl, S. Stahl, M. Uhlen
and P. A. Nygren, Binding proteins selected from combi-
natorial libraries of an alpha-helical bacterial receptor
domain, Nat. Biotechnol., 1997, 15, 772–777.

431 K. Nord, O. Nord, M. Uhlen, B. Kelley, C. Ljungqvist and
P. A. Nygren, Recombinant human factor VIII-specific affinity
ligands selected from phage-displayed combinatorial libraries
of protein A, Eur. J. Biochem., 2001, 268, 4269–4277.

432 J. Feldwisch and V. Tolmachev, Engineering of affibody
molecules for therapy and diagnostics, Methods Mol. Biol.,
2012, 899, 103–126.
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468 G. Kiss, N. Çelebi-ölçüm, R. Moretti, D. Baker and
K. N. Houk, Computational enzyme design, Angew.
Chem., Int. Ed., 2013, 52, 5700–5725.

469 D. J. Tantillo, How an enzyme might accelerate an intra-
molecular Diels-Alder reaction: theozymes for the for-
mation of salvileucalin B, Org. Lett., 2010, 12, 1164–1167.

470 X. Zhang, J. DeChancie, H. Gunaydin, A. B. Chowdry,
F. R. Clemente, A. J. Smith, T. M. Handel and K. N. Houk,
Quantum mechanical design of enzyme active sites,
J. Org. Chem., 2008, 73, 889–899.

471 J. Dechancie, F. R. Clemente, A. J. Smith, H. Gunaydin,
Y. L. Zhao, X. Zhang and K. N. Houk, How similar are
enzyme active site geometries derived from quantum
mechanical theozymes to crystal structures of enzyme–
inhibitor complexes? Implications for enzyme design,
Protein Sci., 2007, 16, 1851–1866.

472 D. J. Tantillo, J. Chen and K. N. Houk, Theozymes and
compuzymes: theoretical models for biological catalysis,
Curr. Opin. Chem. Biol., 1998, 2, 743–750.

473 G. Bouvignies, P. Vallurupalli, D. F. Hansen, B. E. Correia,
O. Lange, A. Bah, R. M. Vernon, F. W. Dahlquist, D. Baker
and L. E. Kay, Solution structure of a minor and transi-
ently formed state of a T4 lysozyme mutant, Nature, 2011,
477, 111–114.

474 S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee,
M. Beenen, A. Leaver-Fay, D. Baker, Z. Popović and
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achievements in developing the biocatalytic toolbox for
chiral amine synthesis, Curr. Opin. Chem. Biol., 2014, 19,
180–192.

1170 K. Meister, S. Ebbinghaus, Y. Xu, J. G. Duman, A. Devries,
M. Gruebele, D. M. Leitner and M. Havenith, Long-range
protein-water dynamics in hyperactive insect antifreeze
proteins, Proc. Natl. Acad. Sci. U. S. A., 2013, 110,
1617–1622.

1171 M. L. Matthews, W. C. Chang, A. P. Layne, L. A. Miles,
C. Krebs and J. M. Bollinger, Jr., Direct nitration and
azidation of aliphatic carbons by an iron-dependent
halogenase, Nat. Chem. Biol., 2014, 10, 209–215.

1172 E. M. Brustad, C-H activation: New recipes for biocataly-
sis, Nat. Chem. Biol., 2014, 10, 170–171.

1173 Z. G. Zhang, L. P. Parra and M. T. Reetz, Protein engineer-
ing of stereoselective Baeyer-Villiger monooxygenases,
Chemistry, 2012, 18, 10160–10172.

1174 I. Polyak, M. T. Reetz and W. Thiel, Quantum mechanical/
molecular mechanical study on the enantioselectivity of the
enzymatic Baeyer–Villiger reaction of 4-hydroxycyclohexanone,
J. Phys. Chem. B, 2013, 117, 4993–5001.

1175 T. Wells, Jr. and A. J. Ragauskas, Biotechnological oppor-
tunities with the beta-ketoadipate pathway, Trends Bio-
technol., 2012, 30, 627–637.

1176 C. Schmidt-Dannert, D. Umeno and F. H. Arnold, Mole-
cular breeding of carotenoid biosynthetic pathways, Nat.
Biotechnol., 2000, 18, 750–753.

1177 A. Butler and M. Sandy, Mechanistic considerations of
halogenating enzymes, Nature, 2009, 460, 848–854.

1178 H. Deng and D. O’Hagan, The fluorinase, the chlorinase
and the duf-62 enzymes, Curr. Opin. Chem. Biol., 2008, 12,
582–592.

Chem Soc Rev Review Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
D

ec
em

be
r 

20
14

. D
ow

nl
oa

de
d 

on
 1

1/
19

/2
02

5 
8:

00
:4

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4cs00351a


This journal is©The Royal Society of Chemistry 2015 Chem. Soc. Rev., 2015, 44, 1172--1239 | 1233

1179 G. W. Gribble, Biohalogenation, Prog. Chem. Org. Nat.
Prod., 2010, 91, 349–365.

1180 W. Runguphan, X. Qu and S. E. O’Connor, Integrating
carbon-halogen bond formation into medicinal plant
metabolism, Nature, 2010, 468, 461–464.

1181 R. Vázquez-Duhalt, M. Ayala and F. J. Márquez-Rocha,
Biocatalytic chlorination of aromatic hydrocarbons by
chloroperoxidase of Caldariomyces fumago, Phytochemis-
try, 2001, 58, 929–933.

1182 R. De Mot, A. De Schrijver, G. Schoofs and A. H. Parret,
The thiocarbamate-inducible Rhodococcus enzyme ThcF
as a member of the family of alpha/beta hydrolases with
haloperoxidative side activity, FEMS Microbiol. Lett., 2003,
224, 197–203.

1183 Z. Hasan, R. Renirie, R. Kerkman, H. J. Ruijssenaars,
A. F. Hartog and R. Wever, Laboratory-evolved vanadium
chloroperoxidase exhibits 100-fold higher halogenating
activity at alkaline pH: catalytic effects from first and
second coordination sphere mutations, J. Biol. Chem.,
2006, 281, 9738–9744.

1184 M. Hofrichter and R. Ullrich, Heme-thiolate haloperox-
idases: versatile biocatalysts with biotechnological and
environmental significance, Appl. Microbiol. Biotechnol.,
2006, 71, 276–288.

1185 J. M. Winter and B. S. Moore, Exploring the Chemistry
and Biology of Vanadium-dependent Haloperoxidases,
J. Biol. Chem., 2009, 284, 18577–18581.

1186 M. Hofrichter, R. Ullrich, M. J. Pecyna, C. Liers and
T. Lundell, New and classic families of secreted fungal
heme peroxidases, Appl. Microbiol. Biotechnol., 2010, 87,
871–897.

1187 P. Bernhardt, T. Okino, J. M. Winter, A. Miyanaga and
B. S. Moore, A Stereoselective Vanadium-Dependent
Chloroperoxidase in Bacterial Antibiotic Biosynthesis,
J. Am. Chem. Soc., 2011, 133, 4268–4270.

1188 C. R. Otey, M. Landwehr, J. B. Endelman, K. Hiraga,
J. D. Bloom and F. H. Arnold, Structure-guided recombi-
nation creates an artificial family of cytochromes P450,
PLoS Biol., 2006, 4, e112.

1189 S. L. Kelly and D. E. Kelly, Microbial cytochromes P450:
biodiversity and biotechnology. Where do cytochromes P450
come from, what do they do and what can they do for us?
Philos. Trans. R. Soc. London, Ser. B, 2013, 368, 20120476.
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