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Misfit stabilized embedded nanoparticles in
metallic alloys

Yu. N. Gornostyrevabc and M. I. Katsnelson*cd

Nanoscale inhomogeneities are typical for numerous metallic alloys and crucially important for their

practical applications. At the same time, stabilization mechanisms of such a state are poorly understood.

We present a general overview of the problem, together with a more detailed discussion of the

prototype example, namely, Guinier–Preston zones in Al-based alloys. It is shown that coherent strain

due to a misfit between inclusion and host crystal lattices plays a decisive role in the emergence of the

inhomogeneous state. We suggest a model explaining the formation of ultrathin plates (with the

thickness of a few lattice constants) typical for Al–Cu alloys. Discreteness of the array of misfit disloca-

tions and long-ranged elastic interactions between them are the key ingredients of the model. This

opens a way for a general understanding of the nature of (meta)stable embedded nanoparticles in

practically important systems.

Introduction

One of the basic concepts in physics and chemistry of solids and
materials science is the formation of microstructures which

depend on chemical compositions and thermal treatment con-
ditions.1 Of particular interest are microstructures with nano-
scale elements2 (tens to thousands interatomic distances), whose
properties differ essentially from those of single molecules/atoms
as well as of bulk materials.3 Their peculiarities are generally
explained in terms of high surface-to-volume ratios and/or size
effects4 in fundamental properties of materials (such as, e.g., size
quantization of an electron energy spectrum in embedded
nanoparticles5). We are just in the very beginning of the way,
and specific physical mechanisms responsible for formation
and stability of nano-scale microstructures are still debatable.6

a Institute of Quantum Materials Science, CJSC, Ekaterinburg 620075, Russia
b Institute of Metal Physics, Russian Academy of Sciences—Ural Division,

Ekaterinburg 620041, Russia
c Ural Federal University, Theoretical Physics and Applied Mathematics Department,

Mira str. 19, Ekaterinburg, 620002, Russia
d Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135,

Nijmegen, 6525 AJ, Netherlands. E-mail: M.Katsnelson@science.ru.nl

Yu. N. Gornostyrev

Yuri Gornostyrev received his PhD
in 1982 in solid state physics from
the Institute of Metal Physics
(Ekaterinburg, Russia) where he
stays by now as a professor. After
two years in Northwestern Univer-
sity, 2004–2006, Yu. Gornostyrev
became a head of Institute of
Quantum Materials Science in
Ekaterinburg. His main scientific
interests relate to ab initio based
multiscale modeling of phase
equilibrium and phase transfor-
mations in metals, crystal lattice
defects, strength and plasticity of
steel and alloys.

M. I. Katsnelson

Mikhail Katsnelson received his
PhD in 1980 in solid state
physics from the Institute of
Metal Physics (Ekaterinburg,
Russia) where he stayed until
2001. After three years in
Uppsala University, 2002–2004,
M. Katsnelson became professor
and head of the group of theory of
condensed matter in Radboud
University. His main scientific
interests cover quantum many-
body theory, electronic structure
of solids, magnetism, graphene,

pattern formation and self-organization in physical and chemical
systems. M. Katsnelson is elected member of Royal Netherlands
Academy of Arts and Sciences, Academia Europaea and Royal
Society of Sciences at Uppsala.

Received 5th August 2015,
Accepted 23rd September 2015

DOI: 10.1039/c5cp04641f

www.rsc.org/pccp

PCCP

PERSPECTIVE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Se

pt
em

be
r 

20
15

. D
ow

nl
oa

de
d 

on
 1

0/
29

/2
02

5 
7:

28
:5

1 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/c5cp04641f&domain=pdf&date_stamp=2015-10-01
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5cp04641f
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP017041


27250 | Phys. Chem. Chem. Phys., 2015, 17, 27249--27257 This journal is© the Owner Societies 2015

A typical example is a microstructure formed by the quench-
ing of a high temperature state, which presents either struc-
tural inhomogeneities or products of phase decomposition. In
the former case, a tweed-like microstructure with short-range
crystallographic order arises, characteristic of a quenched pre-
transition state (for example see ref. 7–9). In the latter case, the
kinetics of the first-order phase transition10 is crucially impor-
tant and the nanoscale microstructure is formed due to freezing/
stabilization of an incomplete stage of the phase transformation.
It can result in a regular or chaotic pattern structure; typically,
long-range interactions play an essential role there.11 One of the
examples of the regular pattern is a nanocomposite permanent
magnet ALNICO12 and Sm(CoFeCuZr)7.5

13 where the basket-
weave microstructure arises as a result of spinodal decomposi-
tion of an alloy.10 The regular pattern structure can correspond
to a stable or metastable state of a system as it takes place in
the cases of stripe magnetic domains,14–18 ‘‘polytwinned’’ anti-
phase domain structures in tetragonal ordered alloys,19,20 lath
martensite21–23 or perlite in steels;24 the latter is a particular
case of the well-known eutectoid decomposition.25 The stabili-
zation mechanisms for the regular nanoscale microstructures
are related to the tendency to minimization of the energy of
long-range interactions. Morphology of the formed structure
depends on external fields26,27 and their gradients,27,28 as well as
on the dissipation of the stored energy, by plastic relaxation in the
case of elastic interaction.22,23 There are even some rigorous
mathematical results on the formation of stripes and checker-
board patterns in the Ising model with the long-range interactions
included;29 the computational simulations see, e.g., in ref. 30.

Here we focus on the other class of materials, which attract
increasing attention in the last few decades. In this case,
the microstructure contains stable or long-living metastable
nanosized-scale precipitates embedded in a host.31 Such a hetero-
geneous state is typical for the so called nanoscale granular
materials32 and was observed in many technologically important
alloys. Examples include pre-Guinier–Preston zones33 (or K-state21)
and Guinier–Preston–Bagaryatsky zones in aluminum alloys34,35

which are supposed to play a decisive role in their strengthening,36

heterophase fluctuations37 resulting in an athermal omega-phase
in Ti- and Zr-based alloys38–40 and in Cu–Zn systems,41 precipitates
of Co in Cu,42 Cu in Fe,43 Pb in Al.44

The common feature of these structural states is their
stability at a moderate temperature, the precipitates are neither
grow to a macroscopic size nor disappear. The conventional
theory of structural transformations in solids has difficulties in
explaining such states, which lies very deeply; actually, it follows
just from the separation of free energy of the multiphase system
into bulk and surface contributions.10,21 This assumption is by
no way self-evident since a coherent precipitate of a new phase
creates long-range deformations in the host. At a phenomeno-
logical level, possible violation of extensivity of thermodynamic
quantities on the nanoscale was discussed in ref. 4. However, as
was shown by Eshelby,45 the energy of coherent precipitates, at
least, for the inclusion of the ellipsoidal shape, is proportional to
the volume and therefore it is just a renormalization of the bulk
contribution of the energy.

Coherent conjugation when crystal structures of the inclu-
sion and the host are matched at the interface by a small
homogeneous deformation is typical for small inclusions. With
the inclusion growth, a character of conjugation is changed and
the coherence is lost for large enough inclusions; in this case, a
tangential component of the deformation field is no more
continuous at the interface. In this work, we demonstrate that
for a partially coherent precipitate a special situation takes place.
To provide the partially coherent state one has to introduce
topological defects, namely, misfit dislocations,21,46 and their
interaction energy turns out to be different from both bulk and
surface contribution to the total energy. This additional energy
results in a stabilization of the nanosize precipitate.

Two examples of nanoscale
microstructures

Before considering physical mechanisms of stabilization of the
nanoscale microstructures, we discuss in a bit more detail on
two particular examples to make the problem clearer. These
examples are practically important and show most typical features
of the loss of coherence by precipitates.

A Athermal omega-phase formation

The athermal omega-phase is observed in numerous titanium
and zirconium alloys at the quenching after homogenizing
annealing at temperatures corresponding to the stable beta-
phase (bcc).40 It is observed only as precipitates (and never as a
bulk phase) by a displacive mechanism that transforms the
structure from bcc (beta) to hexagonal (omega) via a collapse of
the {111} planes of the parent bcc phase (Fig. 1). The athermal
omega precipitates are typically considered to inherit the com-
position of the parent beta matrix. As a rule, the omega-phase
in the titanium alloy with beta-stabilizing elements such as V,
Cr, Mn, Fe, Co and Ni appears in the form of fine ellipsoidal
particles with long axes along h111i and distributed uniformly
over the whole of the grain volume.38

The athermal omega-phase provides us an example of a
precipitate coherently conjugated with the host crystal lattice
despite essential differences in the crystal structures. The truly
coherent conjugation corresponds to the so-called commensurate

Fig. 1 Relationship between bcc and omega phase crystal lattices (left)
and b – o transformation by collapse of certain {111} planes (right).
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athermal omega-phase. This situation is quite exclusive (it hap-
pens in elemental Ti, Zr and Hf under pressure), the incommen-
surate athermal omega phase is much more typical,40 the omega–
beta mismatch (that is, amplitude of displacements of the {111}
planes) depends on the concentration of the dopant. Such a
conjugation is semi-coherent and includes appearance of domain
boundaries or topological defects as suggested in ref. 47.

On subsequent isothermal annealing, coarsening of the
omega-phase precipitates is accompanied by the diffusional
partitioning of the alloying elements. As a result, the isothermal
omega-phase is formed with a reduced concentration of the
alloying elements and a larger lattice mismatch that finally leads
to the loss of coherency. Thus, the formation of the omega-phase
precipitates results from concurrent compositional and structural
instabilities of titanium- and zirconium-based alloys.48 The
detailed theory of formation of the athermal omega-phase is still
absent. One can assume that the peculiar structural state of beta +
omega titanium based alloys is responsible for their anomalous
electronic properties such as negative temperature coefficient of
resistivity5 and provides an efficient mechanism of giant ultra-
sound attenuation49 observed in these alloys.50

B Guinier–Preston zones and their structural features

Though AlCu-based alloys have been discovered more than
100 years ago, still nowadays they are of great importance due to
their light-weight constructions36,51 such as a fuselage of aircrafts
(including new Airbus A380). The prominent properties of AlCu-
based alloys (mainly AlCuMg) are their low specific weight com-
bined with hardness and tensile strength, which is comparable to
those of steels. This hardening of Al is crucially dependent on
coherent meta-stable precipitates formed at the annealing at the
temperatures corresponding to the equilibrium solid solution with
further quenching and aging at room or moderately high tem-
perature. In binary AlCu alloys these precipitates are thin Cu
platelets of a few nanometer thickness on the {100}-planes in
fcc-Al; they are called Guinier–Preston zones (GPZs).34

Tempering of AlCu alloys above room temperature leads to
the growth of GPZs and their transformation which includes
several steps (Fig. 2): GPZ I - y00 particles (GP II zones) - y0

phase particles - y phase particles. The GPZ I zones have only
one Cu layer in the {100} plane (Fig. 2d). The y00 particles
contain two or more {100} Cu layers separated by three alumi-
num planes. GPZ I and II are precipitates coherently conjugated
with the host. The y0 particles are larger and semicoherent with
the Al host, that is, they are conjugated with the host via the
formation of misfit dislocations.52 Finally, the y particles are
inclusions of a thermodynamically stable phase Al2Cu incoher-
ent with the host. The highest strength of the alloy is reached
just before the precipitates loss coherency, when the compen-
sation of long-range internal stresses takes place. Despite a
long history of investigations of GPZs the key questions on the
mechanisms providing their stabilization and, thus, unique
mechanical properties of Al-based alloys are still open. In parti-
cular, it is unclear, what is the exact role of quenched-in vacancies.
It was suggested35 that the latter are crucially important on early
stage of GPZ formation because they provide relaxation of the
strain due to size mismatch between the host and the solvent
atoms. However, the relative concentration of quenched-in vacan-
cies and solute atoms is just about 1/1000.36 It seems to be too
small to affect the structure of precipitates but can accelerate
essentially diffusion processes providing a decomposition of
homogeneous alloy at room temperature. This is a common
believe that a tiny platelet shape of GPZs provides the gain in
the energy on coherent strains.35 However, to our knowledge,
possible (meta)stability of this state has never been really demon-
strated. Such demonstration is the main aim of this paper.

Coherent inclusion problem

The concept of coherent conjugation is crucially important for
the rest of our paper. Incoherent conjugation corresponds to
the coexistence of two or more macroscopically large pieces of

Fig. 2 Precipitation in Al–Cu supersaturated solid solution includes several steps (GPZ - y00 particles (GP II zones) - y0 phase particles - y phase
particles) which follow each other with increasing temperature. Schematic relationships are shown free energies (a) and corresponding phase diagram (b),
crystal structure of solid solution (c), GPZ (d), y0 phase (e) and y phase (f).
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different phases. Under such conditions, each phase has a
structure for minimizing its chemical potential and the role
of interface energy in the total energy balance is negligible. For
the case of nanoscale inclusions it can be more important to
minimize the interface energy than the bulk energy of the inclu-
sion. It requires an optimization of the interface to avoid energe-
tically expensive jumps in atomic positions and to make the
displacement field across the interface as smooth as possible.
This kind of conjugation is called coherent.

Early stage of precipitation results in the appearance of
particles coherently conjugated with the host; their structure
can be, generally speaking, different from that of the corres-
ponding bulk phase. In particular, the lattice parameters of the
athermal omega-phase are essentially different from those in
the equilibrium (e.g., at high pressures) thermal omega-phase40

and the structure of GPZs is essentially different from the
equilibrium Al2Cu phase.52 The coherent long-range deforma-
tion in the host created by the particle modifies the conditions of
phase equilibrium in the system, the former are now dependent
on the size and the shape of the precipitates.53,54 Such a picture
is valid for small enough particles. When their size grows above a
typical crossover size determining by the energy balance between
bulk differences of chemical potentials and elastic energy of the
deformations we reach the true thermodynamic phase equili-
brium (as required by Gibbs conditions), which does not depend
on the particle sizes if one neglects the surface (interface) energy.
The latter case corresponds to spinodal or binodal lines of
equilibrium at the phase diagram21 while under the coherent
strains a new phase can be reached at larger overcooling. In this
section, we consider an isolated particle coherently conjugated
to the host. In the next section the system under the near-
crossover conditions would be considered when a semicoherent
conjugation of the precipitates with the host.

Eshelby’s solution45 for an ellipsoidal inclusion in an infi-
nite homogeneous isotropic elastic material played a key role in
understanding of the precipitation. As was shown by Eshelby,
the energy of elastic strains created by an ellipsoidal coherent
inclusion of a new phase in the host has the form

Eel ¼ �
1

2
Vsincij etij ; (1)

where V is the volume of the inclusion, et
ij is the transformation

strain in unconstrained inclusion, that is, in the bulk new
phase without the host, sinc

ij is the elastic stress inside the
inclusion which turns out to be homogeneous in the case of the
ellipsoidal shape:

sinc
ij = Cijkl(Sklmne

t
mn � et

kl) (2)

Sijkl is the so called Eshelby’s tensor45 connecting deformations
inside the inclusion under constrained (c) and unconstrained
(t) conditions, ec

ij = Sijkle
t
ij. Since the approach of Eshelby is based

on the classical continual elasticity theory, the tensor Sijkl for
the case of the ellipsoidal inclusion depends only on Poisson’s
ratio of the material and the aspect ratios of the main axes of
the inclusion.45 As a result, this approach does not take into
account the inclusion-size effect on elastic behavior exhibited

by particle–matrix composites (e.g.55–57), and coherent stresses
would lead only to a shift of the equilibrium line at the phase
diagram renormalizing the free-energy difference.

This limitation has motivated studies of Eshelby-type inclu-
sion problems using extensions of the classical elasticity theories,
which contain material length scale parameters58 or the curva-
ture of interfaces.59,60 These approaches predict size-dependent
elastic strains for inclusions of few nanometers and were applied
to investigation of the effect of lattice mismatch on properties of
nanostructures such as buried quantum dots,59,61 nanowires62

and composites.63

Here we follow the traditional approach of Eshelby and con-
sider another mechanism of the size-dependent behavior sug-
gested at the qualitative level in ref. 54, namely, a crossover from
the coherent to the incoherent conjugation of the inclusion with
the host. As was shown in ref. 21, the minimum of the elastic
energy is reached for the coherent inclusion with the shape of a
narrow plate. Therefore we restrict ourselves by the consideration
of the penny-like-shape inclusion, a typical case for the inclusions
with a large lattice mismatch and small surface tension.21

We would use the dislocation model of the conjugation of
inclusion with the host; its equivalence to the Eshelby approach
was discussed in ref. 64. Namely, we assume that the conju-
gation is accompanied by the appearance of continuously
distributed dislocations and/or dislocation loops at the inter-
face (Fig. 3). If the total tensor of intrinsic deformations created
by such defects is equal to the intrinsic deformation tensor of
the inclusion this, of course, provides also equality of strains.
The network of virtual dislocations is characterized by the
tensor dislocation density

rb
ij = rxxibj (3)

where rx is the linear density of dislocations with the axes along
the direction x with the Burgers vector b. The quantity (3) is
related to the jump of plastic distortion at the interface et

ij via
Bullough–Bilby connection65

rb
ij = �eiklnke

t
lj (4)

Fig. 3 A plate (penny-like-shape) inclusion (a) containing virtual disloca-
tions (b) with linear density rb determining the transformation deformation
and misfit dislocations (c) with the linear density rm.
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where eikl is the unit antisymmetric tensor and n is the normal
vector at the interface. We assume that the inclusion has a
shape of a plate with n parallel to the z axis (z = x3) and that the
deformation is tetragonal, that is, et

11 = et
22 = et. Then, the only non-

vanishing components of the tensor rb
ij are rb

12 = rb
21 = rbb = et, and

the elastic field created by the inclusion can be attributed to a
superposition of two families of mutually orthogonal edge dis-
locations; one of them is schematically shown in Fig. 3b.

To determine elastic energy of the coherent inclusion we
have to take into account interaction energies and each dis-
location family and between the families. Taking into account
that the Burgers vectors have opposite signs at the lower and
upper surfaces of the plate we obtain:

Ec
el ¼ 4L

mb2

2pð1� nÞrb
2

ðL
�L

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2þ d2

q
0
B@

1
CAdxdx0

¼ V
m etð Þ2

ð1� nÞ 1þ d

2pa
2 ln

a

d

� �
þ 3

� �� � (5)

where d is the thickness of the plate, a = 2L is its in-plane size,
V = da2. The integrand in eqn (5) is nothing but the interaction
energy of parallel dislocations per unit length. This interaction
is long-ranged, with logarithmic dependence of potential on the
distance. The final expression in the right-hand side of eqn (5)
agrees with that derived in ref. 21 by another way. It allows a
simple interpretation, namely, the first term (with 1) is the
energy of a homogeneous elastic field inside the plate and the
second one (proportional to d/a) is the energy of the loop of
an effective dislocation along the perimeter of the inclusion.
For this coherent inclusions d { a and the last term can be
neglected, in agreement with the conclusion of Eshelby that the
elastic energy is proportional to the volume of the inclusion.
Note that expression (5) is valid, except numerical factors of the
order of one, for any shape of the inclusion21 assuming that its
transverse size L is much larger than its thickness d.

Coherent to incoherent crossover

The simplest model describing a transition from the coherent
regime to the incoherent regime is the Frenkel–Kontorova model
of an atomic chain lying at an incommensurate substrate.46,66,67

In this model, the incoherent regime corresponds to the case
when elastic energy is much larger than the energy of interaction
with the substrate so that the atomic chain remains unde-
formed. In contrast, in the case of very strong interaction energy
the atomic chain takes the interatomic distance of the substrate
(coherent regime). When both contributions are relevant the
semicoherent regime arises. In this case the chain consists of
coherent pieces interrupted by topological defects (solitons). One
can assume that in the three-dimensional case the transition
between the coherent and the incoherent regimes also involves
a superlattice of topological defects, a key idea for further
consideration.

The mechanism of partially coherent strain compensation
by an array of misfit dislocations was suggested long ago by

Nabarro68 (see also recent review69). In that approach, the effect
of misfit dislocations was reduced to a local renormalization of
lattice mismatch. Below we develop this idea by a straight-
forward calculation of different contribution to the total energy.
Contrary to ref. 68 and 69 we do not take into account possible
locking of the dislocations by the Peierls relief since in close
packed metallic systems such as Al–Cu the latter in known to be
negligible.70

We assume that the semicoherent conjugation between the
inclusion and the host is carried out by the formation of an
additional network of misfit dislocations at the interface (Fig. 3c)
with the Burgers vectors opposite to those of virtual dislocations
(4) which are responsible for the transformation deformation.
In terms of ref. 23 these dislocations provide the plastic part of
misfit strain relaxation. An additional contribution to the elastic
energy arises, due to the interaction within families of misfit
dislocations:

Em
el ¼�4L

mb22N
2pð1�nÞ ln

r0

d

� ��
þ
XN
k¼1

ln
1

d2 þ p2k2

� �
� ln

1

p2k2

� �� �!

(6)

where we have separated explicitly the term pln(r0) determin-
ing self-energy of dislocations and renormalizing the surface
tension, p = 1/rm is the distance between misfit dislocations,
rm is their linear density and r0 is a cutoff parameter (disloca-
tion core radius).70 Calculating the sums in eqn (6) and passing
to the limit N - N we have:

Em
el ¼

mb24L2

pð1�nÞp
pd
p

�
þ ln 1� exp �2dp

p

� �� �
� ln 2pd

p

� �
� ln

r0

d

� ��
(7)

Apart from the contribution Em
el one has to take into account the

interaction energy between misfit dislocations and virtual dis-
locations responsible for the transformation:

Emb
el ¼ 8L

mb2

2pð1� nÞrbbN
ðL
�L

ln

ffiffiffiffiffi
x2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ d2
p
 !

dx ¼ � mb2V
ð1� nÞ2rbrm

(8)

The total elastic energy is the sum of the contributions (5), (7)
and (8): Esc

el = Ec
el + Em

el + Emb
el . Choosing b as the unit length,

m/(1 � n) as the energy density unit and taking into account that
rb = et/b, rm = em/b (em is the average deformation created by
misfit dislocations, its value is determined by the minimization
of Esc

el ), the elastic energy per unit area can be represented as

~Esc
el ¼

Esc
el ð1� nÞ
mba2

¼ d et � em
� �2þ etð Þ2d2

2pa
2 ln

a

d

� �
þ 3

� �

þ em

p
ln 1� exp �2pdemð Þð Þ � ln 2pdemð Þ þ lnðdÞ þ e0ð Þ;

(9)

where the dimensionless parameter e0 = ln(r0/b) depends on
details of the structure of the core of misfit dislocations71 and
lies within the limits 0 o e0 o 1. It is proportional to the core
energy of the dislocation.
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Expression (9) has a transparent physical meaning. The first
contribution in the right-hand side coincides with the coherent
strain energy (5), with the lattice mismatch decreased by the
value em by introducing misfit dislocations. The second con-
tribution proportional to d/a, as in eqn (5), gives the energy of
deformations created by the inclusion edges. It becomes essen-
tial if em E et which suppresses the bulk contribution. At last,
the third term proportional to the density of misfit dislocations
describes the renormalization of the surface tension. The density
of the misfit dislocations rm and the corresponding deformation
em minimizing the energy Ẽsc

el for the case of a thin plate (d { a)
depend only on d and e0.

Fig. 4 displays the dependence of the ratio em/et on d
obtained by numerical minimization of eqn (9) for different e0.
For a large misfit et = 0.1 and small core energy (small e0) forma-
tion of the misfit dislocations and, thus, the transition from the
coherent to the semicoherent inclusion is energetically favourable
for any d. In this case, the ratio em/et remains close to 1 (the curves
1, 2 in Fig. 4a) reaching minimum at d E b, and misfit disloca-
tions compensate lattice mismatch between the precipitate and
the host phases almost completely. With the increase of the
parameter e0 4 0.5 or decrease the value of misfit et the
behaviour em(d) is changed qualitatively and the formation of
the misfit dislocations is possible only for d larger than some
critical value dcr (the curve 3 in Fig. 4a and b).

The curves in Fig. 4a correspond to the case of quite large
misfit; its decrease results in the growth of dcr (Fig. 4b). The
issue on the critical inclusion size corresponding to the loss of
coherence has been discussed already72–74 by analysing the
energetics of creation of the first dislocation loop. The value of
dcr as calculated here is smaller (approximately twice) than
predicted by Brooks criterion dcr E b/2et (ref. 72) and depends
on the core energy e0. For the large misfit and small enough
values of e0 the model predicts a qualitatively different beha-
viour in comparison with the previous considerations. In this
case, a gradual loss of coherence takes place with the inclusion
growth. It is a ‘‘soft’’ scenario in contrast to ‘‘hard’’ coherent –
semi-coherent crossover which realizes for a small misfit and/or
larger core energy for d 4 dcr.

Stabilization of nano-inclusion due to
misfit strains

Total formation energy of the plate inclusion has the form

Einc = da2Df + 2sa2 + Esc
el , (10)

where the first term is a chemical contribution, the second one is
the surface energy and the last one is the elastic energy discussed
above. The difference of the free energies per unit volume for the
competing phases, Df, is determined by the change in the chemical
bonding due to variation of composition or/and the crystal struc-
ture, as well as by the change in entropy. Near the temperature of
phase equilibrium Tc, the value Df is usually proportional to the
overcooling temperature DT = T � Tc.

75

Substituting eqn (9) into eqn (10) one can represent the
inclusion energy per unit area as

~Einc ¼ d et � em
� �2�D~f
h i

þ etð Þ2d2

2pa
2 ln

a

d

� �
þ 3

� �

þ em

p
ln 1� exp �2pdemð Þð Þ � ln 2pdemð Þð

þ lnðdÞ þ e0Þ þ 2~s

(11)

where Ẽinc, Df̃ and ~s are the energy densities multiplied by
(1 � n)/mba2, (1 � n)/m and (1 � n)/mb, respectively. Fig. 5 shows
the inclusion energy as a function of d for the cases of ‘‘hard’’ (a)
and ‘‘soft’’ (b) coherent – semi-coherent crossover. The curve 2,
20 corresponds to the incoherent inclusion when elastic strains
are absent. Its slope is determined by the change of the free
energy Df at the formation of the new phase and vanishes at the
temperature of the phase equilibrium. The curve 1 presents the
elastic energy Ẽsc

el(d). In the hard case (Fig. 5a) the function Ẽsc
el(d)

changes linearly while d o dcr, with the slope determining by the
energy of coherent strains. In the soft case the loss of coherence
occurs gradually and the slope of Ẽsc

el(d) curve (Fig. 5b) decreases.
An overcooling is necessary in the both cases to initiate decom-
position in the presence of coherent strains.

The total energy of inclusion results from competition of
elastic and chemical contributions (including surface energy).
For the hard crossover (Fig. 5a) the function Ẽinc(d) varies

Fig. 4 Relative density of misfit dislocations em/et as a function of the
thickness d for different misfit and dislocation core parameters. (a) et = 0.1,
e0 = 0.45, 0.5, 0.55 for the curves 1, 2, 3, respectively. (b) et = 0.05, e0 = 0.1,
0.2, 0.3 for the curves 1, 2, 3, respectively.
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linearly at d o dcr and changes the slope after the loss of
coherence (curve 3). In the case of small overcooling (small
slope of curve 2) the energy Ẽinc(d) increases in dependence on
d E dcr (curve 30) and inclusion is unable to grow in normal
direction. On the other hand, for the soft crossover (Fig. 5b) the
total energy depends non-monotonously on d, regardless of
overcooling. Thus, to transform the thin plate to the thick one it
is necessary to overcome the energy barrier for the cases of soft
crossover. In these situations as well as for the hard crossover
and small overcooling one can expect a formation of metastable
plate precipitate.

Let us discuss now a relation of our model to GPZs in Al–Cu
alloys. GPZ-I exists at the temperatures T o 200 1C are just
monolayers of Cu characterized by large lattice mismatch et =
0.1; at T 4 200 1C GPZ-I are solved and the y0-phase is formed
instead.76 According to the results of ab initio calculations77 the
energy gain at the formation of GPZs is about 0.01–0.02 eV/at,
which agrees well with the temperature range of their existence
and corresponds to Df̃ = 0.004/0.008. A reasonable estimate of
the energy of the coherent interface is about 0.1–0.2 J m�2

which corresponds to ~s = 0.001. According to our consideration
this is within the soft regime when the increase of thickness
of GPZ-I is energetically unfavourable due to generation of

misfit dislocations. On the other hand, the y0-phase arising at
higher temperatures and corresponding to the chemical com-
position Al2Cu that has smaller lattice mismatch et = 0.02 which
corresponds to our hard regime. Contrary to the case GPZ-I, in
this case thin plates are not stable (curve 3 in Fig. 5a). Indeed,
the thickness of y0-phase plates increases rapidly during a
continual heating.76

Local energy minimum corresponds to d = 0 which means,
within our model based on the continual elasticity theory, a few
interatomic distances. This means also stability of completely
coherent inclusion with zero density of misfit dislocations. Our
model always predicts either atomically thin coherent plates or
unrestricted incoherent growth of the new phase. Experimentally,
in all the cases GPZs do have a thickness of the order of interatomic
distances and are completely coherent.

Of course, our model is oversimplified (using continual elasti-
city, the free energy difference and surface tension are supposed to
be independent of the size of precipitate) and neglects some
details, which are important for the quantitative description. The
main aim is to demonstrate mechanisms of stabilizing an atom-
ically thin plate rather than to provide a complete quantitative
theory of metastable precipitates in real Al–Cu alloys. In the latter,
the structural evolution is accompanied by changes in chemical
composition and crystal lattices of the inclusion phases (see Fig. 2).
However, it should be noted that dislocation arrays are not the only
way for semicoherent conjugation of the inclusion and the host
and other topological defects may be involved. In particular, as was
shown in ref. 78, the conjugation of precipitates of topological
close packed (Frank–Kasper) phases may be provided by a network
of structural disclinations rather than dislocations. The formation
of such precipitates in W(Mo)–Re alloys can be an explanation of
anomalous solubility of interstitial impurity and improvement of
mechanical properties (rhenium effect).79,80

Conclusions

To summarize, energetics of partially coherent precipitate turns
out to be quite peculiar. In both limiting cases, namely, incoherent
precipitate and completely coherent precipitate,9 the total free
energy can be represented as a sum of bulk and surface contri-
butions which are proportional to the volume of the precipitate
and to the area of the interface between the precipitate and the
host, respectively. This is not surprising since in both limiting
cases there is no need to introduce any topological defects
which can make the story much more complicated.78 These
defects are unavoidable in the partially coherent case. Due to a
long-range character of interaction between the topological
defects, their interaction energy may have unusual dependence
on geometry of the system, which, as we have shown, may result
in the stabilization of the precipitate and determine its equili-
brium shape. For the future, it would be important to generalize
our quite simple model to the case of precipitates of arbitrary
shapes. In particular, contrary to the case of Al–Cu, for Al–Zn–
Mg alloys spherical shapes of the inclusions are typical.81 As
was mentioned above, inclusions of the athermal omega-phase

Fig. 5 The energy of plate inclusion Ẽsc
el for the cases of ‘‘hard’’ (a) and ‘‘soft’’

(b) coherent to semicoherent crossover. Curve 1 is the elastic contribution,
curve 2, 20 is the chemical contribution and curve 3, 30 is the total energy.
The parameters are: et = 0.05, ~s = 0.001, e0 = 0.1, Df̃ = 0.004 and 0.002 for
curves 2, 3 and 20, 30 (a), et = 0.1, ~s = 0.001, e0 = 0.45, Df̃ = 0.009 and 0.007
for curves 2, 3 and 20, 30 (b).
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in Ti and Zr based alloys are usually ellipsoidal.38,39 Note also
that in this paper we discuss only stabilization of the isolated
precipitate; these ‘‘topologically generated’’ interactions can be
important also for the interaction between the precipitates and
thus to the formation of mesostructure of inhomogeneous alloys.
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