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Brownian motion is ergodic in the Boltzmann—Khinchin sense that long
time averages of physical observables such as the mean squared
displacement provide the same information as the corresponding
ensemble average, even at out-of-equilibrium conditions. This property
is the fundamental prerequisite for single particle tracking and its
analysis in simple liquids. We study analytically and by event-driven
molecular dynamics simulations the dynamics of force-free cooling
granular gases and reveal a violation of ergodicity in this Boltzmann—
Khinchin sense as well as distinct ageing of the system. Such granular
gases comprise materials such as dilute gases of stones, sand, various
types of powders, or large molecules, and their mixtures are ubiquitous
in Nature and technology, in particular in Space. We treat—depending
on the physical-chemical properties of the inter-particle interaction
upon their pair collisions—both a constant and a velocity-dependent
(viscoelastic) restitution coefficient &. Moreover we compare the granular
gas dynamics with an effective single particle stochastic model based on
an underdamped Langevin equation with time dependent diffusivity. We
find that both models share the same behaviour of the ensemble mean
squared displacement (MSD) and the velocity correlations in the limit of
weak dissipation. Qualitatively, the reported non-ergodic behaviour is
generic for granular gases with any realistic dependence of ¢ on the
impact velocity of particles.

|. Introduction

Granular materials such as sand or different types of powders
are ubiquitous in Nature and technology, for instance, in the
cosmetic, food, and building industries." Rarefied granular
systems, in which the distance between particles exceeds their
size, are called granular gases.”™ Such granular gases represent a
fundamental physical system in statistical mechanics, extending
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Quantifying non-ergodic dynamics of force-free
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the ideal gas model to include dissipation on particle collisions.
Within granular matter physics granular gases represent a reference
model system.’ On Earth, granular gases may be realised by placing
granular matter into a container with vibrating® or rotating” walls,
applying electrostatic® or magnetic® forces, etc. Granular gases are
common in Space, occurring in protoplanetary discs, interstellar
clouds, and planetary rings (e.g. of Saturn)."

Ergodicity is a fundamental concept of statistical mechanics.
Starting with Boltzmann, the ergodic hypothesis states that long
time averages ( of a physical observable @ are identical to their
ensemble averages (().""'> In this sense, Brownian motion is
ergodic even at out-of-equilibrium conditions, while a range of
anomalous diffusion processes exhibit a distinct disparity () # C:
for instance, for sufficiently long observation times the time
averaged mean squared displacement (MSD) of a Brownian particle
converges to the corresponding ensemble average (R*(£))**'* calling
for generalisation of the classical ergodic theories.'” In fact, similar
concepts were already discussed in the context of glassy systems."®
In the wake of modern microscopic techniques, such as single
particle tracking,'® in which individual trajectories of single mole-
cules or submicron tracers are routinely measured, knowledge of
the ergodic properties of the system is again pressing. While the
time averages are measured in single particle assays or massive
computer simulations, generally ensemble averages are more
accessible theoretically. How measured time averages can be inter-
preted in terms of ensemble approaches and diffusion models is
thus an imminent topic.****

Here we quantify in detail from analytical derivations and
extensive simulations how exactly the ergodicity is violated in
simple mechanical systems such as force-free granular gases.
Our results for generic granular gases are relevant both from a
fundamental statistical mechanical point of view and for the
practical analysis of time series of granular gas particles from
observations and computer simulations. Specifically, (i) we here
derive the time and ensemble averaged MSDs and show that for
both constant and viscoelastic restitution coefficients the time
averaged MSD is fundamentally different from the corresponding
ensemble MSD. (ii) Moreover, the amplitude of the time averaged
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MSD is shown to be a decaying function of the length of the
measured trajectory (ageing). (iii) We study an effective single
particle mean field approach to the granular gas dynamics.
This underdamped scaled Brownian motion (SBM) demon-
strates how non-ergodicity and ageing emerge from the non-
stationarity invoked by the time dependence of the granular
temperature, which translates into the power-law time depen-
dence of the diffusion coefficient of SBM. We note that systems
with time dependent diffusion coefficients are in fact common
in nature, ranging from mobility of proteins in cell mem-
branes,"” motion of molecules in porous environments,'® water
diffusion in brain as measured by magnetic resonance ima-
ging," to snow-melt dynamics.”**

Il. Collisions in granular gases

Granular gas particles collide inelastically and a fraction of
their kinetic energy is transformed into heat stored in internal
degrees of freedom. The dissipative nature of granular gases
effects many interesting physical properties.” In absence of
external forces the gas gradually cools down. During the first
stage of its evolution, the granular gas is in the homogeneous
cooling state characterised by uniform density and absence of
macroscopic fluxes,” realised e.g. in microgravity environ-
ments.”” Eventually instabilities occur and vertexes develop in
the system.>>* Hereafter, we focus on spatially uniform granular
systems.

The energy dissipation in a pair-wise collision event of
granular particles is quantified by the restitution coefficient

(vi2 -¢)

(Vi2-e)

; 1)

where v;,’ =v,’ — v;’ and v, = v, — v, are the relative velocities
of two particles after and before the collision, respectively, and e
is a unit vector connecting their centres at the collision instant.
The post-collision velocities are related to the pre-collision
velocities v, and v, as®

®viz - e)e. 2)

/ 1+
Vig =VipF 3

The case ¢ = 1 denotes perfectly elastic collisions, while ¢ = 0
reflects the perfectly inelastic case. In oblique collisions negative
values of the restitution coefficient may be observed.** For
0 < ¢ < 1 the granular temperature

() = m{(v*)/2 (3)
given by the mean kinetic energy of particles with mass m

continuously decreases according to Haff’'s law for granular
gases,”

T(¢) = Tol(1 + t/1o)>. (4)

Here ;' = 1(1 —&?)7.1(0) is the inverse characteristic time of
the granular temperature decay, involving the initial value of
the inverse mean collision time scaling as t!(¢) oc \/T(¢)/m.

Weak dissipation (¢ ~ 1) thus implies 7, » 7.. Due to the
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Fig. 1 Collisions in a free granular gas with a restitution coefficient s < 1
lead to its cooling with time. Along with the reduced kinetic energy of the
gas particles, the diffusion coefficient in a free cooling granular gas
decreases with time.

temperature decrease the self-diffusion coefficient D(¢) of the
gas is time dependent,>?2¢2°

D(t) = T(t)r,(t)/m = Do/(1 + t/7y), (5)

where 7,(¢) is the velocity correlation time, D, = Tyt,(0)/m (see
Fig. 1). For ¢ = 1 we recover normal diffusion with the constant
diffusivity.

Most studies of granular gases assume that ¢ is constant.
Different approaches consider the dependence of ¢ on the
relative collision speed of the form®*?*

evn) ~ 1 — CLAKY (vip-€)® + CA% K (viy-e)*°.  (6)

Here the numerical constants are C; = 1.15 and C, = 0.798,
where A quantifies the specific viscous material properties of
particles, « = (3/2)**Ya"?/[m(1 — 1*)] is the elastic constant, Y is
Young’s modulus, v is the Poisson ratio, and ¢ is the diameter
of the particles. The granular temperature of the viscoelastic
gas scales as T() ~ ¢33 implying>®

D(t) ~ t 7, (7)

which leads to crossover from super- to subdiffusion in gran-
ular Brownian motion.*> We note that there exist more elabo-
rate models for the viscoelastic restitution coefficient.*!
However, as the continuous decay of temperature is common
to all these models, the properties of non-ergodicity and ageing
obtained in this work are also generic to these more elaborate
models.

lll. Computer simulations and
observables

We perform event-driven Molecular Dynamics (MD) simula-
tions of a gas of hard-sphere granular particles of unit mass
and radius, colliding with constant (see Fig. 2) and viscoelastic
(Fig. 3) restitution coefficients. Our simulations code is based
on the algorithm suggested in ref. 36. The particles move freely
between pairwise collisions, while during the collisions the
particle velocities are updated according to eqn (2). The dura-
tion time of collision is equal to zero, that is, the velocities of
particles are updated instantaneously. We simulate N = 1000
particles in a three dimensional cubic box with edge length
L = 40 and periodic boundary conditions. The box size is
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Fig. 2 Ensemble ((R?(t))) and time averaged <<52(A)>) MSDs versus (lag)

time (upper graph) and <52(A)> versus length t of the time series (lower graph),

from event-driven MD simulations of a granular gas with two different values
of the restitution coefficient, ¢ = 0.3 and 0.8. While the ensemble MSD
crosses over from ballistic motion (R%(t)) ~ t for t « 1o to the logarithmic
law (R*(t)) ~ log(t) for t » 10, the time averaged MSD starts ballistically and

crosses over to the scaling <52(A)> ~ A/t given by egn (A10).

expressed in terms of the particle radius. The particle volume
density is ¢ & 0.065 and the initial granular temperature in the
system is T, = 1.

We evaluate the gas dynamics in terms of the standard
ensemble MSD (R*(#)), obtained from averaging over all gas
particles at time ¢, as well as the time averaged MSD

ey T N (LRI G N

for a time series R(¢) of length ¢ as function of the lag time 4.
Eqn (8) is a standard definition to evaluate time series in
experiments and simulations."*"**”*® Here the angular brackets
denote the average

_ 1 e
2 - 2
<5MW—N§?4“ )
over all N particle traces. For an ergodic system, such as an ideal

gas with unit restitution coefficient corresponding to normal
particle diffusion, the ensemble and time averaged MSDs are

equivalent at any time, (R*(4)) = <52(A)>.13’14 In contrast,
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Fig. 3 MSDs (R%(t)) and {62(4) ) as function of (lag) time (top) and <W

versus the measurement time t (bottom) from MD simulations (symbols) of
a granular gas with viscoelastic &(v3,). We observe the scaling (R%(t)) ~ "/
in the limit t > 70. The scaling of the time averaged MSD slowly changes
between the indicated slopes (dashed lines). The continuous change of

slope of <52(A)> as function of the length t of time traces from slope —5/6

to —1 is seen in the inset of the bottom graph. The results for the time
averaged MSD with the restitution coefficient computed according to the
Padé approximation®® (see text for details) are shown as the red filled
squares in the top panel.

several systems characterised by anomalous diffusion with
power-law MSD (R*(t)) ~ ¢* (« # 1) or a corresponding logarith-
mic growth of the MSD, are non-ergodic and display the disparity
<R2(A)> £ <m>'13—15,38—41

Fig. 2 shows the results of our computer simulations of a
granular gas with constant ¢ = 0.8 and 0.3. The ensemble MSD
shows initial ballistic particle motion, (R*(t)) ~ ¢. Eventually,
the particles start to collide and gradually lose kinetic energy.
The ensemble MSD of the gas in this regime follows the
logarithmic law (R*(f)) ~ log(f) (the red line in Fig. 2, top
panel).” The time averaged MSD at short lag times 4 preserves

the ballistic law <62(A)> ~ A?. At longer lag times, we observe

the linear growth <52(A)> ~ A (black symbols in Fig. 2, top). In

addition to this non-ergodic behaviour, the time averaged MSD
decreases with increasing length ¢ of the recorded trajectory,

<§>~1 /t. This highly non-stationary behaviour is also
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referred to as ageing, the dependence of the system dynamics
on its time of evolution.*' The dependence on the trace length
we observe in the bottom panel of Fig. 2 implies that the system
is becoming progressively slower. We observe the convergence

tim,,(57(4) ) — (R3(1).
Fig. 3 depicts the results of MD simulations for a granular

gas with viscoelastic restitution coefficient (6) with Ax*® = 0.2.
In this case the ensemble MSD scales as

(R(e) ~ (10)

for the time scale ¢ > 14. The time averaged MSD does not seem
to follow a universal scaling law but appears to transiently
change from the power-law

(3°(4)) ~ 476 (11)

at intermediate lag times to <62(A)> ~ A at longer 4. As
function of the length ¢ of particle traces, we observe the

crossover from <67> ~ 1% to <§> ~ 1/t, see the bottom

panel in Fig. 3.

IV. Granular gas with constant ¢

Let us explore this behaviour in more detail. The dynamics of a
granular gas can be mapped to that of a molecular gas by a

rescaling of time from ¢ to t as dt = /T (1)/T(0)dz.>**** Using

Haff’s law (4), it follows that
T = 10log(1 + t/1y). (12)

The correlation function for the dimensionless velocity ¢(z) =

v(1)/\/2T(t)/m of granular particles decays exponentially in
this time scale,?

(e(e)e(n:)) = (32)exp(—t — tl/m0).  (13)
In the real time ¢ we find (¢, > ¢)
(v(t)v(r2)) = 3%(1 +0/70)" " (14 12/70) 7! (14)

for the velocity correlator; here

B = 10/7,(0).
The MSD is

(R(1)) = 6Dy [170 log(1 + 1/79) + 1,(0) [(1 + z/ro)*ﬂf@]. (15)

At short times the particles move ballistically, (R*(£)) ~ 3Dgt*/7,(0),
crossing over to the logarithmic growth (R*(¢)) ~ 6Dy, x log(t/zo),
as seen in the top panel of Fig. 2.

From the autocorrelation function (14) we obtain the time

averaged MSD (see Appendix A)
<52(A)> ~ 6Dyt04/1 (16)

valid in the range 7y <« 4 « t, where 1, is the characteristic
temperature decay time in eqn (4). This result indeed explains
the behaviour observed in Fig. 2: the time averaged MSD scales
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linearly with the lag time and inverse-proportionally with the
trace length ¢. Comparison of eqn (15) and (16) demonstrates
the non-ergodicity and ageing properties of the system of
granular gas particles.

V. Viscoelastic granular gas

For a velocity-dependent restitution coefficient ¢(v;,) the tem-
perature decays like 7(¢) ~ To(t/to) >, and the time transfor-
mation reads t = 61,”°t"/°. The MSD in this case exhibits the
long time scaling

<R2(t)> ~ 36D0T05/6t1/6,

seen in the top panel of Fig. 3. For the time averaged MSD we
analytically obtain the bounds

()~

and

(P(4)) ~a /o5,

compare the details in Appendix A. These bounds are given by
the dashed lines in the top panel of Fig. 3. Concurrent to this
change of slopes as a function of the lag time, the bottom
panel of Fig. 3 shows the change of slope of W> as
function of the trajectory length ¢ from the slope —5/6 to —1
at a fixed lag time 4.

We note that a more explicit expression for the viscoelastic
restitution coefficient can be obtained in terms of the Padé
approximant [3/6],, as derived in ref. 32. In Fig. 3 we demon-
strate, however, that for the range of parameters used in our
simulations—corresponding to relatively slow collision veloci-
ties of granular particles (scaled thermal velocity v* < 0.3)—we
obtain nearly the same results for the time averaged MSD as our
previous simulations with the restitution coefficient (6), see the
red filled squares in Fig. 3.

VI. Scaled Brownian motion

For the unit restitution coefficient individual gas particles at long
times perform Brownian motion at a fixed temperature defined by
the initial velocity distribution of the particles. For the dissipative
granular gases considered herein, the granular temperature scales
like 7() ~ 1/ and ~ 1/£*", respectively. Single particle stochastic
processes with power-law time-varying temperature or, equivalently,
time dependent diffusivity D(¢), are well known. Such SBM is
described in terms of the overdamped Langevin equation (neglecting
the inertia term) with the diffusivity

D(t) ~ "1 (17)

for 0 < o < 2.%*** SBM is a highly non-stationary process and is
known to be non-ergodic and ageing.'****® Recently, the case
of & = 0 corresponding to ultraslow SBM was considered.*’

To study whether SBM provides an effective single particle
description of diffusion in dissipative granular gases we extend

This journal is © the Owner Societies 2015
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SBM to the underdamped case. We thus take the inertial term
explicitly into account when considering the dynamics,

dv/dr -+ /[0, (0] = V2D(1) /(1) x &(0),

(18)

driven by white Gaussian noise §(¢) with correlation function
(E{t1)¢;(t2)) = 04j6(t1 — t,) for the components.

For o = 0 the velocity correlation may be derived from the
Langevin eqn (18), namely

37(0)r0 (14 1/70)?
m‘[v(o)(ﬁ_ 1) (1 + lz/’Eo)ﬁ ’

(v()v(n)) = (19)
This result for the ultraslow SBM in the underdamped limit (see
ref. 47) formally coincides with the velocity correlation function
(14) for granular gases in the limit > 1, in which the velocity
correlation time 7,(0) is much shorter than the characteristic
decay time 7, of the granular temperature. This is achieved for
sufficiently weak dissipation in the system (¢ < 1).

VIl. Conclusions

The occurrence of non-ergodicity in the form of the disparity
between long time and ensemble averages of physical observables
and ageing, is not surprising in strongly disordered systems
described by the prominent class of continuous time random walk
models involving divergent time scales of the dynamics.”*™*>?*°
Examples include diffusive motion in amorphous semiconductors,
structured disordered environments, or living biological cells.*

Here, we demonstrated how non-ergodicity arises in a
simple mechanistic systems such as force-free granular gases.
Physically, it stems from a strong non-stationary character of
this process brought about by the continuous decay of the gas
temperature. Therefore, the ergodicity breaking is expected
independent of the particular model of the restitution coefficient
¢, while the precise behaviour of the MSD and time averaged
MSD clearly depends on the specific law for e.

For a constant restitution coefficient, the MSD of gas
particles (R*(t)) grows logarithmically, while the time averaged

MSD <52(A)> is linear in the lag time and decays inverse

proportionally with the trace length (ageing). We derived the
observed non-ergodicity and the ageing behaviour of granular
gases from the velocity autocorrelation functions. We note that
ageing in the homogeneous cooling state of granular gases was
reported previously,*® however, it was not put in context with
the diffusive dynamics of gas particles.

The decaying temperature of the dissipative force-free gran-
ular gas corresponds to an increase of the time span between
successive collisions of gas particles, a feature directly built into
the SBM model.** As we showed here, SBM and its ultraslow
extension with the logarithmic growth of the MSD indeed
captures certain features of the observed motion and may serve
as an effective single particle model for the granular gas. It is
particularly useful when more complex situations are consid-
ered, such as the presence of external force fields. Our results
shed new light on the physics of granular gases with respect to

This journal is © the Owner Societies 2015
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their violation of ergodicity in the Boltzmann sense. They are
important for a better understanding of dissipation in free
gases as well as the analysis of experimental observations and
MD studies of granular gases.

It will be interesting to compare the results obtained here-
in—based on the two standard assumptions for the restitution
coefficient—with experimental observations of granular gas
systems. Similarly, it might be of interest to see to what extent
the present scenario pertains to dilute gases of complex mole-
cules with a large number of internal degrees of freedom ready
to absorb a part of the collision energies.”™

Appendix A: constant restitution
coefficient

In this section and the next we present details of the derivation
of the results from the main text of the manuscript as well as an
additional figure.

The time averaged MSD for the granular gas with constant
restitution coefficient, eqn (8) in the main text, may be
written as

52771’74‘132'41 R2/ 2A/Ad’
{ <>>—mL (R + 4)) = (R(t")) = 24(r", 4))

(A1)
where the MSD (R’(¢)) is defined by eqn (15) and
t t+A4
A(t,4) = 3J dnj der (v (11)vi(12))
0 t
 3Th5,(0) 7’
- m ! ! + T0 (AZ)

() ()]
—(1+ +( 1+ :

To+ ¢ T0
This term accounts for the position correlations at different
time instants ¢ and ¢ + 4. In the present consideration, this term
is non-zero. It arises due to the fact that the normal component
of the relative velocity of the colliding particles decreases while
the tangential component remains unchanged in the course of
collisions. Introducing eqn (A2) and (15) into eqn (A1), we
obtain the time averaged MSD in the form

(@) = (37(A)) + 2(4). (a3)

The first term is the time averaged MSD for overdamped SBM,
— 6Dty =4 o+t +4
002 (4 > = 7J log{ ———— |d¢’
< 0 ( ) t—4), 8 '+ 19

o 6D()‘L'0
-4

[(l + To) log(t + ‘Eo)
(A4)
— (A + T()) log(A + ‘E())

7([7A+To)10g(174|+‘50)

+79 log 7o)
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Forty « 4 <t
() ~ 2257 o (3) +1]

The second term in eqn (A3) has the form

-B
<1+ 4 ) —1]<0,
l/-f—‘to

where f = 10/7,(0), see the main text. Introducing the new
variable y = A/t' we get in the limit 7, « 4 that

(A5)

6D07,(0) [*

(4) = ﬁL_Adz’

[83]

Z(4) ~ —6Dy1,(0) (1 - %z(z, A)), (A6)
where
_ [~ dy
ey = -‘A/(r—m (14" )

This integral can be taken by parts

1(1,4) = %(1 - ‘t')ﬂ+ ﬁlog(t_iA) (1 ‘[')ﬂ+1+ BC(B),

(A8)

where

00

cp) =B+ 1)] dy

A/(1—A4)

logy 1

(1 +y)/g+2 NV+ﬂ+lﬁ(ﬁ)7

(A9)
y = 0.5772... is the Euler’s constant, and ¥(z) = dlog I'(z)/dz is
the digamma function. Finally we find in the limit ¢ > 4 that

<W> ~ 6D010C([3)A7 ~ A (A10)

This confirms the linear scaling of the time averaged MSD.

Appendix B: velocity-dependent
restitution coefficient

Similarly, for the viscoelastic granular gas with ¢ = ¢(v4,) the
time averaged MSD may be presented as the sum of two parts,
see eqn (A3). The first term corresponds to the time averaged
MSD of the SBM process, described by the overdamped Langevin
equation to yield

dt’[(t' +A)1/6—t’1/6]

t—A4 J
(1)
f21600T05/6 7/6 7/6 7/6
) {t — A —(t—4) }
The second term becomes
6D0‘L’V(0) =4 ,
E(4) = ———~2 dt
() =22
(B2)

< [oolSglie t-r]) 1)
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This integral can be presented as a sum of three parts

I;_Adz’ {exp(—i‘io(:; [(z’ + A)‘/é—z’l/"]) - 1}

_ r‘A L. Jde + rzd[. LJde’ + JM .

0 k1A koA

Jde’.

We choose the coefficients k; , in the following ranges
1« ky « 194"11,%7(0)

and

1oAY 17,5%(0) « ky « t/A.

This enables us to evaluate the first integral in eqn (B3) as
follows

k4 670/ s
/ _ / _411/6 _ ~ —
L dr {exp( “(0) [(l +4) t }) 1} k4. (B4)

The third term in eqn (B3) can be evaluated as

t—4 6705/ e
dz/{ex (— ' Oy ) - 1]
Jk;A P TV(O) [( ) ]

—A 67.'05/6 6
~ dt’(— Ay /—t"/ﬁ)
szA TV(O) |:( ) :|

~ 3679/°
~ 71(0)

[_17/6+ (t_A)7/6+<(k2 4 1)7/6_k27/6)A7/6].
(B5)

For the chosen range of parameters k; , the contribution (B4)

can be neglected. Finally, assuming that the second term in

eqn (B3) is small enough compared to eqn (B5) we get to
leading order

- A7/6

<52(A)> ~ 36k, Doz . (B6)

For longer lag times 4, in the range 7,(0)t”%/7,”’® « 4 « t that

is opposite to the condition for k, above, we have the upper

estimate for the correction Z(4) to the time averaged MSD of
the SBM process, namely

[2(4)] < 6Dy, (0) < (862(4) ). (B7)
Then we get in the limit 4 « ¢ that
—_ ———\ Dy1o>/%4
<52(A)> ~ <502(A)> = S0 (BS)

In addition to these analytical estimates, we computed numeri-
cally the full expression (A3). It agrees well with our MD simula-
tion data, compare the curves in Fig. 4 where we explicitly plot

<§> / A. It shows that in the range of parameters 7o, 7, and D,
consistent with the results of simulations presented in the main
text, the transient scaling behaviour <W> ~ A7/% is realised in
a limited range of A. Note also that in this range the linear SBM

scaling for <62(A)> as prescribed by eqn (B8) is no longer valid.
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Fig. 4 Time averaged MSD §52(4)> divided by lag time 4 as function of 4
from MD simulations (symbols) of a granular gas with velocity-dependent
restitution coefficient. The lines connecting the symbols guide the eye.

Red line corresponds to numerical calculation of <(32(A)> in egn (A3) for

19 = 25, 1y = 2, Dg = 2. These values ensure the closest agreement and are
consistent with the parameters of the granular gas as used in MD simula-
tions apart from very short lag times. Dashed line shows the asymptotic

<52(A)>/A ~ A4'/¢ behaviour according to eqn (B8).

The reason is that for large values of 4, when 4 — ¢ for any length
of the trajectory, in eqn (B2) the evolution of the time averaged
MSD with the lag time 4 becomes inherently nonlinear.
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