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Quantifying non-ergodic dynamics of force-free
granular gases

Anna Bodrova,ab Aleksei V. Chechkin,acd Andrey G. Cherstvya and Ralf Metzler*ae

Brownian motion is ergodic in the Boltzmann–Khinchin sense that long

time averages of physical observables such as the mean squared

displacement provide the same information as the corresponding

ensemble average, even at out-of-equilibrium conditions. This property

is the fundamental prerequisite for single particle tracking and its

analysis in simple liquids. We study analytically and by event-driven

molecular dynamics simulations the dynamics of force-free cooling

granular gases and reveal a violation of ergodicity in this Boltzmann–

Khinchin sense as well as distinct ageing of the system. Such granular

gases comprise materials such as dilute gases of stones, sand, various

types of powders, or large molecules, and their mixtures are ubiquitous

in Nature and technology, in particular in Space. We treat—depending

on the physical-chemical properties of the inter-particle interaction

upon their pair collisions—both a constant and a velocity-dependent

(viscoelastic) restitution coefficient e. Moreover we compare the granular

gas dynamics with an effective single particle stochastic model based on

an underdamped Langevin equation with time dependent diffusivity. We

find that both models share the same behaviour of the ensemble mean

squared displacement (MSD) and the velocity correlations in the limit of

weak dissipation. Qualitatively, the reported non-ergodic behaviour is

generic for granular gases with any realistic dependence of e on the

impact velocity of particles.

I. Introduction

Granular materials such as sand or different types of powders
are ubiquitous in Nature and technology, for instance, in the
cosmetic, food, and building industries.1 Rarefied granular
systems, in which the distance between particles exceeds their
size, are called granular gases.2–4 Such granular gases represent a
fundamental physical system in statistical mechanics, extending

the ideal gas model to include dissipation on particle collisions.
Within granular matter physics granular gases represent a reference
model system.5 On Earth, granular gases may be realised by placing
granular matter into a container with vibrating6 or rotating7 walls,
applying electrostatic8 or magnetic9 forces, etc. Granular gases are
common in Space, occurring in protoplanetary discs, interstellar
clouds, and planetary rings (e.g. of Saturn).10

Ergodicity is a fundamental concept of statistical mechanics.
Starting with Boltzmann, the ergodic hypothesis states that long
time averages O of a physical observable O are identical to their
ensemble averages Oh i.11,12 In this sense, Brownian motion is
ergodic even at out-of-equilibrium conditions, while a range of
anomalous diffusion processes exhibit a distinct disparity Oh iaO:
for instance, for sufficiently long observation times the time
averaged mean squared displacement (MSD) of a Brownian particle
converges to the corresponding ensemble average hR2(t)i13,14 calling
for generalisation of the classical ergodic theories.12 In fact, similar
concepts were already discussed in the context of glassy systems.15

In the wake of modern microscopic techniques, such as single
particle tracking,16 in which individual trajectories of single mole-
cules or submicron tracers are routinely measured, knowledge of
the ergodic properties of the system is again pressing. While the
time averages are measured in single particle assays or massive
computer simulations, generally ensemble averages are more
accessible theoretically. How measured time averages can be inter-
preted in terms of ensemble approaches and diffusion models is
thus an imminent topic.13,14

Here we quantify in detail from analytical derivations and
extensive simulations how exactly the ergodicity is violated in
simple mechanical systems such as force-free granular gases.
Our results for generic granular gases are relevant both from a
fundamental statistical mechanical point of view and for the
practical analysis of time series of granular gas particles from
observations and computer simulations. Specifically, (i) we here
derive the time and ensemble averaged MSDs and show that for
both constant and viscoelastic restitution coefficients the time
averaged MSD is fundamentally different from the corresponding
ensemble MSD. (ii) Moreover, the amplitude of the time averaged
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MSD is shown to be a decaying function of the length of the
measured trajectory (ageing). (iii) We study an effective single
particle mean field approach to the granular gas dynamics.
This underdamped scaled Brownian motion (SBM) demon-
strates how non-ergodicity and ageing emerge from the non-
stationarity invoked by the time dependence of the granular
temperature, which translates into the power-law time depen-
dence of the diffusion coefficient of SBM. We note that systems
with time dependent diffusion coefficients are in fact common
in nature, ranging from mobility of proteins in cell mem-
branes,17 motion of molecules in porous environments,18 water
diffusion in brain as measured by magnetic resonance ima-
ging,19 to snow-melt dynamics.20,21

II. Collisions in granular gases

Granular gas particles collide inelastically and a fraction of
their kinetic energy is transformed into heat stored in internal
degrees of freedom. The dissipative nature of granular gases
effects many interesting physical properties.2 In absence of
external forces the gas gradually cools down. During the first
stage of its evolution, the granular gas is in the homogeneous
cooling state characterised by uniform density and absence of
macroscopic fluxes,2 realised e.g. in microgravity environ-
ments.22 Eventually instabilities occur and vertexes develop in
the system.2,23 Hereafter, we focus on spatially uniform granular
systems.

The energy dissipation in a pair-wise collision event of
granular particles is quantified by the restitution coefficient

e ¼
v12

0 � e
� �
v12 � eð Þ

�����
�����; (1)

where v12
0 = v2

0 � v1
0 and v12 = v2 � v1 are the relative velocities

of two particles after and before the collision, respectively, and e
is a unit vector connecting their centres at the collision instant.
The post-collision velocities are related to the pre-collision
velocities v1 and v2 as2

v1=2
0 ¼ v1=2 �

1þ e
2

v12 � eð Þe: (2)

The case e = 1 denotes perfectly elastic collisions, while e = 0
reflects the perfectly inelastic case. In oblique collisions negative
values of the restitution coefficient may be observed.24 For
0 o e o 1 the granular temperature

T(t) = mhv2i/2 (3)

given by the mean kinetic energy of particles with mass m
continuously decreases according to Haff’s law for granular
gases,25

T(t) = T0/(1 + t/t0)2. (4)

Here t�10 ¼ 1
6
1� e2
� �

t�1c ð0Þ is the inverse characteristic time of
the granular temperature decay, involving the initial value of

the inverse mean collision time scaling as t�1c ðtÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðtÞ=m

p
.

Weak dissipation (e C 1) thus implies t0 c tc. Due to the

temperature decrease the self-diffusion coefficient D(t) of the
gas is time dependent,2,26–29

D(t) = T(t)tv(t)/m = D0/(1 + t/t0), (5)

where tv(t) is the velocity correlation time, D0 = T0tv(0)/m (see
Fig. 1). For e = 1 we recover normal diffusion with the constant
diffusivity.

Most studies of granular gases assume that e is constant.
Different approaches consider the dependence of e on the
relative collision speed of the form30,31

e(v12) C 1 � C1Ak2/5(v12�e)1/5 + C2A2k4/5(v12�e)2/5. (6)

Here the numerical constants are C1 = 1.15 and C2 = 0.798,
where A quantifies the specific viscous material properties of
particles, k = (3/2)3/2Ys1/2/[m(1 � n2)] is the elastic constant, Y is
Young’s modulus, n is the Poisson ratio, and s is the diameter
of the particles. The granular temperature of the viscoelastic
gas scales as T(t) B t�5/3 33,34 implying26

D(t) B t�5/6, (7)

which leads to crossover from super- to subdiffusion in gran-
ular Brownian motion.35 We note that there exist more elabo-
rate models for the viscoelastic restitution coefficient.31

However, as the continuous decay of temperature is common
to all these models, the properties of non-ergodicity and ageing
obtained in this work are also generic to these more elaborate
models.

III. Computer simulations and
observables

We perform event-driven Molecular Dynamics (MD) simula-
tions of a gas of hard-sphere granular particles of unit mass
and radius, colliding with constant (see Fig. 2) and viscoelastic
(Fig. 3) restitution coefficients. Our simulations code is based
on the algorithm suggested in ref. 36. The particles move freely
between pairwise collisions, while during the collisions the
particle velocities are updated according to eqn (2). The dura-
tion time of collision is equal to zero, that is, the velocities of
particles are updated instantaneously. We simulate N = 1000
particles in a three dimensional cubic box with edge length
L = 40 and periodic boundary conditions. The box size is

Fig. 1 Collisions in a free granular gas with a restitution coefficient e o 1
lead to its cooling with time. Along with the reduced kinetic energy of the
gas particles, the diffusion coefficient in a free cooling granular gas
decreases with time.
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expressed in terms of the particle radius. The particle volume
density is fE 0.065 and the initial granular temperature in the
system is T0 = 1.

We evaluate the gas dynamics in terms of the standard
ensemble MSD hR2(t)i, obtained from averaging over all gas
particles at time t, as well as the time averaged MSD

d2ðDÞ
D E

¼ 1

t� D

ðt�D
0

R t 0 þ Dð Þ � R t 0ð Þ½ �2
D E

dt 0 (8)

for a time series R(t) of length t as function of the lag time D.
Eqn (8) is a standard definition to evaluate time series in
experiments and simulations.13,14,37,38 Here the angular brackets
denote the average

d2ðDÞ
D E

¼ 1

N

XN
i¼1

di2ðDÞ (9)

over all N particle traces. For an ergodic system, such as an ideal
gas with unit restitution coefficient corresponding to normal
particle diffusion, the ensemble and time averaged MSDs are

equivalent at any time, R2ðDÞ
� �

¼ d2ðDÞ
D E

.13,14 In contrast,

several systems characterised by anomalous diffusion with
power-law MSD hR2(t)iC ta (a a 1) or a corresponding logarith-
mic growth of the MSD, are non-ergodic and display the disparity

R2ðDÞ
� �

a d2ðDÞ
D E

.13–15,38–41

Fig. 2 shows the results of our computer simulations of a
granular gas with constant e = 0.8 and 0.3. The ensemble MSD
shows initial ballistic particle motion, hR2(t)i B t2. Eventually,
the particles start to collide and gradually lose kinetic energy.
The ensemble MSD of the gas in this regime follows the
logarithmic law hR2(t)i B log(t) (the red line in Fig. 2, top
panel).2 The time averaged MSD at short lag times D preserves

the ballistic law d2ðDÞ
D E

� D2. At longer lag times, we observe

the linear growth d2ðDÞ
D E

� D (black symbols in Fig. 2, top). In

addition to this non-ergodic behaviour, the time averaged MSD
decreases with increasing length t of the recorded trajectory,

d2
D E

� 1=t. This highly non-stationary behaviour is also

Fig. 2 Ensemble (hR2(t)i) and time averaged d2ðDÞ
D E� 	

MSDs versus (lag)

time (upper graph) and d2ðDÞ
D E

versus length t of the time series (lower graph),

from event-driven MD simulations of a granular gas with two different values
of the restitution coefficient, e = 0.3 and 0.8. While the ensemble MSD
crosses over from ballistic motion hR2(t)i B t2 for t { t0 to the logarithmic
law hR2(t)i B log(t) for t c t0, the time averaged MSD starts ballistically and

crosses over to the scaling d2ðDÞ
D E

� D=t given by eqn (A10).

Fig. 3 MSDs hR2(t)i and d2ðDÞ
D E

as function of (lag) time (top) and d2ðDÞ
D E

versus the measurement time t (bottom) from MD simulations (symbols) of
a granular gas with viscoelastic e(v12). We observe the scaling hR2(t)iB t1/6

in the limit t c t0. The scaling of the time averaged MSD slowly changes
between the indicated slopes (dashed lines). The continuous change of

slope of d2ðDÞ
D E

as function of the length t of time traces from slope �5/6

to �1 is seen in the inset of the bottom graph. The results for the time
averaged MSD with the restitution coefficient computed according to the
Padé approximation32 (see text for details) are shown as the red filled
squares in the top panel.
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referred to as ageing, the dependence of the system dynamics
on its time of evolution.41 The dependence on the trace length
we observe in the bottom panel of Fig. 2 implies that the system
is becoming progressively slower. We observe the convergence

limD!t d2ðDÞ
D E

! R2ðtÞ
� �

.

Fig. 3 depicts the results of MD simulations for a granular
gas with viscoelastic restitution coefficient (6) with Ak2/5 = 0.2.
In this case the ensemble MSD scales as

hR2(t)i B t1/6 (10)

for the time scale t c t0. The time averaged MSD does not seem
to follow a universal scaling law but appears to transiently
change from the power-law

d2ðDÞ
D E

� D7=6 (11)

at intermediate lag times to d2ðDÞ
D E

� D at longer D. As
function of the length t of particle traces, we observe the

crossover from d2
D E

� t�5=6 to d2
D E

� 1=t, see the bottom

panel in Fig. 3.

IV. Granular gas with constant e

Let us explore this behaviour in more detail. The dynamics of a
granular gas can be mapped to that of a molecular gas by a

rescaling of time from t to t as dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðtÞ=Tð0Þ

p
dt.2,28,42 Using

Haff’s law (4), it follows that

t = t0 log(1 + t/t0). (12)

The correlation function for the dimensionless velocity cðtÞ ¼
vðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TðtÞ=m

p
of granular particles decays exponentially in

this time scale,2

hc(t1)c(t2)i = (3/2)exp(�|t2 � t1|/tv(0)). (13)

In the real time t we find (t2 Z t1)

v t1ð Þv t2ð Þh i ¼ 3T0

m
1þ t1=t0ð Þb�1 1þ t2=t0ð Þ�b�1 (14)

for the velocity correlator; here

b = t0/tv(0).

The MSD is

R2ðtÞ
� �

¼ 6D0 t0 log 1þ t=t0ð Þ þ tvð0Þ 1þ t=t0ð Þ�b�1
h ih i

: (15)

At short times the particles move ballistically, hR2(t)iB 3D0t2/tv(0),
crossing over to the logarithmic growth hR2(t)iB 6D0t0 � log(t/t0),
as seen in the top panel of Fig. 2.

From the autocorrelation function (14) we obtain the time
averaged MSD (see Appendix A)

d2ðDÞ
D E

’ 6D0t0D=t (16)

valid in the range t0 { D { t, where t0 is the characteristic
temperature decay time in eqn (4). This result indeed explains
the behaviour observed in Fig. 2: the time averaged MSD scales

linearly with the lag time and inverse-proportionally with the
trace length t. Comparison of eqn (15) and (16) demonstrates
the non-ergodicity and ageing properties of the system of
granular gas particles.

V. Viscoelastic granular gas

For a velocity-dependent restitution coefficient e(v12) the tem-
perature decays like T(t) C T0(t/t0)�5/3, and the time transfor-
mation reads t = 6t0

5/6t1/6. The MSD in this case exhibits the
long time scaling

hR2(t)i B 36D0t0
5/6t1/6,

seen in the top panel of Fig. 3. For the time averaged MSD we
analytically obtain the bounds

d2ðDÞ
D E

� D7=6
.
t

and

d2ðDÞ
D E

� D
.
t5=6;

compare the details in Appendix A. These bounds are given by
the dashed lines in the top panel of Fig. 3. Concurrent to this
change of slopes as a function of the lag time, the bottom
panel of Fig. 3 shows the change of slope of d2ðDÞ

D E
as

function of the trajectory length t from the slope �5/6 to �1
at a fixed lag time D.

We note that a more explicit expression for the viscoelastic
restitution coefficient can be obtained in terms of the Padé
approximant [3/6]e, as derived in ref. 32. In Fig. 3 we demon-
strate, however, that for the range of parameters used in our
simulations—corresponding to relatively slow collision veloci-
ties of granular particles (scaled thermal velocity v* o 0.3)—we
obtain nearly the same results for the time averaged MSD as our
previous simulations with the restitution coefficient (6), see the
red filled squares in Fig. 3.

VI. Scaled Brownian motion

For the unit restitution coefficient individual gas particles at long
times perform Brownian motion at a fixed temperature defined by
the initial velocity distribution of the particles. For the dissipative
granular gases considered herein, the granular temperature scales
like T(t) C 1/t2 and C 1/t5/3, respectively. Single particle stochastic
processes with power-law time-varying temperature or, equivalently,
time dependent diffusivity D(t), are well known. Such SBM is
described in terms of the overdamped Langevin equation (neglecting
the inertia term) with the diffusivity

D(t) B ta�1 (17)

for 0 o ao 2.43,44 SBM is a highly non-stationary process and is
known to be non-ergodic and ageing.14,44–46 Recently, the case
of a = 0 corresponding to ultraslow SBM was considered.47

To study whether SBM provides an effective single particle
description of diffusion in dissipative granular gases we extend

Communication PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
Ju

ly
 2

01
5.

 D
ow

nl
oa

de
d 

on
 1

1/
4/

20
25

 1
1:

38
:2

4 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5cp02824h


This journal is© the Owner Societies 2015 Phys. Chem. Chem. Phys., 2015, 17, 21791--21798 | 21795

SBM to the underdamped case. We thus take the inertial term
explicitly into account when considering the dynamics,

dv=dtþ v= tvðtÞ½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2DðtÞ

p .
tvðtÞ � nðtÞ; (18)

driven by white Gaussian noise n(t) with correlation function
hxi(t1)xj (t2)i = di,jd(t1 � t2) for the components.

For a = 0 the velocity correlation may be derived from the
Langevin eqn (18), namely

v t1ð Þv t2ð Þh i ¼ 3Tð0Þt0
mtvð0Þðb� 1Þ

1þ t1=t0ð Þb�2

1þ t2=t0ð Þb
: (19)

This result for the ultraslow SBM in the underdamped limit (see
ref. 47) formally coincides with the velocity correlation function
(14) for granular gases in the limit b c 1, in which the velocity
correlation time tv(0) is much shorter than the characteristic
decay time t0 of the granular temperature. This is achieved for
sufficiently weak dissipation in the system (e t 1).

VII. Conclusions

The occurrence of non-ergodicity in the form of the disparity
between long time and ensemble averages of physical observables
and ageing, is not surprising in strongly disordered systems
described by the prominent class of continuous time random walk
models involving divergent time scales of the dynamics.13–15,39

Examples include diffusive motion in amorphous semiconductors,
structured disordered environments, or living biological cells.14

Here, we demonstrated how non-ergodicity arises in a
simple mechanistic systems such as force-free granular gases.
Physically, it stems from a strong non-stationary character of
this process brought about by the continuous decay of the gas
temperature. Therefore, the ergodicity breaking is expected
independent of the particular model of the restitution coefficient
e, while the precise behaviour of the MSD and time averaged
MSD clearly depends on the specific law for e.

For a constant restitution coefficient, the MSD of gas
particles hR2(t)i grows logarithmically, while the time averaged

MSD d2ðDÞ
D E

is linear in the lag time and decays inverse

proportionally with the trace length (ageing). We derived the
observed non-ergodicity and the ageing behaviour of granular
gases from the velocity autocorrelation functions. We note that
ageing in the homogeneous cooling state of granular gases was
reported previously,48 however, it was not put in context with
the diffusive dynamics of gas particles.

The decaying temperature of the dissipative force-free gran-
ular gas corresponds to an increase of the time span between
successive collisions of gas particles, a feature directly built into
the SBM model.44 As we showed here, SBM and its ultraslow
extension with the logarithmic growth of the MSD indeed
captures certain features of the observed motion and may serve
as an effective single particle model for the granular gas. It is
particularly useful when more complex situations are consid-
ered, such as the presence of external force fields. Our results
shed new light on the physics of granular gases with respect to

their violation of ergodicity in the Boltzmann sense. They are
important for a better understanding of dissipation in free
gases as well as the analysis of experimental observations and
MD studies of granular gases.

It will be interesting to compare the results obtained here-
in—based on the two standard assumptions for the restitution
coefficient—with experimental observations of granular gas
systems. Similarly, it might be of interest to see to what extent
the present scenario pertains to dilute gases of complex mole-
cules with a large number of internal degrees of freedom ready
to absorb a part of the collision energies.2–4

Appendix A: constant restitution
coefficient

In this section and the next we present details of the derivation
of the results from the main text of the manuscript as well as an
additional figure.

The time averaged MSD for the granular gas with constant
restitution coefficient, eqn (8) in the main text, may be
written as

d2ðDÞ
D E

¼ 1

t� D

ðt�D
0

R2 t 0 þ Dð Þ
� �

� R2 t 0ð Þ
� �

� 2A t 0;Dð Þ
� �

dt 0;

(A1)

where the MSD hR2(t)i is defined by eqn (15) and

Aðt;DÞ ¼ 3

ðt
0

dt1

ðtþD
t

dt2 vx t1ð Þvx t2ð Þh i

¼ 3T0tv2ð0Þ
m

1� 1þ t

t0


 ��b"

� 1þ D
t0 þ t


 ��b
þ 1þ tþ D

t0


 ��b#
:

(A2)

This term accounts for the position correlations at different
time instants t and t + D. In the present consideration, this term
is non-zero. It arises due to the fact that the normal component
of the relative velocity of the colliding particles decreases while
the tangential component remains unchanged in the course of
collisions. Introducing eqn (A2) and (15) into eqn (A1), we
obtain the time averaged MSD in the form

d2ðDÞ
D E

¼ d02ðDÞ
D E

þ XðDÞ: (A3)

The first term is the time averaged MSD for overdamped SBM,

d02ðDÞ
D E

¼ 6D0t0
t� D

ðt�D
0

log
t0 þ t 0 þ D
t 0 þ t0


 �
dt 0

¼ 6D0t0
t� D

tþ t0ð Þ log tþ t0ð Þ½

� Dþ t0ð Þ log Dþ t0ð Þ

� t� Dþ t0ð Þ log t� Dþ t0ð Þ

þt0 log t0�:

(A4)
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For t0 { D { t

d02ðDÞ
D E

� 6D0t0D
t

log
t

D

� 	
þ 1

h i
: (A5)

The second term in eqn (A3) has the form

XðDÞ ¼ 6D0tvð0Þ
t� D

ðt�D
0

dt 0 1þ D
t 0 þ t0


 ��b
�1

" #
o 0;

where b = t0/tv(0), see the main text. Introducing the new
variable y = D/t0 we get in the limit t0 { D that

X Dð Þ � �6D0tvð0Þ 1� D
t� D

Iðt;DÞ

 �

; (A6)

where

I t;Dð Þ ¼
ð1
D=ðt�DÞ

dy

y2 1þ yð Þb
: (A7)

This integral can be taken by parts

I t;Dð Þ ¼ t� D
D

1� D
t


 �b

þ b log
D

t� D


 �
1� D

t


 �bþ1
þ bC bð Þ;

(A8)

where

CðbÞ ¼ � bþ 1ð Þ
ð1
D=ðt�DÞ

dy
log y

1þ yð Þbþ2
� gþ 1

b
þ c bð Þ; (A9)

g = 0.5772. . . is the Euler’s constant, and c(z) = d logG(z)/dz is
the digamma function. Finally we find in the limit t c D that

d2ðDÞ
D E

� 6D0t0CðbÞ
D
t
’ D: (A10)

This confirms the linear scaling of the time averaged MSD.

Appendix B: velocity-dependent
restitution coefficient

Similarly, for the viscoelastic granular gas with e = e(v12) the
time averaged MSD may be presented as the sum of two parts,
see eqn (A3). The first term corresponds to the time averaged
MSD of the SBM process, described by the overdamped Langevin
equation to yield

d02ðDÞ
D E

¼ 36D0t05=6

t� D

ðt�D
0

dt 0 t 0 þ Dð Þ1=6�t 01=6
h i

¼ 216D0t05=6

7 t� Dð Þ t7=6 � D7=6 � ðt� DÞ7=6
h i

:

(B1)

The second term becomes

XðDÞ ¼ 6D0tvð0Þ
t� D

ðt�D
0

dt 0

� exp �6t0
5=6

tvð0Þ
t 0 þ Dð Þ1=6�t 01=6

h i
 �
� 1

� 

:

(B2)

This integral can be presented as a sum of three partsðt�D
0

dt 0 exp �6t0
5=6

tvð0Þ
t 0 þ Dð Þ1=6�t01=6

h i
 �
� 1

� 


¼
ðk1D
0

½. . .�dt 0 þ
ðk2D
k1D
½. . .�dt 0 þ

ðt�D
k2D
½. . .�dt 0:

(B3)

We choose the coefficients k1,2 in the following ranges

1 { k1 { t0D
1/5/tv

6/5(0)

and

t0D
1/5/tv

6/5(0) { k2 { t/D.

This enables us to evaluate the first integral in eqn (B3) as
followsðk1D

0

dt 0 exp �6t0
5=6

tvð0Þ
t 0 þ Dð Þ1=6�t 01=6

h i
 �
� 1

� 

� �k1D: (B4)

The third term in eqn (B3) can be evaluated asðt�D
k2D

dt 0 exp �6t0
5=6

tvð0Þ
t 0 þ Dð Þ1=6�t 01=6

h i
 �
� 1

� 


�
ðt�D
k2D

dt 0 �6t0
5=6

tvð0Þ
t 0 þ Dð Þ1=6�t 01=6

h i
 �

¼ 36t05=6

7tvð0Þ
�t7=6 þ t� Dð Þ7=6þ k2 þ 1ð Þ7=6�k27=6

� 	
D7=6

h i
:

(B5)

For the chosen range of parameters k1,2 the contribution (B4)
can be neglected. Finally, assuming that the second term in
eqn (B3) is small enough compared to eqn (B5) we get to
leading order

d2ðDÞ
D E

� 36k2
1=6D0t05=6

D7=6

t
: (B6)

For longer lag times D, in the range tv(0)t5/6/t0
5/6 { D { t that

is opposite to the condition for k2 above, we have the upper
estimate for the correction X(D) to the time averaged MSD of
the SBM process, namely

XðDÞj j � 6D0tvð0Þ 	 d02ðDÞ
D E

: (B7)

Then we get in the limit D { t that

d2ðDÞ
D E

� d02ðDÞ
D E

’ D0t05=6D
t5=6

: (B8)

In addition to these analytical estimates, we computed numeri-
cally the full expression (A3). It agrees well with our MD simula-
tion data, compare the curves in Fig. 4 where we explicitly plot

d2
D E.

D. It shows that in the range of parameters t0, tv and D0

consistent with the results of simulations presented in the main

text, the transient scaling behaviour d2ðDÞ
D E

� D7=6 is realised in

a limited range of D. Note also that in this range the linear SBM

scaling for d2ðDÞ
D E

as prescribed by eqn (B8) is no longer valid.
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The reason is that for large values of D, when D- t for any length
of the trajectory, in eqn (B2) the evolution of the time averaged
MSD with the lag time D becomes inherently nonlinear.
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