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Quantifying solvated electrons’ delocalizationf
Benjamin G. Janesko,*® Giovanni Scalmani® and Michael J. Frisch®

Delocalized, solvated electrons are a topic of much recent interest. We apply the electron delocalization
range EDR(F;u) (J. Chem. Phys., 2014, 141, 144104) to quantify the extent to which a solvated electron
at point 7 in a calculated wavefunction delocalizes over distance u. Calculations on electrons in one-
dimensional model cavities illustrate fundamental properties of the EDR. Mean-field calculations on
hydrated electrons (H,O),” show that the density-matrix-based EDR reproduces existing molecular-
orbital-based measures of delocalization. Correlated calculations on hydrated electrons and electrons in
lithium—-ammonia clusters illustrates how electron correlation tends to move surface- and cavity-bound
electrons onto the cluster or cavity surface. Applications to multiple solvated electrons in lithium-
ammonia clusters provide a novel perspective on the interplay of delocalization and strong correlation
central to lithium—-ammonia solutions’ concentration-dependent insulator-to-metal transition. The results

www.rsc.org/pccp

|. Introduction

Solvated electrons are a classic chemical system that has attracted
much study." Mobile* solvated electrons are responsible for the
blue color of dilute lithium-ammonia solutions and the transition
to a metallic state seen at high lithium concentrations.*”> Hydrated
electrons are important intermediates in radiation chemistry and
in many biological processes.® Electronic structure calculations
have contributed to the understanding of solvated electrons.*® ™
Calculated vertical detachment energies (VDEs) for electrons sol-
vated in water clusters (H,O), suggest''* that experimental
photoelectron spectra’® may arise from surface-bound electrons.
Mixed quantum-classical dynamics simulations suggest models
for electrons in bulk water'* and lithium-ammonia solutions."> "
Several recent studies highlight the importance of the quantum-
classical interaction potential.'*'®"® All-electron calculations pro-
vide additional insights.*?*>* Ref. 23 provides a recent perspective
on the role of delocalization in electron solvation.

Solvated electrons’ behavior depends on the interplay of electron
delocalization and electron-electron correlation. Delocalization
denotes the nonclassical “coherence” of electrons between different
points in space, e.g., the off-diagonal terms in Fig. 1. This off-
diagonal delocalization®* is central to covalent bonding and reacti-
vity. Delocalization is particularly important for highly delocalized
solvated electrons.> Correlation denotes all effects excluded from a
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motivate continued application of the EDR to simulations of delocalized electrons.

mean-field (Hartree-Fock, HF) calculation, including dispersion
(van der Waals) interactions. Correlation is important for the
stability of solvated electrons,*** as well as for lithium-ammonia
solutions’ transition to the metallic state.*®

Existing electronic structure methods can accurately treat
solvated electrons’ VDE.?”>?*® However, quantifying solvated
electrons’ delocalization remains challenging. Most analyses of
delocalization are based on the highest occupied molecular
orbital (MO) or spin density from a HF or density functional
theory (DFT) wavefunction.*?® This approach has limitations.
MOs are not uniquely defined in many-electron wavefunc-
tions.>” Hartree-Fock MOs and spin densities do not include
correlation effects.*® DFT MOs come from a reference system of
noninteracting®**° or partially interacting*' Fermions, which is
generally more delocalized than the real system. (The exact
Kohn-Sham wavefunction is arguably at least as delocalized as the
exact interacting wavefunction, because the Kohn-Sham kinetic
energy T4 p] is bound by the exact kinetic energy Typ] < Tp].)
Attempts to address these limitations include analyses of DFT
electron densities,'> """ the electron localization function,*”*°
and nearly-singly-occupied natural orbitals from correlated wave-
functions.***>*”7*° New tools to quantify delocalization could
complement and extend this work.

We recently proposed the electron delocalization range
(EDR) to quantify and visualize electron delocalization.’® The
EDR is based on the nonlocal one-particle density matrix y(7,7)
of a calculated N-electron wavefunction ¥(Fy,r,. . .Fy),

V(1) = N[&Fs. . PPN (FFr. . )P e . Ty). (®

(Spin and time dependence are suppressed throughout. All
calculations treat approximate stationary state solutions of
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Fig. 1 7(x;x’) (left) and EDR(x;u) (right) for boxes containing N = 1, 2, 3, 10 noninteracting spinless Fermions. The red line through the N = 3 points y(L/3,x")
is discussed in the text.

Schrédinger’s equation.) y(7,7') gives the probability that an electron at 7. Bonding interactions between atoms A and B
electron delocalizes between points 7 and 7. Diagonal elements  typically correspond to y(F € A,7 € B) > 0. The EDR quantifies
limz _,7y(F,F') = p(F) give the probability density for finding an  the degree to which an electron at 7 delocalizes over distance
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|F — 7| by contracting y(7,”') with a test function of |F — 7| that
decays over some length scale u:

= oy

EDR(r,u) = [d*F g (r, )y (7, F) (2)

o (2N '
gu(r, ") = p~ °(F) 2] Pl | 3)

The prefactors in eqn (3) ensure that the unitless EDR obeys
|[EDR(F;u)|> < 1. Our choice of a Gaussian test function enables
analytic integration over 7 in eqn (2), when the molecular orbitals
and y are expanded in standard atom-centered Gaussian basis
sets. Global descriptors of delocalization may be obtained from
density-weighed averages

(EDR(w)) = [d*F p(EDR(Fu) @)
and differences between two calculations A and B
AEDR(A — B;u) = (EDR(u))(A) — (EDR(u))(B). (5)

Our previous work showed that the EDR effectively charac-
terizes the delocalization of electrons across multiple length
scales.’® EDR(F;u) at small distances u ~ 0.1 Angstrom peaks at
points 7 in the cores of first-row atoms. EDR(r;u) at larger
distances u ~ 0.5 Angstrom peaks at points 7 around the
localized lone pairs of, e.g., oxygen atoms. EDR(F;u) at u ~ 0.6
Angstrom peaks at points 7 in C-C and C-H bonds. Calculations
on a model cavity-bound hydrated electron”®**! (H,0),~ showed
that EDR(%;u) at points 7 inside the cavity peaked at increasingly
large u (from 1.4 Angstrom to 3.3 Angstrom) as the cavity radius
increased. Calculations on the strongly correlated electron pair in
stretched singlet H, showed that the EDR quantifies the interplay
of delocalization and strong correlation.?>”” These preliminary
results motivate further exploration of the EDR for solvated
electrons.

This work applies the EDR to several problems relevant to
solvated electrons. Calculations on simple model systems show
how the EDR quantifies “off-diagonal” coherence lengths and
electron correlation effects on delocalization. Hartree-Fock calcula-
tions on hydrated electrons (H,0),,~ show that EDR-based descrip-
tors reproduce existing MO-based measures of hydrated electrons’
delocalization.”® Correlated calculations on (H,0),, and lithium-
ammonia clusters® show that the EDR illustrates localization of
surface-bound electrons onto cluster surfaces, and delocalization of
cavity-bound electrons onto cavity walls. Calculations on spin-paired
diamagnetic species in lithium-ammonia clusters,* and multi-
reference calculations on multiple solvated electrons,""” illustrate
the interplay of delocalization and strong correlation relevant to
the transition to the metallic state. These results motivate further
application of the EDR to delocalized electrons.

lI. Computational methods

All molecular calculations use the development version of the
Gaussian suite of programs.”® The EDR is evaluated using one-
particle density matrices from Hartree-Fock, generalized Kohn-
Sham density functional theory (DFT),*>***® post-Hartree-Fock,
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or multireference calculations. Second-order many-body pertur-
bation theory (MP2) and coupled cluster with singles and
doubles (CCSD) calculations use the Gaussian default choice of
frozen core orbitals. Briickner doubles (BD) calculations®”®! and
complete active space self-consistent field (CASSCF) calculations
correlate all electrons. Post-Hartree-Fock density matrices are
evaluated using the Z-vector method,*®** with Gaussian keyword
“Density = Current”. DFT calculations use various approximate
exchange-correlation (XC) functionals. These include the local
spin-density approximation with Vosko-Wilk-Nusair correlation
functional V (LSDA),*® Becke’s three-parameter global hybrid
incorporating Lee-Yang-Parr correlation (B3LYP),***” the half-
and-half global hybrid BHLYP,*® and the long-range-corrected
hybrid LC-oPBE.®® Molecular calculations on open-shell systems
are performed spin-unrestricted unless noted otherwise. Mole-
cular calculations evaluate the EDR as described previously.>*”°
(EDR(u)) is evaluated by numerical integration of eqn (4) using a
standard DFT numerical integration grid.”* The descriptor u,,
discussed below, is obtained from a three-point fit to (EDR(x))
from an even-tempered set of {}.

Pictures of calculated molecular geometries use a ‘“ball-and-
stick” description of chemical bonds. For example the O-H
bonds in the water clusters of Fig. 4 are drawn as lines between
the O and H atoms. These bond orders are included solely as a
guide to the eye.

Other details of the individual calculations are as follows. The
calculations on 1D systems in Section III A, and some test
calculations in Section III B 2, use a Mathematica worksheet
provided as ESI.f Calculations on H,O and H,O™ in Section IIT A
use the aug-cc-pVQZ basis set’>”® and the anion’s HF/aug-cc-
PVTZ geometry. Calculations on the (H,O)y  clusters in Section Il B
use the cluster geometries reported in ref. 29, and the 6-31(+,3+)G(d)
basis set shown in ref. 27-29 to be suitable for post-Hartree-Fock
calculations on hydrated electrons. Calculations on the octahedral
(H,0)s~ Kevan structure”®*" in Sections III B 4-1III B 5 use geome-
tries from ref. 51, and rigidly shift each water molecule distance R
from the cavity center. Distances are measured from the cavity
center to the closest H atom. Calculations combine the 6-31(+,3+)G*
basis set on all atoms, and the aug-cc-pVQZ basis functions of
hydrogen atom on a “ghost” atom at the cluster center.”

Calculations on the lithium-ammonia clusters in Section III C
use the 6-31(+,3+)G(d) basis set. Cluster geometries are obtained
from gas-phase B3LYP/6-31+G(d,p) calculations, based on the
clusters in ref. 4, 22 and 74. Spatial symmetry is not enforced
in these calculations. Geometries are labeled by their approxi-
mate symmetries.

Calculations on the lithium-ammonia clusters of Section III
D combine an explicit quantum-mechanical (QM) treatment of
six solvated electrons with a molecular mechanics (MM) model
of the (NH3),, cavity. QM calculations use a basis set defined by
fifteen “ghost” atoms evenly spaced along the cavity center. Two
s-type Gaussian functions with exponents 0.5 and 0.1 au are
centered at each ghost atom. The cavity walls are made up of five
rigid square-planar (NH3), units. Each unit has N-N distances
4.55 Angstrom, taken from the Op-symmetric e~ @(NH;)g cavity
of ref. 4. H atom positions are taken from a gas-phase PM6”>
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geometry optimization of square-planar (NH3), , constraining the
H-N-H groups to lie in a plane and constraining N-N distances
to 4.55 Angstrom. This yields reasonable N-H bond lengths
1.02 Angstrom and H-H bond lengths 2.54 Angstrom. The MM
calculations replace each H atom in NH; with a point charge
+0.268; and replace each N atom with a point charge —0.804 and a
repulsive s-type Gaussian pseudopotential with exponent 0.45 au
and prefactor 1.60 Hartree. CASSCF calculations on this system
correlate all 6 electrons using 12 orbitals. The Gaussian input file
for the CASSCF calculation is included in the ESL¥

It is often useful to assign global descriptors for the deloca-
lization of a solvated electron or electron pair. We define the
delocalization length u,, of the solvated electron in anion M~ as
the position of the maximum in AEDR(M™ - M;u), evaluated at the
anion M~ optimized ground-state geometry. The corresponding
total energy difference E(M ™) — E(M) defines the electron’s VDE.
The left panel of Fig. 3 below illustrates evaluation of u,, for H,0 ™.
We define u,, of the solvated electron in neutral open-shell
Li(NH,), (Section III C 1) as the position of the maximum in
AEDR(Li(NH;), — Li(NH;),";u), and define u,, of the solvated
electron pairs in neutral singlet (Li(NH3),), (Section III C 2) as the
position of the maximum in AEDR([Li(NH;),], — [Li(NH3)4),>"5).
Plots of representative AEDR and tables of all species’ (EDR(«))
are included as ESLT All species’ AEDR have a single peak giving a
unique sy

[1l. Results

A. Model systems

This section shows that the EDR quantifies the off-diagonal
cohererence of the one-particle density matrix y(7,7), and illustrate
how occupancy of highly oscillatory single-particle states (“virtual
orbitals”) in correlated wavefunctions tends to reduce the value of
the EDR. This effect is important in our subsequent studies of
correlation-induced (de)localization of solvated electrons.

We begin by considering a simple 1D model for the solvated
electron,”®”” one or more noninteracting spinless Fermions in
a box of length L with infinite walls. One-electron Hamiltonian
eigenfunctions are the familiar particle-in-a-box states ,,(x) =

2 . /mnx
\/;sm(T), 0 < x < L, Y,u(x) = 0 elsewhere; m =1, 2, 3,....

The EDR is evaluated with 1D test function g °(x,x') =
(2/(ru?))"*p~*(x) exp(—|x — x|*/u*). This model system allows
us to visualize the entire one-particle density matrix y(x,x’) in
2D contour plots, which can be directly compared to plots of
EDR(x;u).

1. Quantifying delocalization with the EDR. Fig. 1 com-
pares contour plots of the real-space y(x,x’) (left, in blue) and
EDR(x;u) (right, in green) for the ground state of 1, 2, 3, and 10
noninteracting spinless Fermions in a box of length L.

The left panels of Fig. 1 plot y(x,x") in the box as a function of
the unitless relative positions x/L and x'/L. White regions denote
large positive values of y, blue and black regions denote small
and negative y. The density matrix is largest along the diagonal,
and decays with increasing off-diagonal separation |x — x/|.

18308 | Phys. Chem. Chem. Phys., 2015, 17, 18305-18317

View Article Online

PCCP

— pPx)yxx), m=1,x=1/2
— gu=035(x,X"), x=1/2

==+ pTRGOY(X), m=2, x=1/4

EDR integrand

== gu=017(xX), x=1/4

0.0 0.2 0.4 0.6 0.8 1.0
Position in box x'/L

Fig. 2 The two quantities in the integrand of egn (2), test function
@/ exp(—|x — x'|?/u?) (red) and weighted density matrix p~Y2(x)y(x.x’)
(blue), plotted as a function of integration variable x’. Results are plotted for
the m = 1 (solid) and m = 2 (dashed) states of a single particle in a box, with
x and u selected to maximize EDR(x;u). The normalized test function overlaps
with at most one lobe of the hormalized m = 2 density matrix, reducing the
maximum value of the EDR.

The “width” of the density matrix along the antidiagonal corre-
sponds to the electrons’ coherence length,”® i.e., the nonclassical
“delocalization” of covalent bonds. Increasing the number of
noninteracting Fermions in the box increases the electron
density and decreases the off-diagonal delocalization length.

The right panels of Fig. 1 plot EDR(x;«) as a function of the
unitless relative position x/L on the abscissa, and the unitless
relative delocalization length u/L along the ordinate. White
regions denote EDR near one, dark green regions denote EDR
near or less than zero. Ref. 50 included similar contour plots of
the EDR in molecules. Reduced delocalization, i.e., reduced off-
diagonal width of the density matrix, shifts the EDR peaks
down to smaller delocalization lengths w. In this sense, the EDR
at point x captures the nonclassical off-diagonal delocalization
of an electron at point x.

One caveat to the above description is that the EDR can
predict long delocalization lengths in low-density regions. For
example, the N = 3 EDR peaks at relatively large u in the low-
density region x ~ L/3. We suggest that this occurs because the
EDR samples a horizontal (or equivalently vertical) rather than
antidiagonal slice through the density matrix. To illustrate, the
N =3 system’s EDR(x = L/3;u) is obtained by contracting the test
function with the “horizontal slice” of points y(x = L/3,x’). Fig. 3
highlights this horizontal slice of points in the N = 3 density
matrix with a red line. The figure shows that these points connect
two of the three lobes in the N = 3 density matrix, leading to a
relatively large delocalization length. While we speculate that sam-
pling an “antidiagonal” slice y(x + s/2,x — s/2) could avoid this effect,
implementing the resulting integration would be more complicated
than our current approach. Moreover, despite this caveat, the overall
trend of Fig. 1 is that the EDR provides a reasonable local measure
of off-diagonal density matrix delocalization.

2. Normalization effects on the EDR. One important result
in Fig. 1 is that the EDR tends to become smaller as the electron
density increases, such that the EDR plots become darker at
increasing N. This is a specific case of a more general phenomenon:
occupancy of highly oscillatory single-particle orbitals tends to
decrease the EDR. This normalization effect can be understood

This journal is © the Owner Societies 2015
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Fig. 3 Electron correlation effects on delocalization in H,O™. (left) AEDR(anion—neutral;u) for HF and MP2 calculations. Horizontal lines denote the
descriptor u,y. (right) AEDR(MP2 — HF;u) for H,O™ and neutral H,O. The normalization effects in Fig. 2 make these curves negative at u = ~1 bohr.

from Fig. 2, which illustrates p~**(x)y(x,x’) and the EDR test
function (2/(nu?))"* exp(—|x — x'|*/u?) for the m = 1 and m = 2
particle in a box states. Results are plotted as functions of the
EDR integration variable x'. Position x and length scale u are
selected to maximize the resulting EDR(x;u). Fig. 2 shows that
the normalized test function overlaps the entire the m = 1 y(r,r’),
but overlaps with at most one lobe of the m = 2 y(r,”’). This
reduced overlap reduces the overall value of the EDR. Fig. S1
(ESIt) confirms that (EDR(u)) decreases at most « values for the
m = 2 and m = 3 states of a single particle in a box.

The normalization effects in Fig. 2 suggest that any process
that increases the occupancy of highly oscillatory single-particle
states (“virtual orbitals”) will tend to decrease the EDR. Indeed, we
have used this effect to distinguish fractional spin®” in strongly
correlated stretched singlet H,.”® In the present work, our efforts
to quantify delocalization in post-Hartree-Fock wavefunctions
must account for these normalization effects.

Fig. 3 illustrates this by showing different views of correlation
in a second model system, H,O. (This is not intended to
represent a realistic hydrated electron, and is included solely
to illustrate computed trends.) The left panel of Fig. 3 shows the
difference AEDR(anion-neutral;u), used to evaluate our descrip-
tor u,, of the solvated electron’s delocalization length. Horizontal
lines denote u,,. Correlation binds the solvated electron more
tightly and slightly reduces w,,. The right panel of Fig. 3 shows the
difference AEDR(MP2 — HF;u) between correlated and Hartree-
Fock calculations on H,0 and H,O . AEDR(MP2 — HF;u) has a
negative peak in the valence region u ~ 1 bohr, consistent with
the normalization effects in Fig. 2. However, the anion also has
a significant positive peak in AEDR(MP2 — HF;u) at moderate
u ~ 5 bohr, and a negative peak at u ~ 30 bohr, both of which
are consistent with correlation-induced changes in the struc-
ture of the bound electron. Overall, the simple u,, descriptor
provides a useful measure of correlation effects on localization,
though some caution is needed in its interpretation.

B. Hydrated electrons

We next consider the EDR’s predictions for electrons hydrated
in water clusters (H,0),,”. Such clusters have long been studied

This journal is © the Owner Societies 2015

for their intrinsic interest and as a model for bulk hydrated
electrons.®?'*27729 This section shows that the u,, descriptor
introduced above, evaluated from Hartree-Fock density matrices,
recovers existing MO-based measures of hydrated electrons’
delocalization.”® The EDR and u,, from post-HF calculations
suggests that correlation tends to localize surface-bound isomers
to cluster surfaces, and delocalize cavity-bound isomers from the
cavity center to the cavity wall. DFT calculations can recover these
trends, with the BHLYP ‘“half-and-half” functional providing
good performance in line with its accurate VDE.>”

1. Representative surface and cavity isomers. We first
illustrate the EDR for two representative water clusters, surface
isomer (H,0),,~ 5" A and cavity isomer (H,O),,  5'%6 B.
(Nomenclature is from ref. 29.) Fig. 4 shows these isomers’
structure, singly occupied Hartree-Fock molecular orbital (SOMO),
MP2 spin density, and EDR(Fu,,) evaluated from MP2 density
matrices. EDR(F;u,,) from Hartree-Fock, LDA, B3LYP, BHLYP and
LC-wPBE”® calculations (Fig. S2 and S3, ESIt) are qualitatively
similar. MP2 EDR(F;u,,) from the corresponding neutral water
clusters have no values > 0.2, consistent with the absence of the
delocalized solvated electron. Fig. 5 plots AEDR(anion-neutral;u)
evaluated at different levels of theory. Table 1 presents these
structures’ computed VDE and u,.

The most important result in Fig. 4 is that EDR(r;u,,) high-
lights the same region of space as the major lobe of the SOMO
and spin density. The SOMO, spin density, and EDR(F;u,,) thus
capture similar information about the solvated electron.

Another important result in Fig. 4 is that the EDR auto-
matically quantifies the solvated electron’s delocalization through
the uniquely defined average delocalization length u,,. The u,, in
Table 1 are consistent with known trends among DFT methods,””
with LSDA calculations overestimating correlation effects and
BHLYP calculations giving results rather close to MP2. The com-
puted u,, also show that MP2 correlation localizes the surface-
bound electron reducing u,, and delocalizes the cavity-bound
electron increasing u,,. Fig. S4 (ESIt) confirms this, showing that
the difference between MP2 and HF spin densities is positive near
the cluster surfaces, and negative far from the (H,O),, 5%
A surface isomer and near the center of the (H,0),,  5'26> B

Phys. Chem. Chem. Phys., 2015, 17, 18305-18317 | 18309
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Table 1 Computed VDE and u,, for surface isomer (H,O)o~ 5*2 A and
cavity isomer (H»0),4~ 5262 B (Fig. 4)

Surface Cavity
Method VDE (eV)  u, (Angstrom) VDE (eV)  u,, (Angstrom)
HF 0.90 5.8 0.34 2.8
LSDA 1.82 5.2 1.67 5.0
B3LYP 1.51 5.5 1.21 5.4
BHLYP 1.25 5.5 0.91 4.4
LC-0oPBE 1.18 5.0 0.92 2.6
MP2 1.10 5.4 0.78 3.2

cavity isomer. Perhaps most notably, EDR(F;u,,) provides a
direct link between the solvated electron’s system-averaged
delocalization length u,, and its real-space location.

2. Comparison to MO-based measures of delocalization.
We next confirm that the EDR-based descriptor u,, is consistent

18310 | Phys. Chem. Chem. Phys., 2015, 17, 18305-18317

with previous MO-based measures of hydrated electrons’ deloca-
lization. Ref. 29 reported the radius of gyration of the singly
occupied molecular orbital (SOMO R,) for 76 structurally diverse
anionic water clusters. Fig. 6 plots the reported R, vs. u,, evaluated
from Hartree-Fock calculations for 73 of these clusters. (We found
self-consistent field convergence problems for (H,0)~ 5'> E, and
for the two very weakly bound isomers (R, > 10 Angstrom)
(H,0),4~ 5'%6% A and (H,0),5~ 4°° A). Computed total energies,
VDE, (EDR(«)), and HF u,, of all structures are tabulated as ESL
Fig. S5 and S6 (ESIt) plot the HF AEDR(anion-neutral;u), all of
which have a single maximum defining u,,. Gratifyingly, Fig. 6
shows an almost one-to-one correlation between these very
different descriptors of electron delocalization. u,, and R, both
predict that cavity isomers are localized to ~ 2 Angstrom cavities,
and that surface isomers span a broad range of delocaliza-
tion lengths.
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One noteworthy aspect of Fig. 6 is that surface isomers’ u,,
are generally somewhat larger than R, while cavity isomers’ i,
are essentially equal to R,. We speculate that this is because the
EDR test function used to construct u,, samples density tails
differently from the procedure used to construct R,. This specula-
tion is consistent with some special cases. A nearly unbound
and spherical electron with Wsomo(F) = (2/(mue?))*'* exp(—r*/ue?)
has u,, significantly larger than Ry wua/ug = V3/2~1.22,
Ry /ug = /3/4 — \/2/n ~ 0.337. In contrast, an electron con-
fined in a square 3-D box of dimension L, gives u,, closer to R,:
Ry/Lg =~ 0.177, Ug/Lo =~ 0.422. (These calculations are included
in the Mathematica file provided as ESL.7)

Another noteworthy aspect of Fig. 6 is that the (H,0);, B
“cavity”” structure® lies on the trend for surface isomers. Fig. S7
(ESIT) shows that this isomer’s SOMO and HF and MP2
EDR(7;u,,) are rather surface-like at the present level of theory.
This is consistent with the low VDE found in ref. 29.

3. Correlation effects on delocalization. We next consider
how the EDR complements existing studies of correlation effects
on solvated electrons’ delocalization.***>*"~*° Table 1 suggests
that correlation slightly localizes surface isomer (H,0),, 5 A
and significantly delocalizes cavity isomer (H,0),,  5'°6> B. We
quantify this effect by defining an EDR-based descriptor of
correlation-induced (de)localization, Acit,y = Ua(MP2) — u,(HF).
Fig. 7 plots A.u,, against VDE for the (H,0),, , n < 24 of ref. 29.
(Our computational setup cannot treat the larger clusters’ MP2
density matrices. (H,0),,  5'2F is omitted, as its very diffuse
electron leads to difficulties converging the MP2 response den-
sity.) All of the surface isomers follow Table 1, with correlation
reducing u,, and localizing the surface-bound electron to the
cluster surface. This is consistent with previous work.>*™° The
correlation-induced localization is small for weakly bound elec-
trons with small VDE, consistent with the fact that Hartree-Fock
theory becomes exact in the VDE — 0 limit of an isolated electron.
Localization increases with VDE up to ~ 0.2 eV, then “turns over”
as other effects become important. These presumably include the
normalization effects of Fig. 2, which will tend to reduce the MP2
EDR at small ¥ and make A.u,, > O.
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4. Correlation effects on cavity isomers. Fig. 7 shows that
correlation increases u,, in two of the three tested cavity isomers.
The third is the surface-like (H,0);,” B in Fig. S7 (ESIt). Further
support for correlation-induced delocalization of cavity-bound
electrons comes from systematically varying the cavity radius R
in the octahedral Kevan structure”®***" (H,0),". Fig. 8 shows
the calculated A.u,,. Both MP2 and CCSD calculations give
a correlation-induced delocalization A.u,, > 0 for small R,
smoothly switching to a small (<0.1 Angstrom) correlation-
induced change to weakly bound electrons at large R. The
Hartree-Fock u,, increases asymptotically linearly with cavity
size, consistent with the solvated electron delocalizing across
the six water molecules. Calculations in other basis sets give
qualitatively similar results (not shown). Fig. S8 (ESIt) confirms
that MP2 and CCSD correlation increase the VDE. The HF and
CCSD VDE 0.505 and 0.912 eV at R = 2.0 Angstrom are reasonably
close to the HF and EOMEA-CCSD(2) VDE 0.254 and 0.794 eV
at R = 2.1 Angstrom reported with a different computational
setup.®® Similarly, the CCSD u,, 3.01 Angstrom at R = 2 Angstrom
is reasonably consistent with the CCSD R, 3.2 Angstrom reported
in ref. 48 for the Kevan structure with R = 2.1 Angstrom.
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Fig. 8 Ac.u,, of the octahedral Kevan structure (H,O)g~, as a function of
cavity radius R. MP2 (crosses) and CCSD (blue stars) calculations. Inset
shows the Hartree—Fock u,, (crosses) and an asymptotic linear fit u,, =
1.465R (red line).
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We suggest that the positive A.u,, seen in small cavities arise in
part because correlation lets the solvated electron avoid electrons
on the surrounding water, enabling it to move from the cavity
center onto the cavity surface. This suggestion is consistent with
the changes in electron density distribution. Fig. S9 (ESIt) shows
that MP2 correlation moves electron density out of the center of the
small R = 2.0 Angstrom cavity, and localizes the electron densities
in the large R = 6.0 Angstrom cavity. This suggestion is also
consistent with ref. 49, which analyzed correlated calculations on
the Kevan structure at R = 2.1 Angstrom. That reference found that
the solvated electron’s mean electron-nuclear nearest-neighbor
difference decreased from 3.45 Angstrom in mean-field calcula-
tions to 1.39 Angstrom in correlated calculations. Correlation
moved the solvated electron from the cavity center and periphery
onto the cavity walls. We note that the normalization effects in
Fig. 3 may also tend to give A.u,, > 0, thus this result should be
interpreted with some care.

5. DFT correlation. Fig. 9 explores how representative DFT
approximations perform for the correlation-induced (de)locali-
zation of Fig. 7. The figure plots different DFT approximations’
effects on A.u,,. The results are largely consistent with the
approximations’ effects on VDE.?” The LSDA exaggerates corre-
lation effects, excessively localizing surface-bound electrons.
B3LYP provides better results, and BHLYP is quite close to MP2.
(As discussed above, we note that the exact Kohn-Sham wave-
function is arguably at least as delocalized as the exact wave-
function, as its kinetic energy is a lower bound to the exact value.)
Fig. S10 (ESIt) shows that the LDA’s tendency to over-localize
electrons dominates in the Kevan structure. Fig. S11 (ESIY)
illustrates that DFT correlation tends to increase VDE, and has
a modest effect on u,, of most surface and cavity isomers.

C. Ammoniated electrons

We continue by considering isolated and spin-paired electrons
solvated in lithium-ammonia solutions. Dilute lithium-ammonia
solutions contain separate solvated electrons which form spin-
paired species at ~1 mole percent metal.>">""” Ref. 4 simulated
such species using molecular clusters built from Li(NH;), " motifs.®"
We use calculations on representative clusters to illustrate the

18312 | Phys. Chem. Chem. Phys., 2015, 17, 18305-18317
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EDR’s utility for ammoniated electrons. This section confirms that
evaluating the EDR from Hartree-Fock density matrices recovers
orbital-based pictures of isolated electrons, confirms that electron
correlation tends to localize solvated electrons, and shows how the
EDR captures the localizing effects of “strong” correlation in
solvated electron pairs.

1. Single electrons in dilute ammonia. We consider two
existing®*'?*> models of the isolated ammoniated electron,
tetrahedral Li(NH;), and octahedral e~ @(NHj3)g. Fig. 10 shows
these isomers’ structure, SOMO, MP2 spin density, and EDR(#;u,,)
evaluated from MP2 density matrices. EDR(F;u,,) from Hartree-
Fock, LSDA, and B3LYP calculations are qualitatively similar
(Fig. S12, ESIt). Fig. S13 (ESIf) plots AEDR(anion-neutral;u)
and confirms that there is a single peak giving a unique u,,.
Table 2 reports both structures’ VDE and u,, computed at
different levels of theory.

We begin by noting that our results match previous work.
The Li(NH;), CCSD VDE is consistent with the EOM-CCSD
values ~2.9 eV in ref. 22, evaluated with a somewhat different
basis set and molecular geometry. Calculations omitting geo-
metry relaxation of Li(NH3), upon ionization give an MP2
reaction energy Li(NH;), + 8NH; — Li(NH;)," + e”@(NH;)g of
58.3 kcal mol™?, consistent with the 60.9 kcal mol™ DFT value
in ref. 4. Our B3LYP/6-31+G(d,p) calculations on e  @(NHj3)g
give Mulliken spin densities 0.14 on N, —0.5 x 10~ on H,
consistent with the 0.13, —0.6 x 102 of ref. 21. The e~ @(NH;)s
SOMO is qualitatively consistent with the B3LYP Ysomo(F) =
0.02 electrons per bohr® contour shown in Fig. 2 of ref. 21,
though our SOMO lacks a node at the center of mass. The
Li(NH;), HF and MP2 u,, 6.8 and 6.2 Angstrom are ~ 1.5 times

the HF SOMO and EOM-CCSD natural orbital v/?> 4.45 and
4.12 Angstrom reported in ref. 22, consistent with the relation
between u,, and R, in Fig. 6.

The results in Fig. 10 are consistent with our results for
hydrated electrons. EDR(F;u,,) highlights approximately the same
region of space as the major lobe of the SOMO and the MP2 spin
density. This fact, and the correlation-induced localiation of
Li(NHj3;), seen in Table 2, suggest that the EDR is consistent with
previous orbital- and density-based analyses assigning the the
Li(NH,), electron to a Rydberg-like state.”* MP2, CCSD, and DFT
correlation increase the VDE and reduce u,,. While the e~ @(NH;)s
SOMO and EDR(F;u,,) in Fig. 10 appear at first glance to corre-
spond to a cavity-bound electron, the correlation-induced localiza-
tion A,y < 0 in Table 2 matches that of the surface-bound
electrons in Fig. 7. This is consistent with previous suggestions*
that the electron occupies surface “H«~H" bonds.

2. Solvated electron pairs and nondynamical correlation.
Our previous study of the EDR*® showed that it captures the
correlation-induced localization of strongly correlated electron
pairs.”>™’ Strong correlation is important for solvated electrons, in
particular for the aforementioned Mott-Hubbard model of
lithium-ammonia solutions’ insulator-to-metal transition.**® Here
we consider two cluster models of a strongly correlated electron
pair in lithium-ammonia solution, C;, and Dsq (Li(NH3),),-
Spin-restricted B3LYP DFT calculations find that the C;, and
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Fig. 10
e~ @(NHs)g (bottom).

Table 2 Computed VDE and u,, for Li(NH3); and e~ @(NHs)g models of
isolated ammoniated electrons (Fig. 10)

Li(NH3), e~ @(NHs)s

Method  VDE (eV)  u,, (Angstrom) VDE (eV)  u,, (Angstrom)
HF 2.44 6.8 0.19 7.1

LSDA 3.41 5.4 1.48 5.2

B3LYP 3.22 5.7 1.09 5.7

BHLYP 2.94 6.0 0.79 5.9

MP2 2.74 6.2 0.53 5.9

CCSD 2.76 6.2 — —

Dsq structures differ in energy by 2.6 kcal mol™", consistent
with the near degeneracy reported in ref. 4. Fig. 11 shows these
species’ geometries and EDR. Table 2 presents the solvated
electron pair’'s VDE and u,, evaluated at different levels of
theory. Fig. S14 (ESIY) illustrates the corresponding AEDR(neutral-
dication;u) used to determine u,,. We compare spin-restricted
and symmetry-broken spin-unrestricted Hartree-Fock calcula-
tions RHF and UHF. All other calculations are performed spin-
restricted. Test unrestricted Briickner doubles calculations
starting from the symmetry-broken UHF orbitals converges to
the restricted BD wavefunction, with S*> = 0 for the reference
determinant (Fig. S17, ESIt). Test CCSD calculations on the
C;, structure starting from the symmetry-broken UHF orbitals
converge to a slighly higher total energy than the restricted
CCSD value. Ref. 61, 82 and 83 give additional details on the
role of symmetry breaking in coupled cluster and Briickner
doubles calculations.

Fig. 11 shows EDR(Fju,,) from RHF, UHF, and Briickner
doubles calculations on solvated electron pairs. Table 3 shows
the corresponding VDE and u,,. Fig. S15 (ESIT) shows the RHF
and UHF frontier orbitals, and Fig. S16 (ESIt) shows the LSDA,
B3LYP, and CCSD EDR(F;u,y,). Just as in Fig. 4 and 10, the RHF
and UHF EDR(7;u,,) highlight the same region of space as the

This journal is © the Owner Societies 2015

Isosurfaces SOMO = 0.017 bohr=>/2 (left), MP2 spin density = 0.0004 bohr~* (middle), and MP2 EDR(r;u.,) = 0.7 (right) for Li(NH3)4 (top) and

RHF and UHF orbitals in Fig. S15 (ESIT). Both structures have a
delocalized threefold symmetric RHF and BD EDR(F;u,,), while the
spin-up and spin-down UHF EDR(F;u,,) show broken symmetry.

The most notable result in Table 3 is the dramatic role of
nondynamical correlation. Ref. 4 argued that “the Li(NHj3),
SOMO is like a big hydrogen atom (or alkali metal) SOMO”. We
find that (Li(NHj3),), is like a stretched (“big”) H, with signifi-
cant nondynamical correlation.>® Symmetry-broken UHF calcu-
lations stabilize the solvated electron pairs by 0.2-0.25 eV, and
reduce their characteristic delocalization length u,, by almost
2 Angstrom. Symmetry-restricted CCSD, BD, and DFT calculations
increase the VDE consistent with both dynamical and nondymaical
correlation, and also significantly localize the electrons. The rela-
tively large CCSD T1 diagnostic® 0.022 suggests that even these
calculations may not capture all nondynamical correlation present.
However, the results suffice to show how the EDR quantifies the
localizing effects of nondynamical correlation.

D. Transition to a metallic state

We conclude by considering how the EDR gives insight into
lithium-ammonia solutions’ transition to a metallic state.
Previous simulations suggest that solvated spin-paired electrons
coalesce into tunnel-like extended states at 2-9 mole percent
metal."”>"” We simulate the coalescence of three such electron
pairs confined in an extended (NHj),, cavity (Fig. 12). The model
system is small enough to permit accurate CASSCF calculations
of “strong” nondynamical correlation. We emphasize that this
model system does not capture all aspects of coalescence. For
example, the six electrons are confined to the cavity by the
localized basis set, the electron-NHj; interactions are treated by
a simple pseudopotential, and the cavity geometry is fixed at an
artificial high-symmetry state. However, we suggest that this
model suffices to illustrate the interplay of delocalization and
nondynamical correlation.
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Fig. 11 Isosurfaces EDR(F;u,) = 0.7 of the RHF (left), symmetry-broken UHF 1 and | (middle), and BD (right) EDR of Cs, (top) and Dszq4 (bottom)

(Li(NHz)4)>.

Table 3 Computed VDE and u,, for Cs, and Dzq4 (Li(NH3)4), (Fig. 11)

C3v D3a
Method  VDE (eV)  u,, (Angstrom) VDE (eV)  u,, (Angstrom)
RHF 7.13 7.2 7.09 7.0
UHF 7.38 5.5 7.28 5.6
LSDA 9.83 5.8 9.85 5.7
B3LYP 9.27 6.2 9.25 6.1
BHLYP 8.62 6.4 8.61 6.2
CCSD 8.30 6.3 8.26 6.2
BD 8.28 6.3 8.24 6.2

Fig. 12 plots the EDR at u = 2.6 Angstrom from RHF, UHF,
and CASSCF(6,12) calculations. This « value maximizes the
RHF (EDR(u)), and is thus representative of the solvated
electrons. Fig. 13 offers a complimentary perspective, showing
EDR(x;u) for all delocalization lengths u, evaluated at points
x along the cavity center and plotted using the conventions of
Fig. 1. Fig. 13 also includes a UHF calculation on the heptet
state of six unpaired electrons. Fig. S18 (ESIf) shows the corre-
sponding electron densities.

The EDR in Fig. 12 and 13 illustrates the interplay of electron
delocalization and correlation. The singlet RHF electrons form
three electron pairs with limited inter-pair delocalization. The
UHF heptet in Fig. 13 instead shows six nearly isolated electrons,
shifted down to shorter delocalization lengths. CASSCF calcula-
tions on the singlet state show a mixture of these two effects. The
CASSCF EDR shows a modest amount of inter-pair delocaliza-
tion, consistent with the inter-pair interactions important to the
transition to the metallic state.>® The EDR also shifts down to
lower delocalization lengths, consistent with the aforementioned
correlation-induced localization. The CASSCF EDR is generally
smaller (darker) than that from the RHF calculation, consistent

18314 | Phys. Chem. Chem. Phys., 2015, 17, 18305-18317

Fig. 12 EDR(F:u = 2.6 Angstrom) = 0.6 isosurfaces for RHF (top), LSDA (middle),
and CASSCF (bottom) calculations on six electrons in an ammonia cavity.
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Fig. 13 EDR(x;u) for multiple u values, plotted for points x along the center of the cavity in Fig. 12. Horizontal lines denote the u value plotted in Fig. 12.

with the normalization effects in Fig. 2. Finally, the LSDA
captures the increased inter-pair interactions of CASSCF, but
does not capture the detailed structure of the CASSCF state or
the “full downward” shift to smaller delocalization lengths u.

V. Conclusions

The results presented here illustrate that the electron delocali-
zation range EDR(r;u) is a useful theoretical tool for visualizing
and quantifying the delocalization of solvated electrons. The
density matrix plots in Fig. 1 illustrate how the EDR provides a
specific, quantitative probe of the “off-diagonal” delocalization
(coherence) critical to chemical bonding and reactivity. Fig. 6
illustrates that system-averaged u,, obtained from the EDR can
reproduce existing MO-based measures of solvated electrons’
average delocalization. Importantly, Fig. 4 shows that EDR(;u,,)
directly links this system-averaged quantity back to a real-space
picture. EDR(F;u,,) highlights precisely the region of space
containing the solvated electron, without requiring special
selections or localization of orbitals. Such connections between

This journal is © the Owner Societies 2015

system-averaged and real-space properties will help interpret
the chemistry of more complicated systems. Finally, our studies
of spin-paired electrons show that the density-matrix-based
EDR is readily applicable to strongly correlated singlets systems
where spin-density-based descriptors are unavailable (in the
absence of symmetry breaking) and orbital-based descriptors
can be qualitatively incorrect. To illustrate, Fig. S19 (ESIY)
shows the natural orbital occupancies (MO-basis density matrix
eigenvalues) from the CASSCF(6,12) calculations in Fig. 12 and 13.
The first five natural orbitals have signficantly noininteger values,
indicating a breakdown of the MO approximation. Overall, these
results motivate continued application of the EDR to quantify and
interpret the calculated electronic structures of delocalized and
solvated electrons.
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