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Traditionally, global cluster structure optimization is done by minimizing
energy. As an alternative, we propose minimizing the difference between
actual experimental observables and their simulated counterparts.
To validate and explain this approach, test cases for small clusters
are shown. Additionally, an application to real-life data for a larger
cluster illustrates the advantages of this method: it provides direct
links between properties and structure, and avoids problems both
with insufficient accuracy in theoretical energy-ordering and with
non-equilibrium conditions in experiment.

The experimental and theoretical studies of clusters and their
properties have enjoyed a fruitful relationship." One of the funda-
mental recurring questions concerns the geometric structure of the
studied cluster as it influences most physical and chemical proper-
ties. Finding the globally minimal geometry on the electronic or
free energy hypersurface is in itself an extremely challenging
undertaking.> Using these theoretical results for analysis of experi-
mental data adds significant additional complexity. First, the
experimental observable is typically not structural data but physical
properties, such as spectral data or ionization potentials. Second,
while there is the thermodynamical argument that the cluster
structure of globally minimal free energy is of importance under
equilibrated experimental conditions, experimental setups may
produce kinetically trapped cluster structures. This in turn makes
theoretical results relying on equilibrium energy ordering proble-
matic. In this contribution, we propose a different approach that
solves the problem of kinetically trapped clusters and links theore-
tical results directly with the experimental observable.

We will begin by discussing how an energy-targeting global
cluster structure optimization can be transformed into an
observable-targeting one, within the framework of a genetic
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algorithm implementation. Subsequently, we will give a detailed
overview of the steps required for directly targeting the infrared
(IR) spectrum as one possible observable. We will continue by
demonstrating that our novel observable-targeting algorithm is
capable to both reproduce solutions of benchmark problems and
to directly analyze experimental data in cases where the energy-
targeting approach is problematic. Finally, a brief summary and a
discussion of advantages and disadvantages of this optimization
strategy will conclude this contribution.

Within this contribution, we will use the theoretical frame-
work of genetic algorithms as a global optimization strategy.
However, there is no fundamental reason why other global
optimization protocols could not be redesigned to implement
the algorithmic changes laid out. An overview of global optimization
strategies as commonly employed in cluster structure optimiza-
tion can be found in ref. 3 and 4.

Genetic algorithms (GAs) belong to the broad class of non-
deterministic global optimization algorithms.” For historical
reasons, they borrow most of their terminology from natural
evolution. Every solution candidate to a given optimization problem
is encoded into a genome. The candidate possesses a fitness, a
metric expressing the quality of this solution, in relation to the
objective function. If the best solution to the problem is known, the
fitness has the character of a difference, otherwise it is unbounded,
with lower fitness values by definition representing better solutions.
A population of different solution candidates is subjected to a
repeating process of genetic selection, crossover, mutation, fitness
evaluation and substitution. These iterations will improve both the
best fitness in, and the average fitness of, the population. For reviews
of GA implementations and their application to global cluster
structure optimization, we refer to ref. 3 and 4. Details of our ocoLem
GA package used here, featuring an abstract, object-oriented concept
and a highly scalable pool concept,® can be found in ref. 7-9.

In the well established case of targeting the electronic energy,
the fitness is readily obtained as (a function of) the energy after
a local optimization of the candidate structure. To target an
observable instead requires replacement of the energy-based
fitness by a metric for the difference to a reference observable.
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Hence, the algorithm must now evaluate the observable for the
candidate solution first. This obviously increases the cost of
each step in the optimization by the cost of the observable
evaluation. Therefore, it may be worthwhile to filter by the electronic
energy of the cluster if the subsequent property evaluation is
computationally expensive and high-energy minima can be ruled
out as valid solutions. Other filters are possible, depending on
the physical problem at hand. Additionally, changing the objec-
tive function may alter the characteristics and the difficulty of
the search space. We will investigate this fundamental question
in future applications.

As an example for an observable-targeted cluster structure
optimization, we will discuss how to target an experimental IR
spectrum. We wish to put emphasis on this property-computing
algorithm being just one possiblity for an observable-targeting
optimization. Following the local optimization of the cluster into
a near energy minimum, a micro-canonical molecular dynamics
propagation is carried out. Randomized, Gaussian-distributed
initial velocities are assigned to all atoms to mimic the desired
temperature (corresponding to the effective temperature in the
experimental setup). As explicitly investigated by Thomas et al.,'®
only short propagation times of a few picoseconds are needed to
obtain reasonable spectra. Compared to the standard normal-
mode analysis, the advantage of this MD approach is that fully
anharmonic, coupled spectra'® are obtained. During the propa-
gation, the total dipole moment of the cluster is calculated and
recorded at each MD step. The resulting trajectory of dipole
moments is autocorrelated. To avoid artificial, additional peaks
(“ringing”, Gibbs phenomenon) at the ensuing Fourier transforma-
tion, induced by the discontinuity of the autocorrelation function at
the end of the propagation interval, the autocorrelation function is
folded with a Gaussian filter function. This is a standard procedure
in signal processing, and also well established for the present
purpose of obtaining spectra from autocorrelation functions.'* The
spectrum is obtained through a subsequent Fourier-transformation
of the folded autocorrelation function. Using the dipole auto-
correlation function will yield only the IR spectrum of the
cluster; the power spectrum could be obtained from the velocity
autocorrelation function.™

At this stage, the fitness metric must compare the reference
spectrum and the simulated spectrum, and summarize the differ-
ences between these two into a scalar, the fitness. The difference
integral of the two discretized spectra in a defined wavenumber
interval is a natural choice for this. Before computing the fitness
from this difference integral, possible overall intensity differences
between reference and simulated spectra are compensated via a
shift to zero at user-defined points and a one-dimensional optimiza-
tion of an overall intensity scaling factor for the simulated spectrum,
with the coefficient being bound to smaller than 10.0.

It is important to note that no gradient with respect to the
property is required at any stage of this simulation protocol.
Only energy and nuclear gradients are needed to complete all
steps. Also, no experimental knowledge needs to be used other
than the target observable.

To demonstrate the above ideas and their implementation,
we have selected pure neutral water clusters as an application
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example, modeled with the TTM3-F potential."””> With varying
potential models, these clusters enjoy the status of a bench-
mark system in the theoretical cluster structure optimization
community.®**™® Size-selective experiments on pure neutral
water clusters (H,0), were limited to n < 12" for a long time,
but recent developments®* > may have pushed this upper limit
to n = 70 or even higher. The directly observed property in the
latter experiments is the OH-stretch IR spectrum in the so-called
“fingerprint” region (2800-3800 cm ). Interpretation of these
experiments currently is somewhat speculative,” and links between
theory and experiment need to be strengthened.'®**?* Also, the
currently practical upper limit of energy-based global structure
optimization is unclear.®'® Thus, new theoretical developments
in this area are needed.

A basic requirement for the IR-spectra-targeted global cluster
structure optimization advertised here is that it can differentiate
between different structural isomers. This is indeed possible, as
shown in Fig. 1 for (H,O)e. This is the smallest water cluster
exhibiting several qualitatively different, low-energy, three-
dimensional structural isomers,”® among others the “cage”
and the “prism”. The IR-spectra of the cage and of the prism
isomers are rather different in the fingerprint region. There-
fore, we should expect that our optimization strategy should
find the cage when a cage-spectrum is provided as reference
and the prism when a prism-spectrum is the reference, respectively.
This is exactly what happens. Since this is a proof-of-principle
demonstration, the reference spectra were not generated
experimentally but rather with the same MD-based algorithm
described above. Nevertheless, the reference spectra and the
spectra of the optimized clusters differ slightly. This is due to
the dependence of IR intensities on the MD-trajectory length,
which is present for short MD-trajectories but disappears for
longer trajectories."® Of course, longer MD-trajectories take more
computing time, for their generation but also for the ensuing steps
(autocorrelation, folding, Fourier transform). In a global optimiza-
tion setting, one wants to keep this computational effort limited.

infrared intensity [arb. units]
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Fig. 1 Feasibility demonstration of IR-spectra-targeted cluster structure
optimization for (H,O)s: Comparison of IR spectra of the given reference
cluster structure (black lines) and of the best cluster structure from global
optimization (red lines), started from random seeds. (top) Cage (shifted
upwards by an arbitrary amount, for clarity), (bottom) prism. The corres-
ponding cluster structures are shown as insets.
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reference 1: 80% cage + 20% prism

infrared intensity [arb. units]

3000

2800 3200 3400 3600 3800
-1
wavenumber [cm 7]
Fig. 2 Illustration of a successive N-stage algorithm for disentangling

mixed IR-spectra arising from N different isomers, here for N = 2. (top) In
a first stage, an 80: 20 mixture of cage- and prism-spectra is the reference,
and the cage structure is found. (bottom) In a second stage, the first-stage
cage spectrum is subtracted from the reference spectrum, and then the
remaining prism contribution is detected.

Hence, we have deliberately taken MD-trajectories that are
significantly shorter than advocated in ref. 10, to demonstrate
that this is not a severe problem.

Depending on the experimental procedure and the system
size, experimental spectra may arise from more than one
cluster isomer, with different abundances. Therefore, we have
set up a similar situation for our (H,O), test case, too: We have
generated a mixed IR spectrum as reference, consisting of 80%
cage and 20% prism. For this reference, our global structure
optimization finds the cage structure as best fit. We have then
subtracted the IR spectrum corresponding to this optimized
cage, generating a new reference spectrum as the remainder.
A second global structure optimization run then finds the
prism (c¢f. Fig. 2). Obviously, this sequential procedure can be
extended towards more than two mixture components.

Although this contribution is only meant as a proof-of-
principle demonstration of the basic idea, we already provide first
outlooks to real-life applications. For this, we utilize experimental
IR spectra data from ref. 23 for (H,0),s. To emulate the best
possible traditional approach of simulating this spectrum, we have
collected the 500 lowest-energy structures from all our energy-
targeted global optimization runs with the TTM3-F potential for
(H»0),5. For all of these, we have simulated the IR spectra using the
MD-based autocorrelation approach sketched above. Assuming
that the experimental spectrum can be approximated by a linear
combination of these 500 spectra but that the search space for the
best linear combination of this type may well be multimodal and
non-convex, we have employed the global optimization power of
ocoLeM to find the best such linear combination. Fig. 3 depicts this
best superposition, in direct comparison to the experimental
spectrum. Despite using excessive settings in this optimization
(e.g., 42 million steps), agreement with the experimental spectrum
is far from perfect. One would expect that a fairly simple, one-
dimensional function should be representable far better with
500 basis functions, in particular if many basis functions
contribute (37 with a coefficient above 0.1). Therefore, barring
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Fig. 3 Approximation of the experimental (H,0O),5 IR spectrum (black line)
by a globally optimized superposition (blue line) of the simulated IR spectra
of the 500 lowest-energy (H,0),s structures.

severe defects in the experiment and/or in the TTM3-F potential,
the conclusion is that this 500-function basis is incomplete;
decisive features are missing from it.

This is in stark contrast to what happens when we employ
our new property-based global optimization, ie., when we
globally optimize (H,0),5 cluster structures for best fit with
this experimental spectrum. Our best result at the present stage
is shown in Fig. 4, produced with three orders of magnitude
fewer global optimization steps (24 thousand). The agreement
between experiment and theory in Fig. 4 is not decisively better
than in Fig. 3; in both cases, spectral features are missing
(e.g., between 3000 and 3100 cm ™~ '). However, while 37 different
structures contribute visibly to the simulated spectrum in
Fig. 3, there only is one single structure responsible in Fig. 4,
and no structure similar to this one occurs in the set of 500 low-
energy structures used for Fig. 3. Hence, our new approach
produces valuable structural information hypotheses from the
experimental IR spectrum, while the traditional approach offers
little help for this task.

In this contribution, we have shown that the traditional,
two-step recipe of first optimizing cluster structures globally for
lowest energy and then simulating experimental observables

T
exp. reference
optimized cluster

infrared intensity [arb. units]

1 1 1 1
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Fig. 4 With the same experimental (H,O),5 IR spectrum (black line) as in
Fig. 3 as reference, global cluster structure optimization yields a well-fitting
simulated spectrum (red line) for the best structure (inset).
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for these lowest-energy structures may be replaced by the more
direct approach of optimizing cluster structures globally
for smallest deviation between experimentally measured and
theoretically simulated properties. We have shown this for the
fairly complicated case of IR spectra as property, but clearly this
recipe is far more general and can be used for any property or
even collections of properties.

This new route has several advantages: The energy-based,
two-step recipe requires a theoretical model that produces
reliable energies and properties; the direct approach requires
only a reliable property model. Furthermore, energy is a single
number, frequently plagued by erratic error compensation
effects. Using several properties instead (or an array or function
property, as in the case of spectra) is inherently more reliable
and more informative.

Last but not least, in many cluster experiments, it is hard to prove
that the clusters carry no memory of their preparation but are
thermally relaxed; hence it is convenient that the direct approach
does not rely on this assumption. As possible disadvantage, one may
argue that some of the physics is lost if this assumption is not made.
However, if there is no thermal distribution in experiment, then this
is the physics that needs to be captured. Our new approach can
provide direct links between observed properties and underlying
structures also in this case. Comparison to a thermal distribution of
structures, and drawing physical conclusions from this comparison,
can then be performed as a secondary step.

In any case, we are confident that property-targeting global
cluster structure optimization is a useful addition to the
theoretical toolbox, allowing for extended and more direct
contact between theory and experiment in cluster research.
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