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Nonseparable exchange–correlation functional
for molecules, including homogeneous catalysis
involving transition metals†

Haoyu S. Yu,a Wenjing Zhang,ab Pragya Verma,a Xiao Heac and Donald G. Truhlar*a

The goal of this work is to develop a gradient approximation to the exchange–correlation functional of

Kohn–Sham density functional theory for treating molecular problems with a special emphasis on the

prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training

and validation of exchange–correlation functionals is organized in terms of databases and subdatabases.

The key properties required for homogeneous catalysis are main group bond energies (database MGBE137),

transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular

structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a

newly extended broad database called Database 2015, which is presented in the present article and in its

ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in

the N12 functional, we design a new functional by using Database 2015 and by adding smoothness con-

straints to the optimization of the functional. The resulting functional is called the gradient approximation

for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any

available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable

results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training

sets and outside the training sets. The convergence tests and the smooth curves of exchange–correlation

enhancement factor as a function of the reduced density gradient show that the GAM functional is a

smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs,

have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for

integrations and lower costs for extended systems. These computational advantages combined with the

relatively high accuracy for all the key properties needed for molecular catalysis make the GAM functional

very promising for future applications.

1 Introduction

Kohn–Sham (KS) density functional theory has been very suc-
cessful for electronic structure calculations in both physics and
chemistry.1 The accuracy of KS calculations depends on the
quality of the exchange–correlation functional. The quest for
quantum mechanical methods that can be accurately applied to
study atomic, molecular, and material properties has resulted

in the design of exchange–correlation functionals with a variety
of ingredients, costs, and accuracies, where the accuracy may
depend strongly on the kind of property that is calculated.
Exchange–correlation functionals that depend only on spin-up
and spin-down electronic densities (ra and rb) are known as
local spin density approximations (LSDAs), and ones that
depend on both the spin densities and spin density gradients
are called gradient approximations (GAs, in particular GGAs
and NGAs). More complicated functionals include ingredients
calculated from the orbitals (which are functionals of the
density), in particular spin-up and spin-down local kinetic
energy densities (as in meta-GGAs and meta-NGAs), nonlocal
Hartree–Fock exchange (as in hybrid functionals), and/or non-
local correlation (as in doubly hybrid functionals, which have
both nonlocal exchange and nonlocal correlation.). (One can
also include nonlocal correlation without including nonlocal
exchange.) Functionals depending only on local variables, such
as spin densities, their gradients, and spin-specific local kinetic
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energy densities, are often called local (especially in the chemi-
stry literature, while the physics literature often labels them as
semilocal if they include density gradients or spin kinetic
energy densities).

Even though the meta and nonlocal functionals can give
more accurate results than GGAs and LSDAs, GAs are still of
great interest for four reasons. First, GAs are widely implemented in
many programs because of their ease of coding. Second, GAs often
have better self-consistent field (SCF) convergence and smaller grid
requirements than meta functionals. Third, calculations employing
GAs are less expensive than calculations involving nonlocal func-
tionals, with the difference being more pronounced for extended
and large systems and when geometries are optimized.

The fourth reason for special interest in GAs is that local
functionals often have better performance than hybrid func-
tionals, on average, for systems with high multi-reference
character. Multi-reference character is the extent to which a
wave function is inherently multi-configurational so that a
single Slater determinant does not provide a good starting
point (reference function) for approximating the complete wave
function. Although KS theory does not calculate the wave
function of the interacting system, it does use a Slater determi-
nant to represent the density, and calculating the exchange
from the Slater determinant, as in Hartree–Fock exchange, can
introduce static correlation error, a result of which is that it
is often more challenging to obtain good approximations
for multi-reference systems when Hartree–Fock exchange is
included. (The unknown exact exchange–correlation energy
functional includes nonlocal effects and does not have static
correlation error, but the problem just mentioned is not
completely solved by currently available functionals.) Multi-
reference systems are sometimes called strongly correlated
systems. Many open-shell systems and transition-metal systems
have multi-reference character, and hence the ability to treat
multi-reference systems is critical to the ability to treat many
catalytic reaction mechanisms. Systems without high multi-
reference character are called single-reference systems.

Most GAs have a form that separately approximates exchange
and correlation, as first introduced by Langreth and Mehl2 and
usually called a generalized gradient approximation3 (GGA);
however, it has been shown that a nonseparable gradient approxi-
mation4 (which has more flexibility at the cost of satisfying less
exact constraints) is capable of performing well for a broader set
of properties. The original NGA, called N12, was designed to give
good predictions both of solid-state lattice constants and of
cohesive energies and molecular atomization energies; it also
gives good predictions of molecular bond lengths.4 Here we show
that we can get improved performance for barrier heights (which
are important for studies of both uncatalyzed and catalyzed
reactions) by relaxing the accuracy for lattice constants, which
are not needed for molecular (as opposed to solid-state) pro-
cesses. By diminishing the emphasis on obtaining good lattice
constants we can obtain an exchange–correlation functional that
may be more useful for treating many large and complex
homogeneous and enzymatic catalysts that do not require the
calculations on solid-state material.

A second goal of this work is to obtain improved results
for compounds containing metal atoms, including transition
metal compounds with high multi-reference character, by
incorporating a greater amount of representative data for
metal–ligand bond energies in the training set of a density
functional. A third goal of the present work is to obtain a very
smooth exchange–correlation functional by enforcing an
unsmoothness penalty as part of the optimization process.

Combining these three goals, we have designed a new
exchange–correlation functional called gradient approximation
for molecules, or GAM, and this new functional is presented
here. The GAM functional is an NGA, and so it depends only
on spin densities and spin density gradients. The parameters
of the GAM functional are optimized against a broad set of
molecular and solid-state data in a new database called Data-
base 2015, which is also presented here. We will show that the
resulting GAM functional yields good results for main group
bond energies, chemical reaction barrier heights, transition-
metal bond energies, weak interaction energies between noble
gas atoms, and bond lengths of diatomic molecules.

Section 2 describes the computational details. Section 3
describes Database 2015, for which complete information is
given in the ESI.† Section 4 describes previously available
functionals to be used for comparison. Section 5 describes
the design and optimization of the GAM functional. Section 6
gives results; Section 7 provides discussion; and Section 8
summarizes the main conclusions.

2 Computational details

All the calculations in this paper were performed by a locally
modified version5 of the Gaussian 09 program.6 Ultrafine grids
(‘‘99,590’’) are used to evaluate the exchange–correlation energies
of our new GAM functional. We use the stable = opt keyword in
Gaussian 096 to find the stationary solution to the Kohn–Sham
equations by allowing symmetry breaking in the wave function if
the symmetry-constrained solution is unstable. The periodic
boundary condition (PBC) algorithm7 in Gaussian 096 is used
to calculate the lattice constants, cohesive energies, and semi-
conductor band gaps in our new Database 2015, which will be
explained in the next section.

Besides testing the new functional on the training subset of
Database 2015, we made several tests outside the training set.
First we tested the new functional against subdatabases for
semiconductor band gaps (SBG31) and solid-state cohesive
energies (SSCE8), which are in Database 2015 but outside the
training set. We also tested our functional against other data
that is not in the training set. This data includes a recently
published database WCCR for transition metal coordination
reactions56 (renamed here as WCCR10 for consistency with our
general naming scheme), the enthalpies of binding of O2 and
N2 to the metal–organic framework Fe2(dobdc), the binding
of C2H4 to Pd(PH3)2, Ag2 dimer and FeC bond dissociation
energies, transition metal dimer bond distances, and the Ar2

potential energy curve.
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For the WCCR10 database we use the same basis set
(def2-QZVPP) and geometries as used in the original paper;
these geometries, which were optimized by functional BP86,33,34

are provided in the ESI† of the WCCR paper.56

For calculating the binding enthalpies of O2 and N2 bound
to Fe2(dobdc), we used an 88-atom cluster model of the
experimental structure of Fe2(dobdc) containing three iron
centers. The details of this cluster and rationale for its design
are described in our earlier work.8 This cluster has three iron
atoms, and here we studied binding at the central iron, which
best represents the immediate environment around iron in the
actual MOF. During optimization, the cluster of the MOF was
frozen and the guest molecules (O2 or N2) were allowed to relax.
The binding enthalpies were calculated using the formula given
in eqn (1) of ref. 8.

The binding energy of the Pd(PH3)2C2H4 complex were
computed using four basis sets. In all four basis sets, Pd atom
has 18 active electrons and 28 core electrons that are replaced
by an effective core potential. Basis set BS1 denotes the Stuttgart–
Dresden–Dunning (SDD) basis set for Pd9 and the cc-pVTZ basis
set for P,10 C, and H.11 Basis set BS2 denotes the def2-TZVP basis
set for Pd12 and the cc-pVTZ basis set for P, C, and H. Basis set BS3
denotes the def2-TZVP basis set for Pd, the cc-pV(T+d)Z basis set
for P,13,14 and the cc-pVTZ basis set for C and H. Basis set BS4
denotes the def2-TZVP basis set for Pd, the maug-cc-pV(T+d)Z
basis set for P,15 the maug-cc-pVTZ basis set for C,15,16 and the
cc-pVTZ basis set for H.

One basis set was used for Ag dimer, namely jun-cc-pVTZ-PP,17–19

one basis set was used for homonuclear transition metal bond
distance, namely LanL2DZ,20–23 and two basis sets were used
for Ar dimer, namely the aug-cc-pVQZ10,24 and aug-cc-pV6Z25

basis sets.

3 Database 2015

Database 2015 is our new database for optimizing and testing
density functionals. Compared to Database 2.0 that we used in
previous work26 the following changes are made:

We divide the previous bond energy databases according
to two types of classification: (i) whether the molecule contains
only main-group nonmetal atoms or it also contains main-
group-metal atoms or transition-metal atoms; (ii) whether the
molecule has singe-reference character, i.e., can be well
described by a single configuration wave function, or multi-
reference character, i.e., cannot be so described. Then we added
additional data to the underpopulated classes. Accordingly we
have six new subdatabases for bond energies. Theses subdata-
bases are as follows (their shorthand names are in parentheses,
where the final number in the shorthand name of a subdata-
base is the number of data):
� single-reference main-group-metal bond energies

(SR-MGM-BE9),
� single-reference main-group-nonmetal bond energies

(SR-MGN-BE107),
� single-reference transition-metal bond energies (SR-TM-BE17),

� multi-reference main-group-metal bond energies
(MR-MGM-BE4),
� multi-reference main-group nonmetal bond energies

(MR-MGN-BE17),
�multi-reference transition-metal bond energies (MR-TM-BE15).
A new subdatabase called NGDWI21 has been added for

noble-gas-dimer weak interactions. It comprises both homo-
dimers and heterodimers.

We have added three new subdatabases for atomic excitation
energies, namely
� 3d transition metal atomic excitation energies (3dAEE7),
� 4d transition metal atomic excitation energies (4dAEE5),
� p-block excitation energies (pEE5).
Two new subdatabases for p-block isomerization energies

are added:
� 2p isomerization energies (2pIsoE4),
� 4p isomerization energies (4pIsoE4).
A new subdatabase for molecular geometries has been

added; it is called diatomic geometries for heavy atoms (DGH4).
The above points summarize the main changes made to

our previous database,26 called Database 2.0. A complete list
of the subdatabases included in Database 2015 is given in
Table 1, which also shows the number of data in each category
(the inverse weight column of this table will be explained in
Section 5). The database is divided into primary subdatabases,
and some of the primary subdatabases are further divided into
secondary subdatabases. Complete details of the new database
and its layers of subdatabases, including geometries and references
for the included data and also the basis sets we use for calculations
on the various subdatabases, are given in the ESI.†

4 Functionals for comparison

We compare our results to 22 previously available exchange–
correlation functionals. Since GAM depends only on spin
densities and spin density gradients, we compare our results
mainly to GAs, in particular to 14 GGAs and the one previously
available NGA. In a practical sense, three of the GGAs are
corrected to second order in the density gradient expansion
for exchange, and the other 11 are not. Altogether we compare
to 20 local functionals of four types and to two hybrid functionals.
The local functionals are an LSDA, namely GKSVWN5;27–29

14 GGAs, namely SOGGA,30 PBEsol,31 PBE,32 BP86,33,34 PW91,35

BLYP,34,36 mPWPW,37 revPBE,38 BPW91,34,35 RPBE,39 HCTH407,40

SOGGA11,41 OLYP,36,42 and OreLYP;36,42,43 an NGA, namely N12;4

and four meta-GGAs, namely TPSS,44 revTPSS,45 M06-L,46 and
M11-L.47 For context we also compare to two popular hybrid
functionals, namely a global-hybrid GGA, B3LYP;42,48,49 and a
range-separated hybrid GGA, HSE06.50,51 All these functionals
are listed in Table 2 with the type, the percentage of Hartree–
Fock exchange, the year, and the original reference. A more
complete comparison of gradient approximations to more
advanced functionals of the meta-GGA, meta-NGA, and hybrid
type is found elsewhere26 and will not be repeated here, where
our emphasis is on gradient approximations for the four
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reasons stated in the introduction, so comparisons to more
advanced functionals are limited here to providing context.

5 Design and optimization of the GAM
functional

The general functional form of GAM is the same as N12,4 which
has the flexibility to approximate both exchange and correlation
effects in terms of spin density rs and reduced spin density

gradient xs. In order to design a good functional, we use a broad
molecular and solid-state database to optimize the parameters of
the functional, and we also add smoothness constraints to our
optimization. We will discuss the functional form in Sections 5.1–5.3
and the optimization of the functional in Section 5.4.

5.1 Functional form

The exchange–correlation energy Exc of the GAM functional
is the sum of nonseparable exchange–correlation component
ENSGA

nxc and an additional term that is nominally treated as a

Table 1 Databases in included in Database 2015a,b

n Primary subset Secondary Description In
c Ref.

ME417
1 SR-MGM-BE9 Single-reference main-group metal bond energies 2.00

SRM2 Single-reference main-group bond energies 26
SRMGD5 Single-reference main-group diatomic bond energies 26 and 65
3dSRBE2 3d single-reference metal–ligand bond energies 66

2 SR-MGN-BE107 Single-reference main-group nonmetal bond energies 0.20 26
3 SR-TM-BE17 Single-reference TMd bond energies 3.15

3dSRBE4 3d single-reference metal–ligand bond energies 66
SRMBE10 Single-reference metal bond energies 26
PdBE2 Palladium complex bond energies 67
FeCl FeCl bond energy 68

4 MR-MGM-BE4 Multi-reference main-group metal bond energies 4.95 65
5 MR-MGN-BE17 Multi-reference main-group nonmetal bond energies 1.25 26
6 MR-TM-BE13 Multi-reference TM bond energies 0.76

3dMRBE6 3d multi-reference metal–ligand bond energies 66
MRBE3 Multi-reference bond energies 26
Remaining Bond energies of remaining molecules: CuH, VO, CuCl, NiCl 68

7 MR-TMD-BE2 Multi-reference TM dimer bond energies (Cr2 and V2) 10.00 26
8 IP23 Ionization potentials 5.45 26 and 69
9 NCCE30 Noncovalent complexation energies 0.10 26 and 70–73
10 NGDWI21 Noble gas dimer weak interactions 0.01 26 and 74
11 3dAEE7 3d TM atomic excitation energies 0.40 69 and 75
12 4dAEE5 4d TM atomic excitation energies 6.90 76
13 pEE5 p-block excitation energies 1.74 77
14 4pIsoE4 4p isomerization energies 8.00 78
15 2pIsoE4 2p isomerization energies 7.81 78
16 IsoL6/11 Isomerization energies of large molecules 2.00 26
17 EA13/03 Electron affinities 2.96 26
18 PA8 Proton affinities 2.23 26
19 pTC13 Thermochemistry of p systems 5.75 26
20 HTBH38/08 Hydrogen transfer barrier heights 0.25 26
21 NHTBH38/08 Non-hydrogen transfer barrier heights 0.80 26
22 AE17 Atomic energies 10.22 26
23 HC7/11 Hydrocarbon chemistry 6.48 26
24 DC9/12 Difficult cases 10.00 26

MS10
25 DGL6 Diatomic geometries of light-atom molecules 0.01 26
26 DGH4 Diatomic geometries of heavy-atom molecules: ZnS, HBr, NaBr 0.01 79

Diatomic geometry of Ag2 0.0013 80

SS17
27 LC17 Lattice constants 0.013 26

SSE39
28 SBG31 Semiconductor band gaps NAe 26
29 SSCE8 Solid-state cohesive energies NA 26

WCCR10
30 WCCR10a Ligand dissociation energies of large cationic TM complexes NA 56

a Databases 1–27 were used with various inverse weights in training, and databases 1–29 constitute Database 2015. Database 30 is from T.
Weymuth et al. (ref. 56), and – like databases 28 and 29 – it was used only for testing. b In the name of a database or subdatabase, the number at the
end of the name or before the solidus is the number of data. For example, ME417, SR-MGM-BE9, IsoL6/11, and DGH4 contain respectively 417, 9, 6,
and 4 data. c Inverse weights with units of kcal mol�1 per bond for databases 1–7, kcal mol�1 for databases 8–24, and Å for databases 25–27. d TM
denotes transition metal. e NA denotes not applicable.
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correlation energy Ec. Typically one writes the first component as
Ex, however, we label it as ENSGA

nxc to show that it is a nonseparable
approximation involving both exchange and correlation. Since we
optimize the functional empirically and do not enforce the factor-
izable form on the first term, the first term also represents part of
correlation energy, and similarly the second term is not purely
correlation. Both terms must also include an empirical contribu-
tion required to account for the difference of the exact electronic
kinetic energy from that computed from the orbitals of the Kohn–
Sham determinant. The philosophy used in designing the func-
tional form is consistent with the statement of Tozer and Handy
that ‘‘The functionals represent exchange and correlation effects in
a combined manner. Individual exchange and correlation terms
cannot be isolated’’.52 Our total exchange–correlation functional is

Exc = ENSGA
nxc + Ec (1)

where

ENSGA
nxc ¼

Xb
s¼a

ð
drGNSGA

nxcs rs; xsð Þ (2)

Ec ¼ Ecab þ
Xb
s¼a

Ecss (3)

5.2 Nonseparable exchange–correlation functional form

In eqn (2), the nonseparable energy density is written as

GNSGA
nxcs = eUEG

xs (rs)Fx(rs, xs) (4)

where Fx is the exchange enhancement factor, which in the
present paper is defined as

Fx ¼
Xm
i¼0

Xm0
j¼0

aiju
i
xsv

j
xs (5)

where rs stands for the spin density, uxs and vxs are finite
variables defined by

uxs = gxsxs
2/(1 + gxsxs

2) (6)

vxs = oxsr
1/3
s (1 + oxsr

1/3
s ) (7)

xs stands for reduced spin density gradient, for which we use
the definition of Becke:34

xs ¼
rrsj j
r4=3s

(8)

eUEG
xs stands for the uniform electron gas energy, which is

calculated by27,28

eUEG
xs ¼ �3

2

3

4p

� �1=3

r4=3s (9)

gxs and oxs are unitless parameters taken to have the same
values as the ones in N12,4 namely gxs = 0.004 and oxs = 2.5,
and the aij are unitless parameters to be determined. Since
both rs and xs range over [0,N), the dependent variables uxs

and vxs range over [0,1].
A GGA exchange functional can be written like eqn (4) but

where the enhancement factor Fx depends only on the reduced

Table 2 Exchange–correlation functionals tested in this paper

Category Xa Type Year Method Ref.

Local 0 LSDA 1980 GKSVWN5b 27–29
0 GGA – correct to 2nd order

in exchange
2008 SOGGA 30

0 2008 PBEsol 31
0 2011 SOGGA11 41
0 GGA – other 1988 BP86 33 and 34
0 1988 BLYP 34 and 36
0 1991 PW91c 35
0 1991 BPW91 34 and 35
0 1996 PBE 32
0 1997 mPWPW 37
0 1997 revPBE 38
0 1999 RPBE 39
0 2000 HCTH407 40
0 2001 OLYP 36 and 42
0 2009 OreLYP 36, 42 and 43
0 NGA 2012 N12 26 and 74
0 2015 GAM Present
0 Meta-GGA 2003 TPSS 44
0 2006 M06-L 46
0 2009 revTPSS 45
0 2011 M11-L 47

Nonlocal 20 Global hybrid GGA 1994 B3LYP 42 and 48
0–25 Range-separated hybrid GGA 2009 HSE06 50 and 51

a X is the percentage of nonlocal Hartree–Fock exchange. When a range is given, the first value is for small interelectronic distances, and the
second value is for large interelectronic distances. Details of the functional form that joins these regions of interelectronic separation are given in
the references. b GVWN5 denotes the Gáspár approximation for exchange and the VWN5 fit to the correlation energy; this is an example of the local
spin density approximation (LSDA), and it has the keyword SVWN5 in the Gaussian 09 program. Note that Kohn–Sham exchange is the same as
Gáspár exchange, but Slater exchange (not tested here) is greater by a factor of 1.5. c PW91 formally satisfies the gradient expansion for exchange to
second order but only at such small values of the gradient that for practical purposes it should be grouped with functionals that do not satisfy the
gradient expansion to second order.
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spin density gradient xs. For an NGA we allow the enhancement
factor to depend also on the spin density rs.

5.3 Additional correlation functional form

In eqn (3), the correlation functional has two parts. One is
the contribution Ecab from opposite spins, and the other is the
contribution Ecss from same spins. These two contributions
are defined by

Ecab ¼
ð
dreUEG

cab

Xn
i¼0

biu
i
cab

( )
(10)

Ecss ¼
ð
dreUEG

css

Xn0
i¼0

ciu
i
css

( )
(11)

where bi and ci are unitless parameters to be determined,

ucab ¼
gcabxavg

2

1þ gcabxavg2
(12)

ucss ¼
gcssxs

2

1þ gcssxs2
(13)

gcab and gcss are unitless parameters given the same values as
in N12,4 namely, gcab = 0.006 and gcss = 0.2, xavg

2 is defined
as the average of xa

2 and xb
2, and eUEG

cab and eUEG
css represent

the correlation energy of the uniform electron gas. The
uniform-gas functions are taken from the Perdew–Wang para-
meterization53 and the ansatz of Stoll, which is used to separate
the correlation energy into same-spin and the opposite-spin
contributions.54,55

5.4 Functional optimization

In eqn (5), (10), and (11) above, we see that aij, bi, and ci are
linear parameters of the functionals, which will be optimized.
We do not force the uniform-electron-gas limit to hold when we
optimize the functional. In order to make our functional
smooth, smoothness constraints are added to the optimization,
which will be explained in detail in the last paragraph of this
section. The values of m, m0, n, and n0 are chosen as 3, 3, 4, and
4 respectively. We found that the performance of the functional
is not significantly improved by increasing these values, which
shows that one cannot obtain improved functionals simply by
adding more parameters. Therefore, in order to design good
density functionals we must pay more attention to the mathe-
matical form of the functional and the diversity of the database
we are optimizing against, instead of concentrating on the
number of parameters.

We optimize our functional against 27 primary databases,
including 24 molecular energy databases, two molecular struc-
ture databases, and one solid-state structure database. We
optimize the GAM functional self-consistently by minimizing
the following unfitness function:

U ¼
X27
n¼1

Rn=In þ lðaþ bþ cÞ (14)

where Rn is the root mean squared error of database n, In is the
inverse weight of database n, and the product of l and (a + b + c)
is the smoothness constraint, which is explained by

a ¼
X3
i¼0

X2
j¼0

ai; j � aiþ1; j
� �2þ a03 � a10ð Þ2þ a13 � a20ð Þ2þ a23 � a30ð Þ2

(15)

b ¼
X3
i¼0

bi � biþ1ð Þ2 (16)

c ¼
X3
i¼0

ci � ciþ1ð Þ2 (17)

The purpose of this constraint is to ensure that the density
functional is a reasonably smooth function of the spin densities
and their gradients. We varied the value of l from 0.001 to 0.1,
where the range is selected such that l(a + b + c) has about the

same magnitude as
P27
n¼1

Rn=In. We made fits with various values

of l, and we monitored the smoothness of the resulting
exchange–correlation functionals by plotting them, by examin-
ing the magnitudes of the linear coefficients of the exchange–
correlation functional (they should not be too large in magnitude
or having severely oscillating signs), and by checking whether
there is any difficulty in achieving self-consistent-field conver-
gence on difficult cases (we had made a list of cases where
previous functionals sometimes showed SCF convergence diffi-
culties). After balancing the performance of the functional and
the smoothness of the enhancement factor (as judged by the
three criteria just mentioned), we finally chose l to be 0.001,
which gives what we judged to be the best combination of
overall accuracy, convergence, and smoothness of the exchange–
correlation functional.

In order to design a functional with good across-the-board
performance, we include various molecular and solid-state
properties in our training set; these properties include main-
group bond energies, transition metal bond energies, transition
metal atomic excitation energies, barrier heights, ionization
potentials, proton affinities, electron affinities, lattice constants,
etc. In Table 1, the inverse weight of each primary database is
given. The smaller the inverse weight is, the more emphasis we
put on that primary database. The inverse weights were chosen
as follows: first we calculated the mean unsigned errors (MUEs)
of 80 exchange–correlation functionals (previously published
functionals developed in many different groups) for all the
molecular subdatabases in Database 2015; this shows how well
previous exchange–correlation functionals typically perform for
each kind of data. The average of these MUEs for a given
subdatabase were used as our initial inverse weights. Then we
modified the inverse weights iteratively to improve performance
on the various subdatabases where we wished to reduce the
error. Our goal in this process was to obtain good across the
board performance for as many subdatabases as possible, not to
simply reduce the overall mean unsigned error.
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Whereas the N124 functional involved 20 optimized linear
coefficients and the constraint that it reduced to PBEsol at low
density, the new GAM functional involves optimizing 26 linear
coefficients in eqn (5), (10), and (11) with no constraints.
We use the same values as N12 for the nonlinear parameters
oxs, gxs, gcab, and gcss. A key element in the optimization is
the choice of weights. We do not choose them to minimize the
overall error but rather to try to get small errors across the
board, i.e., relatively small errors for each of the subdatabases,
to the greatest extent possible. The final choice of weights was
determined after considerable trial and error and is a subjective
decision that cannot be justified by any numerical argument.

Table 3 lists the values for the optimized and inherited
parameters of the GAM functional.

6 Tables of results

In Tables 4 and 5 we compare the performance of the new
functional to that of 22 existing functionals for molecular
energetic data, and in Table 6 we do the same for molecular
bond distances.

Table 7 gives the performance for solid-state databases, but
since B3LYP calculations with periodic boundary conditions
are very expensive, we only compare 21 density functionals for
the solid-state lattice constant and energetic data of Table 7.
Table 8 compares the performance of GAM to that of eight
density functionals for the WCCR10 database of Weymuth
et al.56 Table 9 is a test for the binding of dioxygen and
dinitrogen to Fe2(dobdc), which is also called Fe-MOF-74,
where we compare to experiments of Bloch et al.57 Table 10
presents results for the binding of ethylene to Pd(PH3)2, where
we compare the results of GAM to the best estimate computed
using BCCD(T)58 in our earlier work.67 Table 11 presents results
for the bond distance of homonuclear transition metal dimers,

where we compare the results of GAM and N12 with 5 func-
tionals in a recent paper.80

6.1 Molecular energy database

Tables 4 and 5 show the mean unsigned error (MUE) for
molecular energy database ME417 and its subdatabases. Note
that we always compute MUEs without weighting the data; it is
a straight average over the absolute deviations from the reference
data of the database. In order to compare the properties that are
especially important for molecular catalysis, we also combine
some of existing subdatabases to form three larger subdata-
bases, in particular main-group bond energy (MGBE137), which
includes the SR-MGM-BE9, SR-MGN-BE107, MR-MGM-BE4, and
MR-MGN-BE17 subdatabases, transition metal bond energy
(TMBE32), which includes the SR-TM-BE17, MR-TM-BE13, and
MR-TMD-BE2 subdatabases; and barrier heights (BH76), which
includes the HTBH38/08 and NHTBH38/08 subdatabases.

6.2 Molecular structure database

Table 6 shows the mean unsigned error for DGL6 and DGH4
subdatabases. The last column shows the mean unsigned error
for MS10, which is the overall mean unsigned error of these two
subdatabases.

6.3 Solid-state databases

Table 7 shows the mean unsigned errors for solid-state data-
bases, which include LC17, SBG31, and SSCE8. Lattice con-
stants are related to nearest neighbor distances (NNDs), but the
ratio of the lattice constant to the nearest-neighbor distance
depends on the crystal structure. For our larger lattice constant
database, SSS47,26 we calculated an average value for this ratio
of 2.15, and we use this as a typical conversion factor for
discussion purposes. Therefore we also report the results for
LC17 by dividing by 2.15 so that the reader can more easily
compare the errors to the errors in molecular bond distances.
These results are labeled NND and are discussed as mean
unsigned errors in nearest neighbor distances, but the reader
should keep in mind that a slightly different result would be
obtained if we first converted to NND and then averaged. The
rationale of having both columns in Table 7 is that the LC17
column can be directly compared to physics literature papers
that report average errors in lattice constants, while the NND
column allows a more physical comparison to average errors in
molecular bond lengths.

6.4 WCCR10 database

We show mean unsigned errors for the WCCR10 database of
transition metal coordination reactions in Table 8. The mean
unsigned error of GAM against WCCR10 is 6.60 kcal mol�1. This
is larger than the mean unsigned error of GAM against TMBE32
subdatabase, i.e. 6.03 kcal mol�1, but still reasonable since it is
the second best among the functionals tested in Table 8.

6.5 Separation of O2 and N2 on Fe2(dobdc)

The performance of the newly designed functional, GAM was
also tested for its ability to predict the separation of a mixture

Table 3 Optimized and inherited parameters of the GAM functional

Exchange Correlation

Optimized parameters
a00 1.32730 b0 0.860548
a01 0.886102 b1 �2.94135
a02 �5.73833 b2 15.4176
a03 8.60197 b3 �5.99825
a10 �0.786018 b4 �23.4119
a11 �4.78787 c0 0.231765
a12 3.90989 c1 0.575592
a13 �2.11611 c2 �3.43391
a20 0.802575 c3 �5.77281
a21 14.4363 c4 9.52448
a22 8.42735
a23 �6.21552
a30 �0.142331
a31 �13.4598
a32 1.52355
a33 �10.0530

Inherited parameters
oxs 2.5 gcab 0.006
gxs 0.004 gcss 0.2
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Table 5 MUE (kcal mol�1) for the molecular energy database and its
subdatabases: GAM compared to meta and hybrid functionals

Type NGA Meta Meta Meta Meta Hybrid Hybrid
Functional GAM TPSS revTPSS M06-L M11-L B3LYP HSE06

SR-MGM-BE9 2.00 2.55 2.91 3.40 7.24 4.58 3.47
SR-MGN-BE107 2.27 2.43 2.24 2.03 1.76 2.45 2.08
SR-TM-BE17 6.31 6.11 6.13 6.24 5.73 5.48 4.96
MR-MGM-BE4 7.76 6.69 5.98 6.15 13.50 7.76 8.52
MR-MGN-BE17 4.22 4.25 4.62 3.11 4.02 5.09 5.30
MR-TM-BE13 4.94 8.87 6.81 4.40 4.44 5.33 4.87
IsoL6/11 1.96 3.66 3.96 2.76 1.57 2.61 1.25
IP23 4.53 4.29 4.07 3.91 4.77 5.51 4.06
EA13/03 4.49 2.35 2.59 3.83 5.54 2.33 2.77
PA8 3.84 2.66 2.79 1.88 2.17 1.02 1.10
pTC13 8.59 8.12 7.85 6.69 5.14 6.03 6.20
HTBH38/08 5.35 7.71 6.96 4.15 1.44 4.23 4.23
NHTBH38/08 5.15 8.91 9.07 3.81 2.86 4.55 3.73
NCCE30 1.29 1.34 1.33 0.90 0.81 1.09 0.95
AE17 10.18 18.04 23.81 7.04 21.81 18.29 32.82
HC7/11 6.24 10.48 6.42 3.35 2.42 16.80 7.34
3dAEE7 9.82 10.78 10.47 7.84 14.03 8.47 10.62
4dAEE5 5.23 5.19 5.11 6.58 11.04 5.67 5.07
pEE5 2.99 2.25 2.31 7.50 10.39 2.87 5.70
DC9/12 23.07 14.20 14.94 10.67 5.90 12.02 9.08
2pIsoE4 5.02 3.54 2.53 3.16 3.32 4.69 2.44
4pIsoE4 3.57 2.60 3.27 2.88 5.03 4.24 2.64
NGDWI21 0.019 0.171 0.174 0.125 0.568 0.276 0.102
MR-TMD-BE2 10.67 26.21 26.59 7.22 22.18 31.21 45.13

MGBE137a 2.65 2.79 2.69 2.37 2.74 3.07 2.76
TMBE32 6.03 8.49 7.68 5.55 6.24 7.03 7.43
BH76 5.25 8.31 8.01 3.98 2.15 4.39 3.98
ME417 4.51 5.40 5.42 3.55 4.15 4.68 4.83
ME400xAE 4.27 4.86 4.64 3.41 3.40 4.10 3.64

a The MGBE137, TMBE32, BH76, ME417, and ME400xAE notations are
explained in footnotes to Table 4.

Table 6 MUE (kcal mol�1) for the molecular structure database and its
subdatabases

Functional Type DGL6 DGH4 MS10a

GKSVWN5 LSDA 0.011 0.031 0.019
SOGGA GGA 0.009 0.013 0.010
PBEsol GGA 0.010 0.007 0.009
PBE GGA 0.013 0.020 0.016
BP86 GGA 0.015 0.021 0.018
PW91 GGA 0.012 0.019 0.015
BLYP GGA 0.019 0.037 0.026
mPWPW GGA 0.012 0.021 0.016
revPBE GGA 0.015 0.034 0.023
BPW91 GGA 0.013 0.022 0.017
RPBE GGA 0.016 0.038 0.025
HCTH407 GGA 0.004 0.033 0.015
SOGGA11 GGA 0.008 0.053 0.026
OLYP GGA 0.009 0.036 0.020
OreLYP GGA 0.011 0.034 0.020
N12 NGA 0.008 0.007 0.008
GAM NGA 0.007 0.034 0.018
TPSS Meta 0.010 0.015 0.012
revTPSS Meta 0.011 0.009 0.010
M06-L Meta 0.006 0.018 0.011
M11-L Meta 0.012 0.033 0.021
B3LYP Hybrid 0.009 0.027 0.016
HSE06 Hybrid 0.003 0.015 0.008

a The MS10 database consists of DGL6 and DGH4 subdatabases.
The functionals are listed in the same order as in Tables 4 and 5.

Table 7 Mean unsigned errors for lattice constants and nearest neighbor
distances in Å, band gaps in eV, and cohesive energies in eV per atom

Functionala Type LC17 NNDb SBG31 SSCE8

GKSVWN5 LSDA 0.069 0.032 1.14 0.70
SOGGA GGA 0.022 0.010 1.14 0.31
PBEsol GGA 0.023 0.011 1.14 0.27
PBE GGA 0.068 0.031 0.98 0.11
BP86 GGA 0.073 0.034 1.12 0.12
PW91 GGA 0.065 0.030 1.11 0.50
BLYP GGA 0.111 0.052 1.14 0.37
mPWPW GGA 0.075 0.035 1.11 0.10
revPBE GGA 0.110 0.051 1.08 1.12
BPW91 GGA 0.083 0.038 1.10 0.20
RPBE GGA 0.119 0.055 1.07 0.61
HCTH407 GGA 0.120 0.056 0.89 0.30
SOGGA11 GGA 0.125 0.058 0.89 0.07
OLYP GGA 0.118 0.055 0.90 0.36
OreLYP GGA 0.113 0.053 0.92 0.20
N12 NGA 0.027 0.012 0.99 0.13
GAM NGA 0.092 0.046 0.99 0.13
TPSS Meta 0.055 0.025 0.85 0.22
revTPSS Meta 0.039 0.018 1.00 0.13
M06-L Meta 0.080 0.037 0.73 0.17
M11-L Meta 0.073 0.034 0.54 0.24
HSE06 Hybrid 0.041 0.019 0.26 0.11

a The functionals are listed in the same order as in Tables 4 and 5.
b The values in this column are obtained by dividing the previous
column by 2.15 (a standard factor determined in previous work – see
text) so that the results may be compared more physically to errors in
molecular bond lengths.

Table 8 Mean unsigned errors for the WCCR10 database in kcal mol�1 a

Functional Type WCCR10

PBE0 Hybrid 6.40
GAM NGA 6.60
PBE GGA 7.58
TPSSh Hybrid 7.62
TPSS GGA 7.84
B97-D-D2 GGA 8.59
B3LYP Hybrid 9.30
BP86 GGA 9.42
BP86-D3 GGA 10.62

a The GAM results are from the present calculations, but all other
results in this table are from ref. 56.

Table 9 Binding enthalpies (kcal mol�1) of O2 and N2 bound to the
88-atom cluster model of Fe2(dobdc) calculated using GAMa

MS(Fe, X2)c

DHb

GAMd Expt.e

Fe–N2 2, 0 3.9 5.5
Fe–O2 2, 1 10.8 9.8

2, 0 7.8 NA f

2, �1 5.0 NA

a The basis set is def2-TZVP. b The binding enthalpy (a positive value
indicates exothermic binding). c This column has the MS values for the
central Fe and the guest molecule in the initial iteration of self-
consistent field calculations. The two peripheral Fe centers where no
guest is bound were taken to have MS = 2 for all the calculations. d This
column is calculated by eqn (1) of ref. 8. e The most recent experimental
value is shown, as discussed in the text. f NA denotes not applicable.
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of O2 and N2 on a metal–organic framework (MOF), in particular
Fe2(dobdc). The binding enthalpies for O2 and N2 bound to
Fe2(dobdc) were computed using the GAM exchange–correlation
functional with the def2-TZVP basis set, and then compared to
experimental values57 of isosteric heat of adsorption. The values
for the Fe–O2 and Fe–N2 interacting systems in their ground spin
states computed at 201 K were 10.8 and 3.9 kcal mol�1, respec-
tively, while the corresponding experimental values reported in
ref. 57 are 9.8 kcal mol�1 and 8.4 kcal mol�1, respectively. Later,
a more accurate experimental adsorption enthalpy for N2 bound
to Fe2(dobdc) under different experimental conditions and with
different procedures was reported to be 5.5 kcal mol�1.59

Table 9 also presents the binding enthalpies of higher energy
spin states of the Fe–O2 interacting system, which are predic-
tions for which no experimental data is available (these calcula-
tions were necessary to be sure that the reported binding energy
corresponds to lowest-energy spin state of the system).

6.6 Binding energy of Pd(PH3)2C2H4

The binding of C2H4 to Pd(PH3)2 was computed using GAM and
compared to the best estimate of binding energy performed in
our earlier work.67 The binding energies calculated using
various basis sets are reported in Table 10.

6.7 Bond length of homonuclear transition metal dimer

The equilibrium bond lengths of seven transition metal dimers
are calculated by GAM and six other density functionals with
the LanL2DZ basis set.20–23 Table 11 shows the bond length and
mean unsigned error calculated by each functional.

7 Other results and discussion
7.1 Convergence

In order to design a smooth functional, we add a smoothness
constraint to the parameter optimization of the GAM func-
tional. The linear coefficients optimized for GAM all have
magnitudes in the range 0.1–23, which is a reasonably narrow
range so there is no excessive cancellation between terms. The
convergence of the new functional has been tested against our
common Database 2015. In the common Database 2015, there
are 483 data including ME417, MS10, SBG31, SSCE8, and LC17.
If we also count the fragments that are used to calculate these
data, there are more than one thousand data calculated by
the GAM functional. Among the over-a-thousand data, only
FeCl shows some SCF convergence issues; all other calcula-
tions converged without any problems. The smoothness of the
exchange–correlation enhancement factor of the GAM func-
tional has also been examined in plots, and it will be discussed
in Section 7.3.

7.2 Performance of the GAM functional

Tables 4 and 5 show that the GAM functional gives especially
good results for main group bond energies, transition metal
bond energies, reaction barrier heights, molecular structures,
and noble gas weak interactions. Furthermore, the GAM func-
tional provides reasonably good results for the test sets including
semiconductor band gaps, solid-state cohesive energies, and
transition metal coordination reactions.

Table 4 shows that among LSDA, all the GGAs, and the
previous NGA, the new functional GAM gives the smallest
overall mean unsigned error for the entire molecular energy
database ME417; the mean unsigned error is only 4.51 kcal mol�1.
We also show the overall error of ME400xAE, which is the average
error for the molecular energy database when we exclude absolute
atomic energies, and in this case too, the GAM functional gives
the smallest error among GGAs, LSDA, and NGA. We emphasize
that we could reduce these total errors more, if that were our goal,
but that is not our goal. Our goal is rather to obtain good
performance across a broad range of databases. In order to
have a functional that is especially good for studying molecular
catalysis, the functional should be good for main-group bond
energy (MGBE137), which includes the SR-MGM-BE9, SR-MGN-
BE107, MR-MGM-BE4, and MR-MGN-BE17 subdatabases, for
transition metal bond energy (TMBE32), which includes the
SR-TM-BE17, MR-TM-BE13, and MR-TMD-BE2 subdatabases,
for barrier heights (BH76), which includes the HTBH38/08
and NHTBH38/08 subdatabases, and for molecular structure
(MS10), which includes DGL6 and DGH4 subdatabases. In
Tables 4 and 5 we calculate the average error for each of these
four categories by averaging the errors from each subdatabase.
Among LSDA and all GGAs and NGAs, the GAM functional
ranked the best for the MGBE137, TMBE32, and BH76 subdata-
bases. If we consider all the functionals in Tables 4 and 5, the
GAM functional ranks the second best for TMBE32 subdatabase,
for which M06-L is the best with an error 0.48 kcal mol�1 smaller
than the GAM; the GAM functional ranks the second best for the

Table 10 Binding energies (kcal mol�1) of C2H4 bound to Pd(PH3)2
calculated using GAM and various basis sets

Basis seta GAM Best estimateb

BS1 11.0 17.6
BS2 11.1
BS3 11.1
BS4 11.1

a The various basis sets used are: BS1 = SDD (Pd), cc-pVTZ (P, C, H);
BS2 = def2-TZVP (Pd), cc-pVTZ (P, C, H); BS3 = def2-TZVP (Pd), cc-
pV(T+d)Z (P), cc-pVTZ (C, H); BS4 = def2-TZVP (Pd), maug-cc-pV(T+d)Z
(P), maug-cc-pVTZ (C), cc-pVTZ (H). b The best estimate was calculated
in an earlier work using BCCD(T) and is described in ref. 67.

Table 11 Homonuclear transition metal dimers: equilibrium bond lengths
(Å) and mean unsigned errors as compared to experiment

Cu2 Au2 Ni2 Pd2 Pt2 Ir2 Os2 MUE

LSDA 2.215 2.495 2.118 2.373 2.353 2.271 2.354 0.038
PBE 2.278 2.552 2.135 2.397 2.391 2.302 2.384 0.062
B3LYP 2.292 2.577 2.099 2.411 2.392 2.301 2.387 0.071
B3PW91 2.288 2.552 2.095 2.367 2.375 2.287 2.373 0.068
mPWPW 2.293 2.549 2.088 2.359 2.369 2.282 2.369 0.068
N12 2.224 2.543 2.110 2.501 2.366 2.262 2.282 0.026
GAM 2.306 2.543 2.189 2.536 2.408 2.283 2.292 0.050
Exp.a 2.219 2.472 2.155 2.480 2.333 2.270 2.280 0.000

a The experimental bond length is taken from ref. 80.
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MGBE137 subdatabase, for which M06-L is the best with an error
0.28 kcal mol�1 smaller than the GAM; and the GAM functional
ranks the fifth best for BH76 subdatabase, for which M11-L is the
best followed by M06-L, B3LYP, and HSE06. We note that M06-L
is a meta functional, and therefore it should be better than a
simpler gradient approximation, but we gave several reasons for
optimizing a gradient approximation in the introduction.

In addition to the databases mentioned above, the GAM
functional also provides good results for 3d transition metal
atomic excitation energies, which are very hard for most avail-
able density functionals, but which we have recently shown60

can be very important for understanding metal–metal bonding.
The GAM functional ranks the fifth best for the 3dAEE7
subdatabase, behind M06-L, B3LYP, PBE, and RPBE.

Next we consider noble-gas weak interactions. From Tables 4
and 5 we can see that all the functionals tested except GAM give
a mean unsigned error larger than 0.081 kcal mol�1 for the
NGDWI21 subdatabase, for which GAM only gives 0.019 kcal mol�1.
The average value of all the noble gas weak interaction energies
in our database is 0.160 kcal mol�1, which means that most
functionals give an average error that is larger than 50% of the
average of the reference values. The GAM functional gives the
best results for NCCE30 subdatabase as compared to all tested
GGAs and N12.

The GAM functional also provides the second best results
for MR-TMD-BE2 (Cr2 and V2, which are known to be very hard
cases for density functional theory) among all functionals
tested.

Table 6 shows that the relative performance of GAM
for molecular structures is not quite as good as for energies.
The GAM functional ranks the 13th for MS10 subdatabase with
an MUE of 0.018 Å, which is 0.002 Å larger than the average
MUE of all functionals tested in Table 6. However, a more fair
comparison in this case is to compare to the 12 GGAs excluding
PBEsol and SOGGA (we exclude PBEsol and SOGGA at this point
since their design is understood to make them better for
structures than for energies, and so we do not consider them
to be general-purpose functionals). As compared to the remain-
ing group of 12 GGAs, only HCTH407 does better for DGL6 and
only four of the 12 do better for MS10. The less than stellar
performance of GAM on MS10 is primarily due to a large
overestimation of the bond length of Ag dimer; this bond
length behaves differently than other bond lengths in MS10,
and success for this bond length is highly correlated to perfor-
mance on lattice constants, which we downplayed. This down-
play is evidenced in Table 7, which shows that the GAM
functional does not give good results for the solid-state lattice
constant database with a mean unsigned error of 0.046 Å for

the quantities we nominally call nearest neighbor distances
(NND – see Section 6.3); this error is 0.010 Å larger than
the average mean unsigned error for NND. As discussed in the
introduction, this results from a strategic decision to emphasize
molecular energies over lattice constants in the creation of GAM.
The ‘‘M’’ (for ‘‘molecules’’) at the end of GAM is primarily to
indicate our awareness that we still do not have a universally
good functional, which is so far unattainable by any functional
containing only density and density gradient ingredients. Never-
theless, despite not being universal, the performance of the new
functional developed here is very good if we consider molecules
rather than solid-state lattice constants.

Next we turn to data not used for training.
Table 7 shows that the GAM functional also shows reason-

ably good results for the solid-state energies databases. Among
the 17 LSDA, GGAs, and NGAs, the GAM functional ranks the
sixth best for the SBG31 database and fifth best for the SSCE8
database. These databases were not used for training.

In Table 8, the GAM functional ranks the second best among
all functionals being tested, where the functionals tested are
those chosen by the previous56 authors. The WCCR10 database
includes ten transition metal coordination reactions. The
molecules involved in these reactions are very large and very
different from the training sets in Database 2015. The perfor-
mance against these large molecules is slightly worse than that
for the transition metal molecules in our training set, but
within a reasonable range.

Table 9 presents the results for the performance of GAM on
MOFs. We find that GAM gives good results when compared
to experiments for the separation of O2 and N2 on Fe2(dobdc),
with a magnitude of the deviation from experimental adsorption
enthalpies of 1.0 kcal mol�1 for O2 and 1.6 kcal mol�1 for N2. It
should be noted here that our training set has no data on MOFs

Table 12 Errors for bond dissociation energy (kcal mol�1) of FeC

M11-L SOGGA11 t-HCTHhyb M06-L BLYP B3LYP M05 M06

FeC �4.60 10.81 �7.13 �7.36 12.88 �1.38 5.75 �20.93

oB97 oB97X oB97X-D M08-SO M08-HX M11 SOGGA11-X GAM

FeC �38.87 �20.01 21.39 �26.68 �35.65 �37.03 �67.16 1.83

Fig. 1 Ar–Ar potential curve, the bonding energies are calculated with
GAM/aug-cc-pVQZ and GAM/aug-cc-pV6Z level of theory. The reference
is from the Tang–Toennies model.
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or any other type of nanoporous materials. This average devia-
tion from the latest experimental values is under 3 kcal mol�1

and is within experimental error. This indicates that the GAM
functional shows good agreement with experimental data that
are not used for training.

In Table 10, results for the binding of C2H4 to Pd(PH3)2 are
presented. This datum is outside the training set. This is a
difficult case for functionals; for example, BLYP gives a binding
energy of 10.2 kcal mol�1 as compared to the best estimate of
17.6 kcal mol�1. Table 10 shows good stability with respect to

Fig. 2 Enhancement factors of 12 GGAS.
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changes in the basis set and that the GAM functional deviates
from the best estimate by 6.5 kcal mol�1 with the largest basis
set used. This is comparable to the 6.3 kcal mol�1 mean
unsigned error for single-reference transition metal bond energies
of molecules in the training set, and therefore it is an example
where we obtain comparable performance inside and outside of
the training set.

A very recent paper, which we considered only after our
training set weights were final, reported bond distance for eight
transition metal dimers, only one of which (Ag2) is in our
training set. We therefore use the bond distances of the seven
others as a test against data quite different from that used for
training. These seven dimers, Cu2, Au2, Ni2, Pd2, Pt2, Ir2, and
Os2, include two 3d metals, one 4d metals, and four 5d metals.
(No 5d data were used for training.) The GAM functional gives
the third best results among all the functionals tested in
Table 11, with an MUE of 0.05 Å; the only functionals that do
better are LSDA, which is much better for bond lengths than for
molecular energies, and N12, the only previous NGA. This is
very encouraging performance well outside the training set.

We also tested our new functional against the experi-
mental bond dissociation energies of Ag2 and FeC, which are
38.0 kcal mol�1 and 88.32 kcal mol�1 respectively.61,62 The
GAM functional predicts these bond dissociation energies to be
39.21 kcal mol�1 and 86.49 kcal mol�1. Li et al.62 have tested
the bond dissociation energy of FeC with various functionals,
and in Table 12 we add our new result to their comparison. The
results in Table 12 show that the GAM functional is the second
best among all 18 functionals being tested, and that many of
the previous functionals have large errors for this difficult case.

Recent studies pointed out that some density functionals
give unstable results for large basis sets.63 Fig. 1 shows the
potential energy curve of Ar2 with our new GAM functional and
the aug-cc-pVQZ and aug-cc-pV6Z basis sets. Fig. 1 shows that
our results are very close to the reference values64 and there
is no slow convergence issue with respect to the basis sets.
Moreover, the excellent agreement with the reference plot

shows that the GAM functional provides good results for noble
gas weak interactions. This is consistent with Tables 4 and 5
showing that the GAM functional is the best for the NGDWI21
subdatabase among all the functionals tested in the present
paper.

7.3 Exchange–correlation enhancement factor of the GAM
functional

The enhancement factor is defined by the following equations:

Exc =
Ð

dr eUEG
x (r)Fxc(rs, s) (18)

s ¼ jrrj
2 3p2ð Þ1=3r4=3

(19)

rs ¼
3

4pr

� �1=3

(20)

where Exc is the total exchange–correlation energy, eUEG
x is the

exchange energy density of a uniform electron gas, r stands for
the total density, s is the unitless reduced density gradient, and
rs is the Wigner–Seitz radius. For illustrating the enhancement
factor in this section, we only consider the spin-unpolarized
cases, which means that r = 2ra = 2rb. The exchange–correlation
enhancement factor of the GAM functional is plotted in Fig. 3.
We choose four values of r to plot the enhancement factor Fxc,
and these values correspond to rs = 0.5, 2.5, 4.5, and 6.5 in
atomic units. The region of s is chosen from 0 to 3, which is
the key range for real systems. The enhancement factor for all
14 GGAs, for the previous NGA, namely N12, and for GAM are
shown in Fig. 2 and 3.

A key design element of the NGA functional form is that,
unlike GGAs, we do not attempt to separately fit exchange and
correlation. Therefore, unlike a GGA, we do not have a pure-
exchange enhancement factor that depends only on s. However,
Fig. 2 and 3 show that after we add correlation to exchange, the
extent of dependence on r for closed-shell systems is not
qualitatively different in GAM and in the GGAs.

Fig. 3 Enhancement factor of OLYP, OreLYP, N12, and GAM.
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8 Conclusions

The GAM functional has the following advantages over current
GGAs and N12:

(1) The GAM functional gives the smallest mean unsigned
error for main group bond energies (MGBE137), transition
metal bond energies (TMBE32), and reaction barrier heights
(BH76).

(2) The GAM functional gives the smallest mean unsigned
error of 0.019 kcal mol�1 for the noble gas dimer weak inter-
action energies (NGDWI21), with all the other functionals tested
here giving a mean unsigned error larger than 0.081 kcal mol�1,
which is about 50% of the reference value.

(3) GAM is best of any LSDA, GGA, or NGA for both the
overall mean unsigned error for molecular energies, either
including total atomic energies (ME417) or excluding them
(ME400xAE). OreLYP (which has not previously been widely
tested) and OLYP are the second and the third best.

The GAM functional gives an MUE of 0.018 Å for the
molecular structure subdatabase (MS10), which is reasonable,
although not outstanding.

Besides the training sets tested in the paper, we also tested
the performance of the GAM functional against band gaps
(SBG31), solid-state cohesive energies (SSCE8), transition metal
coordination reactions (WCCR10), the bond energies of Ag2 and
FeC, adsorption enthalpies of gases on MOFs, the binding of
C2H4 to Pd(PH3)2, and the bond distances of homonuclear
transition metal dimers (HTMD7). The last-named test includes
four 5d transition metals, although no 5d transition metal data
was used for training. The GAM functional does acceptably
well in these tests. We conclude that the GAM functional we
designed is transferable to molecular problems outside our
training sets.

The linear coefficients optimized for GAM are in a narrow
range of magnitude so there is no excessive cancellation between
terms. The self-consistent-field convergence of the GAM functional
has been tested against more than one thousand data; only one of
them shows some convergence problems. The enhancement factor
plot of the GAM functional is reasonably smooth.

With all these advantages over the GGAs and the previous
NGA, with the advantage of an NGA requiring smaller grids
than meta-GGAs or meta-NGAs, and with the advantage of an
NGA requiring considerably less computation time for extended
systems than hybrid functionals, we expect the GAM functional
to be very useful for molecular catalysis and a wide variety of
other applications to large and complex molecular systems.
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