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Energy landscapes of a hairpin peptide including
NMR chemical shift restraints

Joanne M. Carr, Chris S. Whittleston, David C. Wade and David J. Wales*

Methods recently introduced to improve the efficiency of protein structure prediction simulations by

adding a restraint potential to a molecular mechanics force field introduce additional input parameters

that can affect the performance. Here we investigate the changes in the energy landscape as the relative

weight of the two contributions, force field and restraint potential, is systematically altered, for restraint

functions constructed from calculated nuclear magnetic resonance chemical shifts. Benchmarking

calculations were performed on a 12-residue peptide, tryptophan zipper 1, which features both

secondary structure (a b-hairpin) and specific packing of tryptophan sidechains. Basin-hopping global

optimization was performed to assess the efficiency with which lowest-energy structures are located,

and the discrete path sampling approach was employed to survey the energy landscapes between

unfolded and folded structures. We find that inclusion of the chemical shift restraints improves

the efficiency of structure prediction because the energy landscape becomes more funnelled and the

proportion of local minima classified as native increases. However, the funnelling nature of the

landscape is reduced as the relative contribution of the chemical shift restraint potential is increased

past an optimal value.

1 Introduction

Significant progress has been made on improving the compu-
tational efficiency of protein structure prediction simulations
by making direct use of nuclear magnetic resonance (NMR)
observables. One approach is based on molecular fragment
replacement using sequence homology, combined with data-
bases of structures and experimental NMR observables, and
methods for predicting the observables given a structure.1–4

An alternative approach that does not require sequence homol-
ogy involves a conformational search of the energy landscape
obtained by combining a biomolecular force field with a
restraint potential that biases the search towards structures
consistent with some reference observables.5,6 Here we con-
sider only restraint potentials that introduce an energy penalty
as a function of the difference between reference and calculated
NMR chemical shifts; such terms were introduced for the
refinement of structures determined by NMR,7,8 in order to
make good use of these precise and readily available spectro-
scopic observables. More recently, chemical shift restraint
potentials together with molecular mechanics force fields and
more extensive conformational searches have been employed to
predict the native structures of various proteins in studies using
Monte Carlo,9 molecular dynamics10 and basin-hopping global

optimization11 simulations. In each study, significant improve-
ments in the quality of the predictions were obtained over
unrestrained simulations. The overall approach depends upon
the link between biomolecular chemical shifts and three-
dimensional structure (see ref. 12 and references therein).

In the current work, we analyse the changes in the energy
landscape as the relative weight of the two contributions, force
field and restraint potential, is systematically altered. We
employ order-parameter-free visualizations of the landscape
via disconnectivity graphs.13,14 The aim is to gain insight into
how the efficiency of structure prediction varies using such an
approach and, hence, might be optimized in future applica-
tions. Due to the bias introduced by the restraint potential,
we do not consider thermodynamics or dynamics. Our test
system is tryptophan zipper 1 (PDB15 code 1LE016), a 12-residue
peptide that features both secondary structure (a b-hairpin)
and specific packing of tryptophan sidechains, yet remains
computationally tractable in terms of the total amount of
sampling required. We consider the region of the landscape
relevant for folding from extended (rather than partially unfolded10)
structures, and use basin-hopping global optimization17–19 and
discrete path sampling20–22 as the search methods. The calcu-
lated chemical shifts and restraint energies are obtained using
the CamShift methodology,23 which also provides analytical
gradients with respect to the atomic coordinates and is there-
fore amenable to these search methods, which are based on
efficient geometry optimization.
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2 Methods
2.1 The potential

The energies and gradients were calculated using a molecular
mechanics force field in combination with a restraint potential
based on NMR chemical shifts. The CHARMM22/CMAP dihedral-
potential-corrected all atom force field24–26 with the FACTS implicit
solvation model27 were used to ensure protein-like behaviour of
the polypeptide chain. The restraint potential was obtained via
a Fortran implementation11 of the CamShift program and
methodology.23 CamShift predicts the 1Ha, amide 1H, 13Ca,
13Cb, carbonyl 13C, and amide 15N chemical shifts of a given
protein structure using calculations based on polynomial func-
tions of the interatomic distances (and therefore allows analytic
gradients to be obtained straightforwardly). The terms in the
CamShift function that we included here account for the influ-
ence of backbone, sidechain and nonbonded atoms, aromatic
rings via point-dipole terms, and an improved description of
backbone dihedral angles.

The overall CamShift penalty function is a sum of soft-square
harmonic wells applied atom by atom to the difference between
the chemical shift predicted for that atom in the current structure
and a corresponding reference shift representing the target
conformation.10 The form of this function penalises statistically
significant deviations in chemical shift (harmonic region),
whilst also allowing a margin of error in the shifts (flat bottom
region) and not allowing large deviations to dominate the
overall potential (hyperbolic tangent region).

A parameter a determines the relative weight of the two
contributions:

Etot = aECS + (1 � a)EFF, (1)

with 0 r a r 1, ECS the CamShift restraint energy, and EFF

the energy from CHARMM22/CMAP and FACTS. An equivalent
expression exists for the gradients. We note that ECS is a
dimensionless quantity, whereas EFF has units of kcal mol�1.
This form for the total energy differs from previous work,9–11 in
which Etot = aECS + EFF for a Z 0.

The CHARMM22 potential was symmetrized with respect to
feasible permutations of identical atoms,28 as was CamShift for
the relevant atoms in ARG, GLU, ASP, TYR and PHE residues.
The two hydrogens in GLY residues are not permutable here
because CamShift treats them slightly differently. To avoid the
unphysical complication of pairs of structures with similar but
non-identical energies for exchange of these two hydrogens,
only the conformations with the spatial order matching the
native structure were retained.

2.2 Basin-hopping global optimization

Since the main aim of including ‘‘experimental’’ restraints is
to improve the computational efficiency of protein structure
prediction, we performed global optimization simulations using
the basin-hopping approach,17–19 as implemented in the GMIN
program,29 in order to identify putative lowest-energy minima.

To obtain statistics, 10 independent simulations were per-
formed for each landscape. Each run was started from a

different conformation with no native contacts, taken from
a preliminary high-temperature basin-hopping simulation.
For the production runs, kBT in the Metropolis criterion30 was
fixed at 2.5 energy units, and 100 000 basin-hopping steps were
performed. Each step involved perturbing a randomly chosen set
of backbone and sidechain dihedral angles by an angle selected at
random up to the maximum step size, either clockwise or anti-
clockwise. The maximum step size, initially 401, was dynamically
adjusted to maintain a Metropolis acceptance ratio of approxi-
mately 0.3. Local minima were converged to a root-mean-square
gradient of 10�3 Å�1 after each basin-hopping step, and 10�6 Å�1

during the refinement of the 50 lowest-energy structures, using
a slightly modified version of the limited-memory Broyden–
Fletcher–Goldfarb–Shanno algorithm.31,32

2.3 Discrete path sampling

To explore the energy landscapes more widely, from unfolded to
folded conformations, we employed the discrete path sampling
framework20–22 to generate kinetic transition networks. Each
network was set up with an initial discrete path20 (connected
sequence of minima and the intervening transition states)
between an unfolded and a folded conformation, and then
expanded to improve the ensemble of folding paths and refine
the overall kinetics. Discrete paths were identified using an
iterative missing connection procedure33 based on Dijkstra’s
shortest path algorithm,34 as implemented in the OPTIM
program.35 Transition state candidates were obtained using the
doubly-nudged36 elastic band method,37–39 and then converged
tightly to a root-mean-square gradient of 10�6 Å�1 using hybrid
eigenvector-following.37,40,41 Paths were refined iteratively using
various procedures implemented in the PATHSAMPLE program,42

to reduce the overall number of transition states in a path,43,44 to
find alternative routes that avoid high energy barriers,44 and to
remove artificial frustration from under-sampling.44 The resulting
landscapes were visualized using disconnectivity graphs.13,14

3 Results and discussion

We investigate the energy landscapes for tryptophan zipper 1
(PDB code 1LE016), a 12-residue de novo peptide that readily
forms a b-hairpin in water, stabilized by two cross-chain TRP–
TRP interactions. The sequence is SER–TRP–THR–TRP–GLU–
GLY–ASN–LYS–TRP–THR–TRP–LYS, and in our simulations we
employed standard, zwitterionic capping groups at the termini,
following the work of Hoffmann and Strodel.11

We consider the landscapes defined by four values of the
parameter a: 0, 0.3, 0.5 and 0.7. Higher values were found in
preliminary work to have insufficient contribution from the force
field to distinguish protein-like structures from unphysical
ones. For each value of a, we performed basin-hopping global
optimization and also assembled a kinetic transition network
using discrete path sampling, as described in Section 2. The
general input parameters in the basin-hopping runs were held
constant across the different landscapes, at values chosen
using shorter, preliminary simulations. In each case, the initial
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unfolded conformation used as the ‘‘reactant’’ endpoint in
the discrete path sampling was obtained by locally minimizing
a fully extended structure with the prevailing overall potential. For
non-zero values of a, the folded conformation (the ‘‘product’’
endpoint) was the appropriate putative global minimum from
preliminary global optimization runs at each value of a. For a = 0,
the product endpoint was initially taken as the locally minimized
PDB structure (with standard capping groups), since the true global
minimum in this case is a more difficult target, as discussed below.
The set of reference chemical shifts used throughout to represent
the target conformation was calculated using CamShift for the
unoptimized PDB structure with standard capping groups. This
conformation is illustrated in Fig. 1, using PyMOL.45

For the basin-hopping results on each landscape (defined
by the value of a; all other CamShift parameters10,23 held
constant), we consider the lowest-energy structure found in
each of the 10 independent runs and analyse them in terms of

energies and structural order parameters that characterise the
folded state. The order parameters we consider are the number
of native backbone hydrogen bonds (denoted O1, maximum 4),
using the default geometrical definition of a hydrogen bond
from the CHARMM program;26,46 and the number of distances
between centres of mass of neighbouring pairs of TRP side-
chains (in terms of structure not sequence) that match the PDB
structure to within a tolerance of �0.5 Å for the two closest
pairs and �1.0 Å for the other (denoted O2, maximum 3). These
order parameters are also used, one at a time, to add informa-
tion to the disconnectivity graphs by colouring the branches
according to the values for the minima. The tolerances were
selected by considering the changes in the relevant distances
and angles on minimization of the PDB conformation using the
CHARMM-only potential, and also by observing consistent
plateaux in the number of structures defined as matching
the reference as the values were increased, for each kinetic

Fig. 1 The reference structure of tryptophan zipper 1. Left: View from below, highlighting the backbone hydrogen bonds (tryptophan sidechain atoms
are grey). Right: Side view, highlighting the interactions of the tryptophan sidechains (backbone atoms are grey). Other sidechains are not shown.

Table 1 Analysis of the lowest-energy minimum found in each of the 10 independent basin-hopping global optimization runs for four values of a. The
total energies given are relative to the lowest found for each landscape, and the CamShift energies (ECS) are the values of the restraint potential, not
including the factor of a. The structural order parameters are the number of native backbone hydrogen bonds (denoted O1, maximum four), and the
number of distances between centres of mass of neighbouring pairs of TRP sidechains that match the PDB structure to within a tolerance of �0.5 Å for
the two closest pairs and �1.0 Å for the other (denoted O2, maximum three)

Run 1 2 3 4 5 6 7 8 9 10

a = 0
Etot (relative) 6.70 1.58 5.90 9.47 3.04 7.20 1.83 8.58 0.00 0.998
O1 (out of 4) 0 3 0 0 3 0 2 0 2 3
O2 (out of 3) 1 1 0 1 0 0 1 0 1 1

a = 0.3
Etot (relative) 0.0865 1.64 0.00 1.10 0.787 0.321 1.44 1.83 1.66 0.547
ECS 3.71 4.88 2.54 2.24 2.97 3.80 9.31 2.03 4.13 2.99
O1 (out of 4) 4 4 4 4 4 4 4 4 4 4
O2 (out of 3) 3 3 3 2 3 3 2 2 3 2

a = 0.5
Etot (relative) 1.21 1.39 0.239 0.684 2.28 0.892 1.75 0.831 0.604 0.00
ECS 1.59 2.80 1.51 2.16 3.89 1.72 1.14 1.31 1.46 1.79
O1 (out of 4) 4 4 4 4 4 4 4 4 4 4
O2 (out of 3) 2 1 3 3 2 2 2 2 3 2

a = 0.7
Etot (relative) 2.91 0.00 2.96 4.77 3.28 2.10 1.51 5.32 4.95 1.97
ECS 0.693 0.401 0.851 1.55 0.917 0.842 0.598 2.86 0.947 0.654
O1 (out of 4) 4 4 4 3 4 4 4 2 4 4
O2 (out of 3) 0 2 1 1 1 3 3 1 2 1
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transition network. Reasonable changes in the tolerances do
not affect the conclusions.

We found that all the potentials (including a = 0) supported
unphysical structures as stationary points with reasonably
low energies, but separated from corresponding physically
reasonable structures by high barriers. Examples include highly
non-tetrahedral –CH2– and –NH3

+ groups in sidechains. Such
structures are kinetic traps and cause unrealistic frustration in
the network,47,48 both at the sampling stage and in the analysis.
We removed such structures from our networks using a criterion
based on the bond angle component of the molecular mechanics
energy for transition states, as this was found to clearly distinguish
the unphysical conformations, and is more general than individual
geometric criteria.

3.1 a = 0

Energies and order parameters for the lowest minima found
in the 10 independent basin-hopping runs are presented in
Table 1. The runs did not all produce the same lowest minimum,
either in terms of energy or the structural order parameters,
indicating that this system is quite challenging for global
optimization. The overall lowest-energy structure has the hairpin
and turn not quite as well-formed as in the reference structure,

and a non-native packing of the TRP sidechains (all-atom
root-mean-square deviation of 2.8 Å from the PDB reference
structure).

To highlight the presence of non-native structures lower
in energy than native, the putative global minimum (run 9)
and the lowest minima from basin-hopping runs 2, 5, 7 and 10
were connected to the landscape sampled between unfolded
and native conformations, using subsequent applications of
the discrete path sampling approach. These five structures can
be described as hairpin-like with some but not all of the native
hydrogen bonds present and either one or zero native TRP–TRP
contacts, and are the five lowest in energy of the set of 10 from
the global optimization. The lowest-energy minima from the
remaining runs are more than five energy units above the overall
lowest and are structurally distinct from hairpins (some possess
helical turn sections); we chose not to connect them to the main
kinetic transition network here to simplify the presentation,
though it should be noted that the force field supports these
structures at lower energies than native conformations.

Disconnectivity graphs showing the resulting landscape are
presented in Fig. 2. The kinetic transition network contains
74 007 connected minima and 88 838 transition states. The colour-
ing by order parameter shows that native structures lie above

Fig. 2 Disconnectivity graphs for a = 0. The vertical axes are the total energy, relative to the lowest-energy minimum. Left: Full graph, with the branches
coloured according to the number of native backbone hydrogen bonds in the corresponding local minimum, with blue representing the maximum (four).
Right: Magnification of the low-energy region. Here, only the minima with four native backbone hydrogen bonds are coloured, and the colour scheme
now displays the number of distances between centres of mass of neighbouring pairs of TRP sidechains that match the PDB structure (tolerances given in
the text). Red: one. Green: two. Blue: three.
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the putative global minimum for this potential as discussed
above, are not prevalent (they comprise fewer than 3% of the
minima), and can be separated by high downhill barriers of up
to 24 energy units. These results are all consistent with the
global optimization runs.

Short, constant-temperature molecular dynamics simulations
were run using CHARMM26,46 for various minima from the lowest-
energy part of the landscape shown in Fig. 2, after an initial
heating phase that did not form part of the subsequent analysis.
These structures, which include the putative global minimum,
were found to be reasonably stable for at least 3 ns in terms of the
structural order parameters for backbone hydrogen bonding and
TRP–TRP interactions. Whilst there are fluctuations away from the
original order parameter values, and the trajectories leave the
original basins of attraction, there are no substantial periods of
time throughout which the order parameter values of the starting
minima are lost. Furthermore, none of the snapshots from these
trajectories are classified as native via the order parameters.

3.2 a = 0.3

Energies and order parameters for the lowest minima found in
the 10 independent basin-hopping runs are presented in Table 1.

Inclusion of the restraint potential significantly improved the
success rate in locating native-like structures to 60%, according
to the two order parameters. Consensus is again not reached at
the level of an individual minimum; this is the case for all the
values of a considered here. All 10 runs located native hairpin
structures, but four of these did not manage to fully pack the
TRP sidechains in a native manner. This result may be due to
limitations of the geometrical move set employed here, or
because of the particular sensitivity of 1Ha and 13C chemical
shifts to backbone dihedral angles.49

Disconnectivity graphs13,14 showing the landscape from the
discrete path sampling simulations are presented in Fig. 3.
There are 45 426 connected minima and 61 208 transition
states. Native-like structures are lowest in energy, occupying a
significant fraction of the landscape interspersed with near-
native minima. The downhill barriers to native structures are
also lower than for a = 0.

3.3 a = 0.5

The success rate for a = 0.5 was lower than for a = 0.3, at 30%.
Again, all 10 runs located the correct hairpin structure, but
there are more runs that correctly predicted only one or two out

Fig. 3 Disconnectivity graphs for a = 0.3. The vertical axes are the total energy, relative to the lowest-energy minimum. Left: Full graph, with the
branches coloured according to the number of native backbone hydrogen bonds in the corresponding local minimum, with blue representing the
maximum (four). Right: Magnification of the low-energy region. Here, only the minima with four native backbone hydrogen bonds are coloured, and
the colour scheme now displays the number of distances between centres of mass of neighbouring pairs of TRP sidechains that match the PDB structure
(tolerances given in the text). Red: one. Green: two. Blue: three.
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of the three pairs of TRP–TRP distances in the order para-
meter (Table 1).

Disconnectivity graphs showing the landscape are presented
in Fig. 4. There are 44 152 connected minima and 59 159
transition states. Although native hairpin structures are numer-
ous and low in energy, only 22% of them also possess the fully
correct packing of the TRP sidechains.

3.4 a = 0.7

Although the values of the CamShift restraint potential (ECS) are
now on average the smallest, these runs did not perform as well
as a = 0.3 and 0.5 in terms of locating native-like structures,
though they are better than a = 0 (Table 1). The success rate is
20%, but now two out of 10 runs did not locate the full set of
native backbone hydrogen bonds within the fixed number of
basin-hopping steps. The prediction of the TRP sidechain
packing is also the poorest of the non-zero values of a.

Disconnectivity graphs are presented in Fig. 5. There are
35 689 connected minima and 51 182 transition states. Many
of the minima are native hairpin structures of comparable, low
energy. Among these hairpins, only 36% also have correctly
packed TRP sidechains, and they are not well separated in

energy from partially folded conformations, thus hindering the
search for the global minimum.

3.5 Overall trends

Given the composition of the total energy [Etot = aECS + (1� a)EFF],
and the relative magnitudes of the two parts in this case (|EFF| B
300 kcal mol�1 and |ECS| B 30), the range of energies decreases as
a increases. By the time a reaches 0.7, the contribution of neither
the force field nor CamShift is sufficient to distinguish clearly
between native and partially folded structures. The form of the
energy landscape changes from frustrated, with high barriers
between native-like structures (a = 0), to funnelling (a = 0.3 and
0.5), to frustrated again, with many competing structures of
similar energy (a = 0.7). The number of stationary points also
decreases as a increases. More importantly, the proportion of
minima classified as native according to structural order para-
meters for backbone hydrogen bonding and TRP–TRP sidechain
packing is significantly higher when CamShift is included.

The values of the restraint potential, ECS, for the lowest-
energy minima are not negligible, even for structures classified as
native, though they decrease as a increases. The non-negligible
values are therefore probably due to competition between CamShift

Fig. 4 Disconnectivity graphs for a = 0.5. The vertical axes are the total energy, relative to the lowest-energy minimum. Left: Full graph, with the
branches coloured according to the number of native backbone hydrogen bonds in the corresponding local minimum, with blue representing the
maximum (four). Right: Magnification of the low-energy region. Here, only the minima with four native backbone hydrogen bonds are coloured, and
the colour scheme now displays the number of distances between centres of mass of neighbouring pairs of TRP sidechains that match the PDB structure
(tolerances given in the text). Red: one. Green: two. Blue: three.
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and the force field. In general, this issue will be affected by the
relative orders of magnitude of the two sets of energies and
gradients, and some extra adjustment to the weighting may be
necessary.11 However, for this system at least, it was not
necessary to obtain conformations with restraint energies very
close to zero. Whilst it would be possible to reduce the value of
the restraint potential by increasing the margin of error allowed
between the calculated and reference shifts (Section 2.1), this
change may also have the undesirable effect of reducing the
driving force towards native structures;9 the relevant CamShift
tolerance parameter must therefore also be chosen with care9,11

(n = 0.5 was used throughout the current work). It has also been
noted that predicted chemical shifts can be very sensitive to
small changes in protein structure.10

4 Conclusions

We have systematically explored the effects on the energy land-
scape of adding a restraint potential term based on calculated and
reference NMR chemical shifts to the energy of a biomolecule
from a molecular mechanics force field. Our test molecule is the

tryptophan zipper 1 peptide (1LE0), the force field is CHARMM22/
CMAP24–26 with the FACTS implicit model of solvation,27 and
CamShift23 (recoded11 in Fortran) provided the restraint potential
and calculated chemical shifts. The general aim of including such
restraint terms is to improve the efficiency and accuracy of
structure prediction simulations, by incorporating experimental
information about the target conformation. This approach is
most useful when the force field supports an unphysically large
number of local minima, and/or does not have the native state
as the global minimum. We therefore performed basin-hopping
global optimization simulations and assembled kinetic transition
networks using discrete path sampling, for a series of total energy
functions with increasing contributions from the restraint
potential, controlled by a mixing parameter a.

The results show that locating a native-like structure for this
system is relatively difficult without any restraint terms but,
as expected, this situation can be improved significantly by
incorporating restraints from CamShift. We postulate that this
improvement arises because the proportion of minima classified
as native, according to structural order parameters for backbone
hydrogen bonding and TRP–TRP sidechain packing, is signifi-
cantly higher when CamShift is included, and also because the

Fig. 5 Disconnectivity graphs for a = 0.7. The vertical axes are the total energy, relative to the lowest-energy minimum. Left: Full graph, with the
branches coloured according to the number of native backbone hydrogen bonds in the corresponding local minimum, with blue representing the
maximum (four). Right: Magnification of the low-energy region. Here, only the minima with four native backbone hydrogen bonds are coloured, and
the colour scheme now displays the number of distances between centres of mass of neighbouring pairs of TRP sidechains that match the PDB structure
(tolerances given in the text). Red: one. Green: two. Blue: three.
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organization of the energy landscape changes. Of the values
tested, a = 0.3 was found to give optimal performance in terms
of both the basin-hopping statistics and the structure of the
observed landscape, which is the most funnelling. Different
systems may have different optimal values of a; however, an
advantage of the form of the total energy function employed
here where the force field component is weighted by (1 � a) is
that the range of a values is bounded (0 r a r 1, compared
with a Z 0 in previous work9–11). There is a computational
overhead associated with the CamShift potential that must
also be considered: the average CPU time required per basin-
hopping step is longer by a factor of around 2.5 when CamShift
is included compared with CHARMM22/CMAP only, increasing
slightly with a.

It was also found that including CamShift improves the
efficiency of locating the native secondary structure (backbone
hydrogen bonding pattern) to a greater extent than the native
sidechain packing. It therefore seems likely that, for difficult
cases, structure prediction could be achieved efficiently via a
hierarchical procedure with alternating phases. The secondary
structure could first be optimized using a potential including
restraint terms, followed by a period of refinement of the
tertiary structure and local sidechain packing with the force
field only and an appropriate geometrical move set, such as
group rotations,50,51 in which sets of atoms are rotated as rigid
bodies about chosen axes.
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