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Tensor numerical methods in quantum chemistry:
from Hartree–Fock to excitation energies

Venera Khoromskaiaab and Boris N. Khoromskijb

We resume the recent successes of the grid-based tensor numerical methods and discuss their

prospects in real-space electronic structure calculations. These methods, based on the low-rank

representation of the multidimensional functions and integral operators, first appeared as an accurate

tensor calculus for the 3D Hartree potential using 1D complexity operations, and have evolved to

entirely grid-based tensor-structured 3D Hartree–Fock eigenvalue solver. It benefits from tensor calcu-

lation of the core Hamiltonian and two-electron integrals (TEI) in O(n log n) complexity using the rank-

structured approximation of basis functions, electron densities and convolution integral operators all

represented on 3D n � n � n Cartesian grids. The algorithm for calculating TEI tensor in a form of the

Cholesky decomposition is based on multiple factorizations using algebraic 1D ‘‘density fitting’’ scheme,

which yield an almost irreducible number of product basis functions involved in the 3D convolution

integrals, depending on a threshold e 4 0. The basis functions are not restricted to separable Gaussians,

since the analytical integration is substituted by high-precision tensor-structured numerical quadratures.

The tensor approaches to post-Hartree–Fock calculations for the MP2 energy correction and for the

Bethe–Salpeter excitation energies, based on using low-rank factorizations and the reduced basis

method, were recently introduced. Another direction is towards the tensor-based Hartree–Fock numerical

scheme for finite lattices, where one of the numerical challenges is the summation of electrostatic potentials

of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a

L � L � L lattice manifests the linear in L computational work, O(L), instead of the usual O(L3 log L)

scaling by the Ewald-type approaches.

1 Introduction

The problems of numerical modeling the many-particle inter-
actions in large molecular systems, lattice structured metallic
clusters and crystals, proteins and nanomaterials are the most
challenging tasks in modern computational physics and chemistry.
The traditional approaches for these multidimensional problems
are restricted to the concepts which have well recognized
limitations for computations with higher accuracy and for
larger non-periodic molecular systems, as well as for efficient
calculation of excited states. Recent advances in numerical
analysis for multidimensional problems and significant achieve-
ments in high performance computing suggest new creative
approaches to these problems.

The Hartree–Fock (HF) equation governed by the 3D integral-
differential operator29,67 is one of the basic models for ab initio
calculation of the ground state energy of molecular systems.

It is a strongly nonlinear eigenvalue problem (EVP) in a sense,
that one should solve the equation in a self-consistent way
when the integral part of the governing operator depends on
the solution itself. Multiple strong singularities in the electron
density of a molecule due to nuclear cusps impose strong
requirements on the accuracy of calculations.

Commonly used numerical methods for solution of the
Hartree–Fock equation are based on the analytical computation
of the arising two-electron integrals (convolution type integrals
in R3) in the problem adapted naturally separable Gaussian-
type bases,1,17 by using erf-function expansions. This rigorous
approach resulted in a number of efficient implementations
which are widely used in computational quantum chemistry.
The success of the analytical integration methods stems from
the big amount of precomputed information based on the
physical insight including the construction of problem adapted
atomic orbitals basis sets and elaborate nonlinear optimization
for calculation of density fitting basis. The known limitations
of this approach appear due to a strong dependence of the
numerical efficiency on the size and quality of the chosen
Gaussian basis sets, that might be crucial for larger molecular
clusters and heavier atoms.
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The intention to replace or assist the analytical calculations
for the Hartree–Fock problem by a data-sparse grid-based
numerical schemes has a long history. First success was the
grid-based numerical method for the diatomic molecules in
ref. 66, though this approach was not feasible to compact (3D)
molecules. The wavelet multiresolution schemes13 capable for
the accurate representation of nuclear cusps, have been applied
to electronic structure simulations,21,28,63 and recently this
approach was further advanced due to achievements in high
performance supercomputing.8,18,20,63 However, due to extensive
computational resources, the entirely wavelet-based or sparse-
grid approaches24,74 are limited so far only to rather small
atomic systems with few electrons.2 Tensor hyper-contraction
decompositions in density fitting schemes have been analyzed in
ref. 32 and 59.

The newly developed tensor-structured numerical methods,
both the name and the concept, appeared during the work on the
grid-based tensor approach to the solution of the 3D Hartree–Fock
problem.38,39,42 The central point is the representation of d-variate
functions and integral/differential operators on large n#d grids
and their approximation in the low-rank tensor formats, which
allows numerical calculations in O(dn) complexity instead of O(nd)
by conventional methods.

In this paper we summarize the main benefits of the tensor
numerical methods in electronic structure calculations, and discuss
further prospects of this approach in several directions, such as

(a) Algebraic directional density fitting and tensor factoriza-
tion of the two-electron integrals in Hartree–Fock calculations;

(b) Tensor decompositions in the MP2 energy correction,
and in calculation of excitation energies based on the Bethe–
Salpeter equation;

(c) Fast tensor summation of electrostatic potentials on large
3D lattices for efficient calculation of the Fock matrix in the
case of lattice-structured systems;

(d) Fast method for calculation of the interaction energy of a
large number of Coulombic potentials on a 3D lattice.

Notice that basic rank-structured tensor formats such as the
canonical (PARAFAC/CANDECOMP) and Tucker tensor decom-
positions have been since long used in the computer science for
the quantitative analysis of correlations in the experimental
multidimensional data arrays in data processing and chemo-
metrics, see ref. 12, 50 and 64 and references therein. In 2006
the exceptional properties of the Tucker decomposition for the
discretized multidimensional functions have been revealed in
ref. 36 and 38, where it was proven that for a class of function-
related tensors the approximation error of the Tucker decomposi-
tion decays exponentially with respect to the Tucker rank. This gives
the opportunity to represent the discretized multidimensional
functions and integral (convolution) operators in an algebrai-
cally separable form and thus reduce the numerical treatment
of the multidimensional transforms to 1D operations. It was
shown that the number of vectors in such a representation
depends only logarithmically on the size of the d-dimensional
grid, O(nd), used for discretization of multivariate functions.

The above results have led to the idea to calculate the
Hartree potential and the Coulomb and exchange operators

by numerical quadratures39 using Gaussian-type basis functions
discretized on 3D Cartesian grids and the fast tensor-product
convolution.35 In this way, the efficient low-rank canonical tensor
representation to the Newton kernel was an essential contribu-
tion.7 To reduce the initial rank of the electron density, that is
quadratically proportional to the number of GTO basis functions,
the canonical-to-Tucker tensor transform was invented,38,39 which
made computations for large tensor grids and extended molecules
tractable (even in Matlab).

The initial version of tensor-structured algorithms for
solving Hartree–Fock equation employed the 3D grid-based
calculation of the Coulomb and exchange integral operators
‘‘on-the-fly’’, thus avoiding precomputation and storage of the
TEI tensor.40,42 In particular, it was shown that tensor calculus
allows to reduce the 3D convolution integrals to combinations
of 1D convolutions, and 1D Hadamard and scalar products. Besides,
these results promoted spreading of the tensor-structured methods
in the community of numerical analysis,22,27,37 and further
development of the tree-tensor formats like tensor-train57 and
hierarchical Tucker representations.26

Further development of tensor methods in electronic struc-
ture calculations was due to the fast algorithm for the grid-
based computation of the TEI tensor44 in O(Nb

3) storage in the
number of basis functions Nb. The fourth order TEI tensor is
calculated in a form of the Cholesky factorization by using
the algebraic 1D ‘‘density fitting’’ scheme, which applies to the
product basis functions. Imposing the low-rank tensor repre-
sentation of the product basis functions and the Newton
convolving kernel all discretized on n � n � n Cartesian grid,
the 3D integral transforms are calculated in O(n log n) complexity.
Given the factorized TEI, the update of the Column and exchange
parts in the Fock matrix reduces to the cheap algebraic opera-
tions. Other steps are tensor calculation of the core Hamiltonian
and the efficient MP2 energy correction scheme,45 which all
together gave rise to the black-box Hartree–Fock solver.46

Due to the grid representation of basis functions basis sets
are now not restricted to Gaussian-type orbitals and allowed to
be any well-separable function defined on a grid. The tensor-
based Hartree–Fock solver is competitive in computational
time and accuracy with the standard packages based on analy-
tical calculation of integrals. High accuracy is attained owing to
easy calculations on large 3D grids up to n3 = 1018, so that the
resolution with mesh size h of the order of atomic radii, 10�4 Å,
is possible.

Motivated by tensor decompositions in the MP2 scheme, the
new approach for calculation of the excited states in the frame-
work of the Bethe–Salpeter equation was recently introduced,6

that employs the reduced basis method in combination with
low-rank tensor approximations.

Further developments of the tensor methods in multi-particle
simulations are focused on the large lattice structures in a box
and nearly periodic systems, for which the tensor approach may
reduce computational costs dramatically.48 One of the challen-
ging problems in the numerical treatment of the crystalline-type
molecular clusters is summation of a large number of electro-
static potentials distributed on a non-periodic (finite) lattice.
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The novel grid-based method for summation of the long-range
potentials in the canonical and Tucker formats47,49 works on
L � L � L lattices with the computational cost O(L) instead
of O(L3 log L) by the traditional Ewald-type methods.19 The
required precision is guaranteed by employing large 3D Cartesian
grids for representation of potentials. The method remains
efficient for lattices with non-rectangular geometries and in
the presence of multiple defects.48,49

In particular, we present fast tensor method for the summation
of the long-range interaction potentials on a 3D lattice by using the
assembled vectors of their canonical and Tucker tensor represen-
tations. The important application of this approach to calculation
of interaction energy of the Coulombic potentials on a lattice with
sub-linear cost in the lattice size is described in detail.

The rest of the paper is organized as follows. In Section 2,
we overview the basic tensor formats and show why the
orthogonal Tucker tensor decomposition, originating from
computer science and data processing, became useful for the
treatment of the multidimensional functions and operators in
numerical analysis. In particular, Sections 2.3 and 2.4 discuss
the matrix product states (tensor train) formats and the novel
quantics tensor approximation method, respectively, while
Section 2.5 addresses the basic tensor-structured multilinear
algebra operations. Section 3 describes tensor calculus of the
multidimensional convolution transform on examples of the
Hartree potential (Section 3.1) and the TEI tensor (Section 3.2),
and recalls the main building blocks in the tensor-based black-
box Hartree–Fock solver. Section 4 shows benefits of the
tensor approach in MP2 calculations and in calculation of the
lowest part of the excitation energies in the framework of
the Bethe–Salpeter equation. Section 5 describes the benefits
of tensor methods in applications to lattice-type molecular
systems. Appendix discusses some computational details on
the Canonical-to-Tucker tensor transform, the Galerkin dis-
cretization scheme for the nonlinear Hartree–Fock equation,
and the basics of the low-rank canonical tensor representation
for the Newton kernel.

2 Rank-structured tensor
representations of discretized
functions and operators

In this section we discuss shortly why the rank-structured
tensors, which were traditionally used in experimental data
processing, appeared to be useful for the separable represen-
tation of multivariate functions and operators represented
on tensor product grids. There is a numerous literature on
application of the canonical and Tucker tensor decomposi-
tions in chemometrics and data processing, see ref. 12, 31, 50,
64 and 68 and references therein. In the recent decade the
class of matrix product states type tensor formats became
popular in the simulations of quantum spin systems and
quantum molecular dynamics. We refer to ref. 37 and 62 for
recent literature surveys on commonly used tensor formats.

2.1 Canonical and Tucker tensor formats

We consider a tensor of order d, as a real multidimensional
array A = [ai1,. . .,id

] A Rn1�. . .�nd numbered by a d-tuple index set,†
with multi-index notation i = (i1,. . .,id), il A {1,. . .,nl}, l = 1,. . .,d.
It is an element of the linear vector space Rn1�� � ��nd equipped
with the Euclidean scalar product,

A;Bh i ¼
Xn1
i1¼1
� � �
Xnd
id¼1

ai1 ;:::;id bi1;:::;id :

Euclidean vectors and matrices are the special case of dth
order tensors. For a general tensor, the required storage scales
exponentially in the dimension, n1n2. . .nd, (the so-called ‘‘curse
of dimensionality’’). To get rid of exponential scaling in the
dimension, one can apply the rank-structured separable repre-
sentations of multidimensional tensors. The simplest separ-
able element is given by rank-1 canonical tensor,

U = u(1)#� � �#u(d) A Rn1�� � ��nd,

with entries

ui1;...;id ¼ u
ð1Þ
i1

. . . u
ðdÞ
id
;

requiring only n1 +� � �+ nd numbers to store it.
A tensor in the R-term canonical format is defined by

U ¼
XR
k¼1

cku
ð1Þ
k � . . .� u

ðdÞ
k ; ck 2 R; (1)

where u
ð‘Þ
k 2 Rn‘ are normalized vectors, and R is called the

canonical rank of a tensor. It is convenient to introduce the

so-called side matrices Uð‘Þ ¼ u
ð‘Þ
1 . . . u

ð‘Þ
R

h i
2 Rn‘�R, l = 1, 2, 3,

obtained by concatenation of the canonical vectors u
ð‘Þ
k , k =

1,. . .,R. Now the storage cost is bounded by dRn. For d Z 3
computation of the canonical rank of a tensor U, i.e. the
minimal number R in representation (1) and the respective
decomposition, is an N–P hard problem. In the case d = 2 the
representation (1) is merely a rank-R matrix.

We say that a tensor A is represented in the rank-r ortho-
gonal Tucker format with the rank parameter r = (r1,. . .,rd), if

A ¼
Xr1
n1¼1

. . .
Xrd
nd¼1

bn1;...;nd v
ð1Þ
v1
� . . .� vðdÞnd ; ‘ ¼ 1; . . . ; d; (2)

where vð‘Þn‘ 2 Rn‘

n o
represents the set of orthonormal vectors,

and b = [bn1,. . .,nd
] A Rr1�� � ��rd is the Tucker core tensor. The

storage cost for the Tucker tensor is bounded by drn + rd, r =
max rl. Often the equivalent notation for the Tucker tensor
format is used,

A = b �1V (1) �2V (2) �� � ��dV (d), (3)

where �l denotes the contraction along the mode l and ortho-
gonal matrices V(l) incorporate the set of vectors vð‘Þn‘ 2 Rn‘

n o
.

† The alternative notation A = [A(i1,. . .,id)] can be utilized.
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In the case d = 2, the orthogonal Tucker decomposition is
equivalent to the singular value decomposition (SVD) of a
rectangular matrix. Fig. 1 and 2 visualizes the canonical and
Tucker tensors in the case d = 3. Canonical tensor decomposition
leads to an ill-posed problem and, up to our best knowledge, there
are no robust algebraic algorithms for the canonical approxi-
mation of an arbitrary tensor. For some classes of analytic func-
tions, the explicit low-rank approximation can be constructed in
analytic form by using sinc-quadrature approximation to the
Laplace transform. The robust methods for Tucker decomposition
are based on the orthogonal projections using the higher order
singular value decomposition16 (HOSVD) that is the generalization
of the singular value decomposition (SVD) of matrices.

The rank-structured decomposition (approximation) of
multidimensional tensors provides means for the separation
of variables in the discretized representation of multivariate
functions and operators, and thus the possibility to substitute
multidimensional algebraic transforms by univariate opera-
tions. Notice that in the computer science community these
possibilities were restricted to moderate-dimensional tensors
of small mode size (with rather large rank parameters) obtained
from the experimental data sets.

2.2 Tucker decomposition for function related tensors.
Canonical-to-Tucker approximation

It was proven and shown in numerical simulations,36,38 that the
rank of the (fixed accuracy) Tucker approximation to some
function related tensors depends only logarithmically on the
size of the discretization grid. In particular, it was shown that
for tensors resulting from the grid discretization of physically
relevant multidimensional functions one can find algebraically
a reduced subspace in each mode of the 3D tensor, which lead

to a separable approximation of the function by a tensor
product of a small number of vectors.

For a given continuous function f: O- R, O :¼
Qd
‘¼1

a‘; b‘½ � � R3,

we introduced the function related 3rd order tensor, obtained
by Galerkin discretization in a volume box using n � n � n 3D
Cartesian grid. In particular, the low-rank tensor approxima-
tions were calculated for functions of the Slater type f (x) =

exp (�a||x||), Newton kernel f ðxÞ ¼ 1

xk k, Yukawa potential

f ðxÞ ¼ e�akxk

xk k , and the Helmholtz potential f ðxÞ ¼ cos a xk k
xk k ,

x A R3.
Numerical tests demonstrated that the error of the rank-r

(with r = (r,r,r)) Tucker approximation applied to these third
order tensors decays exponentially with respect to the Tucker
rank r. Moreover, for fixed approximation error, the Tucker
rank r scales as O(log n) for above mentioned functions.35

Fig. 3 (bottom) shows the exponential convergence of the
Tucker tensor approximation in the Tucker rank r of the Slater

function in the relative Frobenius norm, EFN ¼
A� Ark k

Ak k . Fig. 3

and 4 demonstrate that the exponential decay of approximation
error is nearly the same for both a single potential and for a sum
of the same potentials distributed in nodes of a cubic lattice. This
property of the Tucker decomposition will be further gainfully
applied to the fast lattice summation of interaction potentials.

Motivated by these observations, we invented the canonical-
to-Tucker (C2T) decomposition for function related tensors,38

Fig. 1 The canonical tensor decomposition for d = 3.

Fig. 2 Visualizing the Tucker tensor for d = 3.

Fig. 3 The Tucker approximation error in the Frobenius norm vs. the
Tucker rank r for a single Slater function.
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based on the reduced higher order singular value decomposi-
tion (RHOSVD) (Theorem 2.5, ref. 39). The canonical-to-Tucker
algorithm (see Appendix) combined with the Tucker-to-
canonical transform serves for reducing the ranks of canonical
tensors with large R. Fig. 5 in its ALS part shows the algorithmic
step for l = 1, which is repeated for every mode l = 1, 2, 3
(see Appendix). The computational work for the multigrid
tensor decomposition C2T algorithm introduced in ref. 39
exhibits linear complexity scaling with respect to all input
parameters, O(Rnr).

The multigrid Tucker decomposition algorithm applied
to full format tensors39 leads to the complexity scaling O(n3),
whereas its standard version (commonly used HOSVD algorithm
in computer science) scales as O(n4), becoming intractable even
for moderate sizes of tensors.

We conclude by notice that the optimized Tucker and
canonical tensor approximations can be computed by the
alternating least square (ALS) iteration with initial guess
obtained by HOSVD/RHOSVD approximations.

2.3 Matrix product states/tensor train format

The product-type representation of dth order tensors, which is
called in the physical literature as the matrix product states
(MPS) decomposition (or more generally, tensor network states
models), was introduced and successfully applied in DMRG
quantum computations,62,69,73 and, independently, in quantum
molecular dynamics as the multilayer (ML) MCTDH methods.54,71

MPS type representations reduce the storage complexity to
O(dr2N), where r is the maximal rank parameter.

In the recent years the various versions of the MPS-type
tensor approximations were discussed and further investigated
in mathematical literature including the hierarchical dimension
splitting,36 the tensor train (TT),14,57 the quantics-TT (QTT),34 as
well as the hierarchical Tucker representation,26 which belongs
to the class of tensor network states model.

The TT format is the particular form of MPS type factorization in
the case of open boundary conditions. For a given rank parameter
r = (r0,. . .,rd), the rank-r TT format contains all elements A = [ai1,. . .,id]

A Rn1�� � ��nd, which can be represented as the contracted products
of 3-tensors, that in the index notation takes a form,

ai1 ;:::;id ¼
Xr1
a1¼1
� � �
Xrd
ad¼1

að1Þa1
i1ð Það2Þa1 ;a2

i2ð Þ . . . aðdÞad�1
idð Þ

� A(1)(i1)A(2)(i2). . .A(d)(id),

specified by the set of column vectors, að‘Þa‘;a‘þ1 2 Rn‘ , (l = 1,. . .,d),
or equivalently by the vector-valued rl � rl+1 matrices,

Að‘Þ ¼ a
ð‘Þ
a‘;a‘þ1

h i
, (i.e., 3-tensors), cf. (2). The latter representation

is written in the matrix product form, explaining the notion
MPS, where A(l)(il) is rl�1 � rl matrix.

Fig. 6 illustrates the TT representation of a 5th-order tensor,
where each particular entry is factorized as a product of five
matrices, ai1,i2,. . .,i5

= A(1)(i1) A(2)(i2). . .A(5)(i5), where, for example,
A(2)(i2) A Rr1�r2.

The rank-structured tensor formats like canonical, Tucker
and MPS/TT-type decompositions also apply to matrices. For
example, the d-dimensional FFT matrix over N#d grid can be
implemented on the rank-k tensor with the linear-logarithmic
cost O(dkN log2 N), due to the rank-1 factorized representation

F(d)
N = (F (1)

N # I. . .# I)(I # F (2)
N . . .# I). . .(I # I. . .# F (d)

N )

� F (1)
N #. . .# F (d)

N ,

where F
ð‘Þ
N 2 RN�N represents the univariate FFT matrix along

mode l.

Fig. 4 The Tucker approximation error in the Frobenius norm vs. the
Tucker rank r for a sum of 512 Slater potentials over the cubic 8 � 8 � 8
lattice (right).

Fig. 5 Part of the canonical-to-Tucker decomposition algorithm for
mode l = 1.

Fig. 6 Visualizing 5th-order MPS/TT tensor.
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2.4 Quantics tensor approximation of functional vectors

In the case of large mode size, the asymptotic storage cost for a class
of function related N–d tensors can be reduced to O(d log N) by using
quantics-TT (QTT) tensor approximation method.34 The QTT-type
approximation of an N-vector with N = 2L, L A N, is defined as the
tensor decomposition (approximation) in the canonical, TT or more
general formats applied to a tensor obtained by the dyadic folding
(reshaping) of the target vector to an L-dimensional 2 �� � �� 2 data
array (tensor) that is thought as an element of the L-dimensional
quantized tensor space.

In the vector case, i.e. for d = 1, a vector x = [xi] A RN, with
N = 2L, is reshaped to its quantics (quantized) image in �L

j¼1 R2;

by dyadic folding,

F2;L : x! Y ¼ yj
� �
2 �L

j¼1R2; j ¼ ð j1; :::; jLÞ; jn 2 f1; 2g;

where for fixed i, we have yj: = xi, with jn = jn(i) = Cn�1 (n = 1,. . .,L)
being defined via binary coding, i.e. the coefficients Cn�1 A {0, 1}
are found from the binary representation of i � 1,

i � 1 ¼ C0 þ C12
1 þ � � � þ CL�12

L�1 �
XL
n¼1

jn � 1ð Þ2n�1:

Next figure visualizes the QTT approximation process.

Suppose that the quantics image for an N-vector, i.e. an
element of L-dimensional quantized tensor space�L

j¼1 R2 with L =

log2 N, can be represented (approximated) by the low-rank cano-
nical or TT tensor of order L, thus introducing the QTT approxi-
mation of an N-vector. Given rank parameters {rk} (k = 1,. . .,L), the
QTT approximation of an N-vector requires a number of repre-
sentation parameters estimated by

2r2 log2 N { N, where rk r r, k = 1,. . .,L,

providing log-volume complexity scaling in the size of initial
vector, N. For d 4 1 the construction is similar.34

The power of QTT approximation method is explained by the
theoretical substantiation of the QTT approximation properties
discovered in ref. 34 and establishing the perfect rank-r decom-
position for the wide class of function-related tensors obtained
by sampling continuous functions over uniform (or properly
refined) grid:
	 r = 1 for complex exponents,
	 r = 2 for trigonometric functions and plain-waves,
	 r r m + 1 for polynomials of degree m,
	 r is a small constant for wavelet functions, Gaussians, etc.

all independently on the vector size N.
Notice that the notion quantics (or quantized) tensor

approximation (with a shorthand QTT) originally introduced
in 2009, see ref. 34, is reminiscent of the entity ‘‘quantum of

information’’, that mimics the minimal possible mode size (n = 2)
of the quantized image.

Concerning the matrix case, it was first found in ref. 56 by
numerical tests that in some cases the dyadic reshaping of an
N � N matrix with N = 2L may lead to a small TT-rank of the
resultant matrix rearranged to the tensor form. The efficient
low-rank QTT representation for a class of discrete multidimen-
sional elliptic operators (matrices) and their inverse was proven
in ref. 33. Moreover, based on the QTT approximation, the
important algebraic matrix operations like FFT, convolution and
wavelet transforms can be implemented by superfast algorithms
in O(log2 N)-complexity, see survey paper37 and references therein.

2.5 Rank-structured tensor operations in 1D complexity

The rank-structured tensor representation provides 1D complexity
of multilinear operations with multidimensional tensors. Rank-
structured tensor representation provides fast multi-linear algebra
with linear complexity scaling in the dimension d.

For given canonical tensors A and B as in (1), with ranks Ra

and Rb, respectively, their Euclidean scalar product can be
computed by univariate operations

A;Bh i ¼
XRa

i¼1

XRb

j¼1
cicj

Yd
‘¼1

a
ð‘Þ
i ; b

ð‘Þ
j

D E
; (4)

at the expense O(dnRaRb).
The Hadamard (entrywise) product of tensors A, B is defined by

Y = [ yi1,. . .,id]: = A } B, where yi1,. . .,id = ai1,. . .,idbi1,. . .,id. For canonical
tensors A and B given in form (1), the Hadamard product is
calculated in O(dnRaRb) operations by 1D entrywise products of
vectors,

A
 B ¼
XRa

i¼1

XRb

j¼1
cicj a

ð1Þ
i 
 b

ð1Þ
j

� �
� � � � � a

ðdÞ
i 
 b

ðdÞ
j

� �
: (5)

Summation of two tensors in the canonical format C = A + B
is performed by a simple concatenation of their factor matrices,

Að‘Þ ¼ a
ð‘Þ
1 ; . . . ; a

ð‘Þ
Ra

h i
and Bð‘Þ ¼ b

ð‘Þ
1 ; . . . ; b

ð‘Þ
Rb

h i
,

Cð‘Þ ¼ a
ð‘Þ
1 ; . . . ; a

ð‘Þ
Ra
; b
ð‘Þ
1 ; . . . ; b

ð‘Þ
Rb

h i
2 Rn‘� RaþRbð Þ: (6)

The rank of the resulting canonical tensor increases up to
Rc = Ra + Rb.

In electronic structure calculations, the 3D convolution

transform with the Newton kernel,
1

k x� y k, is the most

computationally expensive operation. The tensor method to
compute convolution over large n � n � n Cartesian grids in
O(n log n) complexity was introduced in ref. 35. Given canonical
tensors A, B, their convolution product is represented by the
sum of tensor products of 1D convolutions,

A� B ¼
XRa

i¼1

XRb

j¼1
cicj a

ð1Þ
i � b

ð1Þ
j

� �
� a

ð2Þ
i � b

ð2Þ
j

� �
� a

ð3Þ
i � b

ð3Þ
j

� �
;

(7)
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where a
ð‘Þ
k � bð‘Þm denotes the univariate convolution product of

n-vectors. The cost of tensor convolution in both storage and
time is estimated by O(RaRbn log n). The resulting algorithm
considerably outperforms the conventional 3D FFT-based
approaches of complexity O(n3 log n), see numerics in ref. 39.

The sequences of rank-structured operations on matrices
and vectors normally lead to the increase of tensor ranks,
usually being multiplied or added after each operation. The
necessary rank reduction in the Tucker and MPS type formats
can be implemented by stable algorithms based on the higher
order SVD. In the physical community the HOSVD-type algorithms
are known since longer as the Schmidt decomposition.62,69,70 In
the case of canonical tensors the rank reduction can be performed
by the RHOSVD algorithm based on the canonical-to-Tucker and
then Tucker-to-canonical transforms described and analyzed
in ref. 38, 39 and 49 (see Section 2.2 and Appendix), which
demonstrated the stable behavior for most of examples in the
Hartree–Fock calculations we considered so far. The stability
conditions for the RHOSVD have been discussed in ref. 39 and 49.

3 Tensor calculus for the
Hartree–Fock equation
3.1 Calculation of multi-dimensional integrals

Tensor-structured calculation of the multidimensional con-
volution integral operators with the Newton kernel have been
introduced in ref. 39, 40 and 42, where on the examples of the
Hartree and exchange operators in the Hartree–Fock equation,
it was shown that calculation of the 3D and 6D convolution
integrals can be reduced to a combination of 1D Hadamard
products, 1D convolutions and 1D scalar products.

The molecule is embedded in a certain fixed computational
box O = [�b,b]3 A R3, as in Fig. 7.‡ For a given discretization
parameter n A N, we use the equidistant n � n � n tensor grid
o3,n = {xi}, i A I:= {1,. . .,n}3, with the mesh-size h = 2b/(n + 1).
In calculations of integral terms, the Gaussian basis functions
gk(x), x A R3, are approximated by sampling their values at
the centers of discretization intervals, as in Fig. 8, using
one-dimensional piecewise constant basis functions gkðxÞ �

gkðxÞ ¼
Q3
‘¼1

g
ð‘Þ
k x‘ð Þ, l = 1, 2, 3, yielding their rank-1 tensor

representation,

Gk = g (1)
k # g (2)

k # g (3)
k A Rn�n�n, k = 1,. . .,Nb. (8)

Let us consider the tensor calculation of the Hartree potential

VHðxÞ :¼
ð

R3

rðyÞ
k x� y kdy;

and the corresponding Coulomb matrix,

Jkm :¼
ð

R3

gkðxÞgmðxÞVHðxÞdx; k;m ¼ 1; . . .Nb x 2 R3;

where the electron density, rðxÞ ¼ 2
PNorb

a¼1
jað Þ

2, is represented in

terms of molecular orbitals jaðxÞ ¼
PNb

k¼1
ca;kgkðxÞ. Given the dis-

crete tensor representation of basis functions (8), the electron
density is approximated using 1D Hadamard products of rank-1
tensors (instead of product of Gaussians),

r � Y ¼ 2
XNorb

a¼1

XNb

k¼1

XNb

m¼1
ca;mca;k g

ð1Þ
k 
 gð1Þm

� �
� g

ð2Þ
k 
 gð2Þm

� �
� g

ð3Þ
k 
 gð3Þm

� �
2 Rn�n�n:

Further, the representation of the Newton kernel
1

k x� y k by

a canonical rank-RN tensor7 is used (see Appendix for details),

PR ¼
XRN

q¼1
pð1Þq � pð2Þq � pð3Þq 2 Rn�n�n: (9)

Since large ranks make tensor operations inefficient, the multi-
grid canonical-to-Tucker and Tucker-to-canonical algorithms
should be applied to reduce the initial rank of Y 7! Y0 by
several orders of magnitude, from Nb

2/2 to Rr {Nb
2/2. Then the

3D tensor representation of the Hartree potential is calculated
by using the 3D tensor product convolution, which is a sum of
tensor products of 1D convolutions,

VH � VH ¼ Y0 � PR

¼
XRr

m¼1

XRN

q¼1
cm uð1Þm � pð1Þq

� �
� uð2Þm � pð2Þq

� �
� uð3Þm � pð3Þq

� �
:

The Coulomb matrix entries Jkm are obtained by 1D scalar
products of VH with the Galerkin basis consisting of rank-1 tensors,

Jkm E hGk } Gm,VHi, k, m = 1,. . .Nb.

Fig. 7 Glycine amino acid in a computational box.

Fig. 8 Approximation of the Gaussian-type basis function by a piecewise
constant function.

‡ Usually for small to moderate size molecules we use the computational box of
size 403 bohr3.
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The cost of 3D tensor product convolution is O(n log n)
instead of O(n3 log n) for the standard benchmark 3D convolu-
tion using the 3D FFT. Table 1 shows CPU times (s) for the
Matlab computation of VH for H2O molecule39 on a SUN station
using 8 Opteron Dual-Core/2600 processors (times for 3D FFT
for n Z 1024 are obtained by extrapolation). C2T shows the
time for the canonical-to-Tucker rank reduction. In a similar
way, the algorithm for 3D grid-based tensor-structured calcula-
tion of 6D integrals in the exchange potential operator was

introduced in ref. 40, Kkm ¼
PNorb

a¼1
Kkm;a with

Kkm;a :¼
ð

R3

ð
R3

gkðxÞ
jaðxÞjaðyÞ
jx� yj gmðyÞdxdy; k;m ¼ 1; . . .Nb;

the contribution from the a-th orbital are approximated by
tensor anzats,

Kkm;a :¼ Gk 

XNb

m¼1
cmaGm

" #
; Gm 


XNb

n¼1
cnaGn

" #
� PR

* +
:

Here, the tensor product convolution is first calculated for
each ath orbital, and then scalar products in canonical format
yield the contributions to entries of the exchange Galerkin
matrix from the a-th orbital.

These algorithms were employed in the first tensor-structured
solver using 3D grid-based evaluation of the Coulomb and exchange
matrices in 1D complexity at every step of SCF EVP itera-
tion.41,42 A sequence of dyadically refined 3D Cartesian grids
was used for reducing time in first iterations, with an e
convergence criterion for switching to larger grids. This is a
nonstandard computational scheme avoiding calculation of
the two-electron integrals. The accuracy for small molecules
like H2O and CH4 was of the order of 10�4 Hartree. Though
time performance of this solver was not compatible with the
standard Hartree–Fock packages it was the first proof of
concept for the tensor numerical methods.

3.2 3D grid-based calculation of the two-electron integrals

The basic tensor-structured Hartree–Fock solver employs the
factorized 3D grid-based calculation of the two-electron integrals
tensor, B = [bmnkl], in the form

bmnkl ¼
ð

R3

ð
R3

gmðxÞgnðxÞgkðyÞglðyÞ
k x� y k dxdy (10)

= hGm } Gn,PR � (Gk } Gl)in#3,

by using univariate tensor operations. Introduce the side
matrices G(l) representing on the grid the full set of canonical

vectors composing the products of the Gaussian basis functions,
{Gm } Gn},

Gð‘Þ ¼ gð‘Þm 
 gð‘Þn

h i
1
m;n
Nb

2 Rn�Nb
2

‘ ¼ 1; 2; 3;

where in most of our Hartree–Fock calculations grids of size
n3 = 32 � 103 or n3 = 64 � 103 have been used. It was found that
the large matrices G(l) of size n� Nb

2 (e.g. Nb
2 = 40 000 for Alanine

amino acid) can be approximated with high accuracy by low rank
matrices with the rank parameter bounded by Rl r Nb.44,45 The
corresponding low-rank factorizations (‘‘1D density fitting’’) in the
form (for l = 1, 2, 3)

Gð‘Þ ffi Uð‘ÞV ð‘ÞT ; Uð‘Þ 2 Rn�R‘ ; V ð‘Þ 2 RNb
2�R‘ ; (11)

is computed by the truncated Cholesky decomposition of the
symmetric, positive definite G(l)G(l)T

(see ref. 44 and 45 for more
details).

Based on factorization (11), the number of convolutions in
(10) is reduced dramatically from Nb

2 to Nb at most (say from
40 000 to 200). In fact, using canonical factors from the rank-R
canonical tensor PR representing the Newton kernel (9) (see (31)
in Appendix) we, first, precompute the set of ‘‘convolution’’
matrices for every space variable l, l = 1, 2, 3,

M
ð‘Þ
k ¼ Uð‘Þ

T

p
ð‘Þ
k �n U

ð‘Þ
� �

2 RR‘�R‘ ; k ¼ 1; . . . ;R; (12)

which includes the convolution products with Rl r Nb column

vectors of the matrix Uð‘Þ 2 Rn�R‘ instead of Nb
2/2 convolutions

in the initial formulation.
Given matrices Mð‘Þ

k , then the resulting 4-th order TEI tensor
is represented in a matrix form

B ¼ matðBÞ ffi Be :¼
XR
k¼1

3
‘¼1V

ð‘ÞM
ð‘Þ
k Vð‘Þ

T 2 RNb
2�Nb

2

:

The above nonstandard factorization of the TEI matrix B
allows to reduce dramatically the computational cost of the stan-
dard Cholesky factorization schemes3,5,30 applied to the reduced-
rank symmetric positive definite matrix B. In fact, the low-rank
Cholesky decomposition of B is calculated in the following
sequence. First, the diagonal elements of B are calculated as

Bði; iÞ ¼
XR
k¼1

3
‘¼1V

ð‘Þði; :ÞMð‘Þ
k V ð‘Þð:; iÞT :

Then the selected columns of the matrix B, required for the
rank-truncated Cholesky factorization scheme, are computed
by the following fast tensor operations

B :; j�ð Þ ¼
XR
k¼1

3
‘¼1V

ð‘ÞM
ð‘Þ
k V ð‘Þ :; j�ð ÞT ;

leading to representation of the matrix B in the form of rank-RB

approximate decomposition44,45

B :¼ bmn;kl
� �

� LLT ; withL 2 RNb
2�RB ; RB � Nb:

This algorithm is much faster than the direct Cholesky decom-
position of the matrix B with on-the-fly computation of the
required column vectors.

Table 1 Times (s) for the 3D tensor product convolution vs. 3D FFT
convolution

n3 10243 20483 40963 81923 163843

FFT3 B6000 — — — B2 years
C � C 8.8 20.0 61.0 157.5 299.2
C2T 6.9 10.9 20.0 37.9 86.0
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Table 2 represents times (s) for 3D grid-based calculation of
the directional density fitting and the TEI tensor (electron
repulsion integrals) for H2O molecule in a box [�20,20]3 bohr3,
performed in Matlab on a 2-Intel Xeon Hexa-Core/2677. Time
for convolution integrals in (12) scales almost linearly in the
1D grid-size n as expected by theory.

Note that the algorithm for fast tensor computation of TEI is
described in detail for the case of rank-1 GTO basis functions in
form (8). However, this approach can be also applied to basis
sets with low separation rank, say, to Slater-type basis functions
or some kind of agglomerated basis. The advantage of use
the ‘‘more compressed’’ basis is the essential reduction in the
number of basis functions, Nb, that enters to the size of TEI
tensor in the fourth power. The payoff for such a reduction
in the tensor size is the additional costs for calculation of the
particular entries of TEI tensor in (10), since in that case the
number of terms in tensor representation of the scalar products
in (10) increases quadratically in the separation rank of basis
functions. The resulting effect from implementation of the
reduced basis sets (with larger separation ranks) depends on
subsequent (post) Hartree–Fock calculations and it will be
studied in detail in the forthcoming paper.

3.3 Core Hamiltonian

The Galerkin representation of the 3D Laplace operator in the
nonlocal Gaussian basis {gk(x)}1rkrNb

, x A R3, leads to the fully

populated matrix Ag = [akm] A RNb�Nb. Tensor calculation of the
matrix entries akm for the discrete Laplacian Ag in the separable
Gaussian basis is reduced to 1D matrix operations46 involving
the FEM Laplacian D3, defined on n � n � n grid,

D3 = D1
(1) # I(2) # I(3) + I(1) # D(2)

1 # I(3) + I(1) # I(2) # D(3)
1 ,

where D1 ¼
1

h
tridiagf�1; 2;�1g. Specifically, we have

akm = hD3Gk,Gmi,

where Gk is the tensor representation of Gaussian basis functions
using the piecewise linear finite elements (see Fig. 9).

In the case of large n � n � n grids, this calculation can be
implemented with logarithmic cost in n by using the low-rank
QTT representation of the large matrix D3, see ref. 33, 43 and 46.

For tensor calculation of the nuclear potential operator

VcðxÞ ¼ �
XM
a¼1

Za

k x� aa k
; Za 4 0; x; aa 2 R3;

we apply the rank-1 windowing operator, Wa = W(1)
a # W(2)

a #
W(3)

a , for shifting the reference Newton kernel P̃R A R2n�2n�2n

according to the coordinates of nuclei in a molecule (see
Section 5 and Appendix). Then the resulting nuclear potential,
Pc A n�n�n, is obtained as a direct tensor sum of shifted
potentials,46

Pc ¼
XM
a¼1

ZaWaePR

¼
XM
a¼1

Za

XR
q¼1

Wð1Þ
a epð1Þq �Wð2Þ

a epð2Þq �Wð3Þ
a epð3Þq :

This leads to the following representation of the Galerkin
matrix, Vc = [%vkm], by tensor operations

vkm ¼
ð

R3

VcðxÞgkðxÞgmðxÞdx � Gk 
Gm;Pch i; 1 
 k;m 
 Nb:

Fig. 10, shows several vectors of the canonical representa-
tion of the Coulomb kernel along one of variables. Fig. 11,
represents the cross-section of the resulting nuclear potential
Pc for C2H5OH molecule.

3.4 Black-box tensor solver

The tensor-structured Hartree–Fock solver46 based on factorized
calculation of the two-electron integrals44 includes efficient
tensor implementation of the MP2 energy correction45 scheme.
Though it is yet implemented in Matlab, its performance in time
and accuracy is compatible with the standard packages based on
analytical evaluation of the two-electron integrals. Due to 1D
complexity of all calculations, it enables 3D grids of the size 1015,

Table 2 Times (s) for 3D grid-based calculation of the directional density
fitting and the TEI for H2O molecule

n3 16 3843 32 7683 65 5363 131 0723

Mesh (bohr) 0.0024 0.0012 6 � 10�4 3 � 10�4

Had. prod. 1.6 3.4 12 19
Density fit. 0.5 1.0 2.0 4.0
3D conv. time 69 151 698 496
Chol. time 2.2 2.2 2.2 2.2

Fig. 9 Discretization of a Gaussian by piecewise linear finite elements.

Fig. 10 Several vectors of the canonical representation of the Newton
kernel along one of variables.
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yielding mesh size of the order of atomic radii, 10�4 Å. That
ensures high accuracy of calculations, which is controlled by the
e-ranks of tensor truncation.

The solver works in a black-box way: input the grid-based
basis-functions and coordinates of nuclei in a molecule and start
the program. Calculation of TEI for H2O on grids 32 7683 takes
two minutes on a laptop. The time for TEI with n3 = 131 0723 for
Alanine amino acid takes approximately one hour in Matlab,
including incorporated density fitting.

Next examples compare the results from benchmark Molpro
program with calculations by the tensor-based solver by using
the same Gaussian basis, but now discretized on 3D Cartesian
grid. For all molecules we use the ‘‘cc-pVDZ’’ Gaussian basis
set. The core Hamiltonian part in these calculations is taken
from Molpro. Note that since in the tensor solver the density
fitting is included in ‘‘blind’’ calculation of TEI, it is not easy
to compare the CPU times of our calculations with those in
‘‘ab initio’’ procedure in the standard programs, because the
density fitting step there is usually considered as off-line
pre-computing.

Fig. 12, top, shows convergence to the ground state energy E0

in ab initio iterations for H2O molecule (cc-pVDZ-41), where TEI
is computed on the 3D grid of size 1 31 0723. Fig. 12, bottom
presents the zoom of the last 20 iterations. The ground state
energy from Molpro (E0 = 76.308 hartree) corresponding to the
basis set cc-pVDZ-41 with 41 Gaussian-type basis functions is
shown by the black dashed line.

Fig. 13 (top) shows the SCF EVP iteration history for Glycine
amino acid (cc-pVDZ-170), where dashed line indicates conver-
gence of the residual and the red solid line shows convergence of
the error DE0,g in ground state energy compared with the result
from MOLPRO package72 with the same basis set,

Fig. 11 A sum of the nuclear potentials for ethanol molecule. Size of the
computational box is given in bohr.

Fig. 12 Top: convergence of the ground state energy to E0 in ab initio SCF
Hartree–Fock iterations for H2O; bottom: zooming of final 20 iterations for H2O.

Fig. 13 Top: convergence of the residual in ab initio Hartree–Fock iteration
for glycine (C2H5NO2) molecule. Red line shows the difference with E0 from
molpro at every iteration. Bottom: ground state energy E0,g (red solid line) at
final 20 iterations for glycine molecule, dashed line shows E0 from molpro.
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DE0,g = |E0,g � E0|/|E0|. (13)

Fig. 13 (bottom) illustrates the convergence of the ground
state energy at final 20 iterations for Glycine, dashed line is the
energy from Molpro.

The first row in Table 3 shows the number of orbitals and basis
functions used in Hartree–Fock calculations for H2O (cc-pVDZ-41),
H2O2 (cc-pVDZ-68), and C2H5NO2 (cc-pVDZ-170) molecules. Sec-
ond row represents times (s) for one step of SCF iteration in ab
initio solution of the Hartree Fock EVP. Next two rows show the
relative difference in energy (13), for different grid sizes used in TEI
calculations. This numerics demonstrates that in the case of
fine enough spacial n � n � n-grids the accuracy in 7–8 digits
(i.e. relative accuracy about 10�7–10�8) can be achieved for mod-
erate size molecules up to small amino acids. All calculations are
performed in the computational box of size [�20,20]3 bohr3. This
tensor-based solver can be considered as the computational tool
for trying the alternatives to Gaussian-type basis sets.

4 From MP2 energy correction to
excited states
4.1 MP2 correction scheme by using tensor formats

Given the set of Hartree–Fock molecular orbitals {Cp} and the
corresponding energies {ep}, p = 1, 2,. . .,Nb, where {Ci} and {Ca}
denote the occupied and virtual orbitals, respectively. First, one
has to transform the TEI matrix B = [bmn,ls], corresponding to
the initial AO basis set, to those represented in the molecular
orbital (MO) basis,

V ¼ via; jb
� �

: viajb ¼
XNb

m;n;l;s¼1
CmiCnaCljCsbbmn;ls; (14)

where a, b A Iv, i, j A Io, and Io:= {1,. . .,Norb}, Iv:=
{Norb + 1,. . .,Nb}, with Norb denoting the number of occupied
orbitals. In the following, we shall use the notation

Nv = Nb � Norb, Nov = NorbNv.

The straightforward computation of the matrix V by above
representation makes the dominating impact to the overall
numerical cost of order O(Nb

5). The method of complexity
O(Nb

4) based on the low-rank tensor decomposition of the
matrix V was introduced in ref. 45. Indeed, it can be shown
that the rank RB = O(Nb) approximation to the TEI matrix B E
LLT, with the N � RB Cholesky factor L, allows to introduce the
low-rank representation of the matrix V, (see ref. 6 and 45)

V = LVLT
V, LV A RNov�RB,

and then reduce the asymptotic complexity of calculations to
O(Nb

4).
Given the tensor V = [viajb], the second order MP2 perturba-

tion to the HF energy is calculated by

EMP2 ¼ �
X

a;b2Ivir

X
i; j2Iocc

viajb 2viajb � vibja
� �

ea þ eb � ei � ej
; (15)

where the real numbers ek, k = 1,. . .,Nb, represent the HF
eigenvalues.

Introducing the so-called doubles amplitude tensor T,

T ¼ tiajb
� �

: tiajb ¼
2viajb � vibja
� �
ea þ eb � ei � ej

; a; b 2 Ivir; i; j 2 Iocc;

the MP2 perturbation takes the form of a simple scalar product
of tensors,

EMP2 = �hV,Ti = �hV } T,1i,

where 1 denotes the rank-1 all-ones tensor. Introducing the low
e-rank reciprocal ‘‘energy’’ tensor

E ¼ eabij
� �

:¼ 1

ea þ eb � ei � ej

� 	
; a; b 2 Ivir; i; j 2 Iocc; (16)

and the partly transposed tensor (transposition in indices a and
b)

V0 ¼ viajb
0

h i
:¼ vibja
� �

;

allows to decompose the doubles amplitude tensor T as follows

T = T(1) + T(2) = 2V } E � V0 } E. (17)

Notice that the denominator in (15) remains strongly positive if
ea 4 0 for a A Ivir and ei o 0 for i A Iocc. The latter condition
(nonzero homo lumo gap) allows to prove the low e-rank
decomposition of the tensor E.44,45

Each term in the right-hand side in (17) can be treated
separately by using rank-structured tensor decompositions of V
and E, possibly combined with various symmetries and data
sparsity. Numerical tests illustrating the tensor approach to the
MP2 energy correction are presented in ref. 45.

4.2 Toward low-rank approximation of the Bethe–Salpeter
equation for calculation of excitation energies

One of the commonly used approaches for calculation of the
excited states in molecules and solids, along with the time-
dependent DFT, is based on the solution of the Bethe–Salpeter
equation (BSE), see for example.11,61 The BSE approach leads
to the challenging computational task on the solution of the
eigenvalue problem for determining the excitation energies on,
governed by a large fully populated matrix of size O(Nov

2) E O(Nb
2),

A B

B� A�

 !
xn

yn

 !
¼ on

I 0

0 �I

 !
xn

yn

 !
; (18)

so that the computation of the entire spectrum is prohibitively
expensive. Here the large matrix blocks of size Nov� Nov take a form

A = De + V � %W, B = V � W̃,

Table 3 Time (s) for one ab initio SCF EVP iteration and accuracy of ab
initio solution with respect to grid-size in TEI calculations. Matlab on an
Intel Xeon X5650

H2O H2O2 C2H5NO2

Norb, Nb 5; 41 9; 68 20; 170
Time 0.35 0.55 6.0
DE0,g, (65 5363) 3.0 � 10�7 8.0 � 10�8 9.1 � 10�7

DE0,g, (131 0723) 1.4 � 10�7 3.9 � 10�8 8.0 � 10�7
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where the diagonal ‘‘energy’’ matrix is defined by

De = [Deia,jb] A RNov�Nov: Deia,jb = (ea � ei)dijdab,

while the matrices %W = [ %wia,jb] and W̃ = [w̃ia,jb] are determined by
permutation of the so-called static screened interaction matrix W =
[wia,jb], via %Wia,jb = wij,ab, and [w̃ia,jb] = [wib,aj], respectively. In turn,
the forth order tensor W = [wiajb] is constructed by certain linear
transformations of the tensor V = [viajb], see ref. 11 and 61.

A number of numerical methods for structured eigenvalue
problems have been discussed in the literature.4,15,51,55

The tensor approach to the solution of the partial BSE
eigenvalue problem for eqn (18) proposed in ref. 6 suggests to
compute the reduced basis set by solving the simplified eigen-
value problem via the low-rank plus diagonal approximation to
the matrix blocks A and B, and then solve spectral problem for
the subsequent Galerkin projection of the initial system (18) to
this reduced basis. This procedure relies entirely on multi-
plication of the simplified BSE matrix with vectors.

It was demonstrated on the examples of moderate size
molecules6 that a small reduced basis set, obtained by separ-
able approximation with the rank parameters of about several
tens, allows to reveal several lowest excitation energies and
respective excited states with the accuracy about 0.1–0.02 eV.

Fig. 14 illustrates the BSE energy spectrum of the NH3

molecule (based on HF calculations with cc-pDVZ-48 GTO

basis) for the lowest Nred = 30 eigenvalues vs. the rank trunca-
tion parameter e = 0.6 and 0.1, where the ranks of V and the BSE
matrix block W are 4, 5 and 28, 30, respectively. For the choice
e = 0.6 and e = 0.1, the error in the 1st (lowest) eigenvalue for the
solution of the problem in reduced basis is about 0.11 eV and
0.025 eV, correspondingly. The CPU time in the laptop Matlab
implementation of each example is about 5 s.

5 Tensor approach to simulation of
large crystalline clusters

In this section, we briefly discuss the generalization of the
tensor-based Hartree–Fock solver to the case of large lattice
structured and periodic systems47,48 arising in the numerical
modeling of crystalline, metallic and polymer type compounds.

5.1 Fast tensor calculation of a lattice sum of interaction
potentials

One of the challenges in the numerical treatment of large mole-
cular systems is the summation of long-range potentials allocated
on large 3D lattices.23,52,53,58 The conventional Ewald summation
techniques based on a separate evaluation of contributions from
the short- and long-range parts of the interaction potential exhibit
O(L3 log L) complexity scaling for a cubic L � L � L 3D lattice.

In the contrary, the main idea of the novel tensor summation
method introduced in ref. 47 and 49 suggests to benefit from the
low-rank tensor decomposition of the generating kernel approxi-
mated on the fine n � n � n representation grid in the 3D
computational box OL. This allows to completely decouple the
3D sum into the three independent 1D summations, thus
reducing drastically the numerical expenses. The resultant
potential sum, which now requires only O(n) storage and O(nL)
computational demands, is represented by a few assembled
canonical/Tucker n-vectors of complicated shape (see Fig. 15),
where n is the univariate grid size for a cubic 3D lattice.

For ease of exposition, we consider the electrostatic nuclear

potential of a single hydrogen atom, VcðxÞ ¼
Z

k x k. Define the

scaled unit cell, O0 = [0,b]3, of size b � b � b and consider a sum
of a finite number of interaction potentials in a symmetric
computational box

OL ¼ B� B� B; with B ¼ b �L
2
;
L

2

� 	
; L ¼ 2L0 2 N;

consisting of a union of L � L � L unit cells Ok, obtained from
O0 by a shift along the lattice vector bk, where k = (k1,k2,k3) A

Z3, such that kl A K: = K�,K+ for l = 1, 2, 3 with K� :¼

�1; :::;�L
2


 �
and Kþ :¼ 0; 1; :::;

L

2
� 1


 �
. Hence, we have

OL = ,k1,k2,k3 A KOk A R3.
Recall that b = nh, where h 4 0 is the fine mesh size that is

the same for all spatial variables, and n is the number of grid
points for each variable. We also define the accompanying

domain eOL obtained by scaling of OL with the factor of 2,
Fig. 14 Comparison of m0 = 30 lower eigenvalues for the reduced and
exact BSE systems for NH3 molecule: e = 0.6, top; e = 0.1, bottom.
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eOL ¼ 2OL, and, similar to (31), introduce the respective rank-R
reference (master) tensor

eP ¼XR
q¼1
epð1Þq � epð2Þq � epð3Þq 2 R2n�2n�2n; (19)

approximating
1

k x k in eOL on a 2n � 2n � 2n representation

grid with mesh size h.
Let us consider a sum of single Coulomb potentials on a L �

L � L lattice,

VcLðxÞ ¼
X

k1;k2;k32K

Z1

x� a1 k1; k2; k3ð Þk k; x 2 OL 2 R3: (20)

The assembled tensor approach applies to the potentials
defined on n � n � n 3D Cartesian grid. It reduces the sum
over a rectangular 3D lattice, PcL

A Rn�n�n,

PcL ¼
X
k2K3

WnðkÞeP ¼ X
k1;k2;k32K

XR
q¼1

WðkÞ epð1Þq � epð2Þq � epð3Þq

� �
;

to the summation of directional vectors for the canonical
decomposition of shifted single Newton kernels,47

PcL¼
XR
q¼1

X
k12K

W k1ð Þepð1Þq

 !
�

X
k22K

W k2ð Þepð2Þq

 !
�

X
k32K

W k3ð Þepð3Þq

 !
;

(21)
where Wn(k) = Wk1

#Wk2
#Wk3

is the shift-and-windowing
(onto OL) separable transform along the k-grid. Remarkably that the
rank of the resulting sum is the same as for the R-term canonical
reference tensor (19) representing the single Newton kernel.

The numerical cost and storage size are bounded by O(RLn)
and O(Rn), respectively, where n = n0L, and n0 is the grid size in
the unit cell.

Fig. 15 presents the assembled canonical vectors for the
cluster of 32� 16� 8 Hydrogen nuclei, with a distance 1.4 bohr
between nuclei. The resulting potential is shown in Fig. 16. Size
of the computational box is 50.4 � 28.0 � 16.8 bohr3. The
corresponding 3D Cartesian grid size is 9216 � 5120 � 3072.
Here the empty interval between the lattice and the boundary of
the computational box equals to 3 bohr.

The next table represents CPU times for the lattice summa-
tion of the Newton kernels over L � L � L cubic box, with very
fine n � n � n representation grid.

L3 4096 32 768 262 144 2 097 152
Time (s) 1.8 0.8 3.1 15.8
3D grid size, n3 56323 97283 17 9203 34 3043

The summation method in the canonical format was extended
to the Tucker tensors which allows the principal generalization
of this techniques to the case of rather complicated lattices with
defects (Theorem 3.2, ref. 49), so that the resulting sum takes
a form

TcL ¼
Xr1
m1¼1

Xr2
m2¼1

Xr3
m3¼1

bm1;m2;m3

X
k12K

W k1ð Þ
etð1Þm1

 !
;

�
X
k22K

W k2ð Þ
etð2Þm2

 !
�

X
k32K

W k3ð Þ
etð3Þm3

 !

Fig. 15 Assembled x-, y- and z-axis canonical vectors for a cluster of 32�
16 � 8 hydrogen atoms.

Fig. 16 Assembled canonical sum of the Newton potentials for the
cluster of 32 � 16 � 8 hydrogen atoms.
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whereet ð‘Þm‘ , l = 1, 2, 3, represents the Tucker vectors of the rank-r

master tensor approximating the Newton kernel
1

k x k in eOL on

a 2n � 2n � 2n representation grid.
In the case of defected lattices the increasing rank of the

final sum of Tucker tensors can be reduced by the stable ALS
based algorithms applicable to the Tucker tensors (see ref. 48).
The particular examples of the lattice geometries suitable for
our approach are presented in Fig. 17, see ref. 48 for more
detailed discussion.

For the reduced Hartree–Fock equation, where the Fock
operator is confined to the core Hamiltonian, the tensor-
structured block-circulant representation of the Fock matrix
was introduced48 that allows the special low-rank approxi-
mation of the matrix blocks. This opens the way for the
numerical treatment of large eigenvalue problems with struc-
tured matrices arising in the solution of the Hartree–Fock
equation for large crystalline systems with defects.

5.2 Interaction energy of the Coulomb lattice sums

Given the nuclear charges {Zk}, centered at points xk, k A K3,
located on a finite L � L � L lattice LL = {xk} with the step-size
b, the interaction energy of the total electrostatic potential of
these charges is defined by the lattice sum

EL ¼
1

2

X
k;j2K;kaj

ZkZj

xj � xk
�� ��; i:e: for xj � xk

�� �� � b: (22)

The fast and accurate computation of electrostatic interaction
energy (as well as the related forces and stresses) is one of the
difficult tasks in computer modeling of macromolecular struc-
tures like finite crystals, and biological systems.

The tensor summation scheme (21) can be directly applied
to this computational problem. In what follows we show that
(22) can be treated as a particular case of the previous scheme
served for calculation of (20) on a fine spacial grid. For this
discussion, we assume that all charges are equal, Zk = Z.

First, notice that the rank-R reference tensor h�3P̃ defined in
(19) approximates with high accuracy O(h2) the (and its shifted

version) Coulomb potential
1

k x k in eOL (for ||x|| Z b that is

required for the energy expression) on the fine 2n � 2n � 2n
representation grid with mesh size h. Likewise, the tensor
h�3PcL

approximates the potential sum VcL
(x) on the same fine

representation grid including the lattice points xk.
We propose to evaluate the energy expression (22) by using

tensor sums as in (21), but now applied to a small sub-tensor of
the rank-R canonical reference tensor P̃, that is P̃L: = [P̃|xk

] A
R2L�2L�2L, obtained by tracing of P̃ at the accompanying lattice

of the double size 2L � 2L � 2L, i.e. fLL ¼ xkf g [ xk0f g 2 eOL.
Here P̃|xk

denotes the tensor entry corresponding to the k-th
lattice point designating the atomic center xk. We are interested in

the computation of the rank-R tensor bPcL ¼ PcL jxk
� �

k2K2 RL�L�L,

where PcL jxk denotes the tensor entry corresponding to the k-th

lattice point on LL. The tensor bPcL can be computed at the
expense O(L2) by

bPcL ¼
XR
q¼1

X
k12K

W k1ð Þepð1ÞL;q �
X
k22K

W k2ð Þepð2ÞL;q �
X
k32K

W k3ð Þepð3ÞL;q

 !
:

This leads to the representation of the energy sum (22) with
accuracy O(h2) in a form

EL;T ¼
Z2h�3

2
bPcL ; 1
D E

�
X
k2K

Pjxk¼0

 !
;

where the first term in brackets represents the full canonical
tensor lattice sum restricted to the k-grid composing the lattice
LL, while the second term introduces the correction at singular
points xj � xk = 0. Here 1 A RL�L�L is the all-ones tensor. By
using the rank-1 tensor P0L = P|xk=01, the correction term can be
represented by a simple tensor operationX

k2K
Pjxk¼0 ¼ P0L; 1h i:

Finally, the interaction energy EL allows the approximate
representation

EL � EL;T ¼
Z2h�3

2
bPcL ; 1
D E

� P0L; 1h i
� �

; (23)

that can be implemented in O(L2) { L3 log L complexity
by tensor operations with the rank-R canonical tensors in
RL�L�L.

Table 4 illustrates the performance of the algorithm
described above. We compare the exact value computed by
(22) with the approximate tensor representation in (23) com-
puted on the fine representation grid with n = n0L, n0 = 128.
We consider the lattice systems composed of Hydrogen atoms
with interatomic distance 2.0 bohr. The geometric size of the

Fig. 17 Assembled canonical sum of the Coulomb potentials on the
L-shaped (top) and O-shaped (bottom) sub-lattices of a 32� 32� 1 lattice.
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largest 3D lattice with 2563 potentials is of the order of (2.0�
256 + 6.0)3 bohr3,§ which is more than 203 cubic nanometers.
Here Tfull means CPU time (sec) for direct summation of by (22)
of the order of L6, where the number in brackets shows

ffiffiffiffiffiffiffiffiffi
Tfull

p
of

the order of O(L3).
The presented approach for fast calculation of the inter-

action energy can extended to the case of non-uniform rectan-
gular lattices and, under certain assumptions, to the case of
non-equal nuclear charges Zk. Moreover, it applies to many
other types of spherically symmetric interaction potentials, for
example, to shielded Coulomb interaction or van der Waals
attraction sums corresponding to the distance function ||x||�2

and ||x||�6, respectively.

6 Conclusions

The goal of this paper is to attract interest of the specialists in
computational quantum chemistry to recent results and open
questions of the grid-based tensor approach in electronic
structure calculations. Here we focus mostly on the description
of main mathematical and algorithmic aspects of the tensor
decomposition schemes and demonstrate their benefits in
some applications.

The scope of applications which can be regarded as consistent,
ranges from the Hartree–Fock energy estimates for moderate size
molecules, including calculation of TEI tensor with incorporated
algebraic density fitting, to calculation of the excitation energies
for molecules, and up to a unique superfast method for calculat-
ing the lattice potential sums and the interaction energy of long
range potentials on a lattice in a finite volume. Tensor approach
allows to treat above problems using moderate computational
facilities. All numerics given in the paper presents implementa-
tions in Matlab.

The described numerical tools are not restricted to the
applications presented here, but can be applied to various hard
computational problems in (post) Hartree–Fock calculations
related to accurate evaluation of multidimensional integrals,
and efficient storage and manipulations with large multivariate
data arrays.

The presented method for summation of long-range potentials
with sub-linear computational cost does not have analogues in
what is used so far in computational quantum chemistry and can
have a good future. For example, it can be useful in modeling of

large finite molecular structures like nanostructures or quantum
dots, where the periodic approach may be inconsistent. Calculat-
ing a sum of several millions of lattice potentials on fine 3D grids
takes only several seconds in Matlab on a laptop.47 This method
gives also the unique possibility to present the summed 3D lattice
potential in the whole computational region with very high
accuracy. Integration and differentiation of this 3D potential
can be easily performed on representation grid due to 1D
computational costs.

Tensor approach is now being evolved for modeling the
electronic structure of finite crystalline-type molecular systems.
We hope that tensor numerical methods will have a good future
in solving challenging multidimensional problems of computa-
tional quantum chemistry.

Appendix
Canonical-to-Tucker transform

The Canonical-to-Tucker tensor transform combined with the
Tucker-to-Canonical scheme introduced in ref. 39 usually
applies for the rank reduction of the function related canonical
tensors with the large initial rank. Here we sketch Algorithm
Canonical-to-Tucker which includes the following basic steps:

Input data: side matrices Uð‘Þ ¼ u
ð‘Þ
1 . . . u

ð‘Þ
R

h i
2 Rn‘�R, l = 1,

2, 3, composed of vectors u
ð‘Þ
k 2 Rn‘ , k = 1,. . .R, see (1); maximal

Tucker-rank parameter r; maximal number of the alternating
least square (ALS) iterations mmax (usually a small number).

(A) Compute the singular value decomposition (SVD) of side
matrices

U(l) = Z(l)S(l)V(l), l = 1, 2, 3.

Discard the singular vectors in Z(l) and the respective singular
values up to given rank threshold, yielding the small orthogonal
matrices Z

ð‘Þ
r‘ 2 Rn‘�r‘ , l = 1, 2, 3.

(B) Project side matrices U(l) onto the orthogonal basis set
defined by Z(l)

rl

Uð‘Þ 7! ~Uð‘Þ ¼ Zð‘Þr‘

� �T
Uð‘Þ; ~Uð‘Þ 2 Rr‘�R; ‘ ¼ 1; 2; 3: (24)

(C) (Find dominating subspaces). Implement the following ALS
iteration mmax times at most. For l = 1, 2, 3 implement the
following ALS iteration mmax times at most.

(D) Start ALS iteration for l = 1, 2, 3:
— For l = 1: construct partially projected image of the full tensor,

U 7!eU1 ¼
XR
k¼1

cku
ð1Þ
k � euð2Þk � euð3Þk ; ck 2 R: (25)

Here u(1)
k A Rn1 are in physical space for mode l = 1, while euð2Þk 2 Rr2

and euð3Þk 2 Rr3 , the column vectors of ~Uð2Þ and ~Uð3Þ, respectively,
belong to the coefficients space by means of projection.

— Reshape the tensor ~U1 2 Rn1�r2�r3 into a matrix MU1
A

Rn1�(r2r3), representing the span of the optimized subset of
mode-1 columns in partially projected tensor Ũ1. Compute
the SVD of the matrix MU1

:

MU1
= Z(1)S(1)V(1),

Table 4 Comparison of times for the full (Tfull) and tensor-based (Ttens)
calculation of the interaction energy sum for the lattice electrostatic
potentials. Matlab on a 2 Intel Xeon Hexa-Core/2677

L3 Tfull, (O(L3)) Ttens EL,T abs. err.

243 37, (6.1) 1.2 3.7 � 106 2 � 10�8

323 250, (15.8) 1.5 1.5 � 107 1.5 � 10�9

483 3374, (58.8) 2.8 1.12 � 108 0
643 — 5.7 5.0 � 108 —
1283 — 13.5 1.6 � 1010 —
2563 — 68.2 5.2 � 1011 —

§ Here 6 bohr is the chosen dummy distance.
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and truncate the set of singular vectors in Zð1Þ 7! ~Zð1Þ 2 Rn1�r1 ,
according to the restriction on the mode-1 Tucker rank, r1.

— Update the current approximation to the mode-1 dom-

inating subspace Z
ð1Þ
r1 7! ~Zð1Þ.

— Implement the single loop of ALS iteration for mode l = 2
and for l = 3.

— End of the single ALS iteration step.
— Repeat the complete ALS iteration mmax times to obtain

the optimized Tucker orthogonal side matrices Z̃(1), Z̃(2), Z̃(3),
and final projected image Ũ3.

(E) Project the final iterated tensor Ũ3 in (25) using the
resultant basis set in Z̃(3) to obtain the core tensor, bA Rr1�r2�r3.

Output data: the Tucker core tensor b and the Tucker
orthogonal side matrices Z̃(l), l = 1, 2, 3.

The Canonical-to-Tucker algorithm can be easily modified to
the e-truncation stopping criteria. Notice that in the case of
equal Tucker ranks, rl = r, maximal canonical rank of the core
tensor b does not exceed r2, see ref. 39, which completes the
Tucker-to-Canonical part of the total algorithm.¶

The Hartree–Fock equation in AO basis set

The 2N-electrons Hartree–Fock equation for pairwise L2-
orthogonal electronic orbitals, ci:R

3 - R, ci A H1(R3), reads as

FciðxÞ ¼ liciðxÞ;
ð

R3

cicjdx ¼ dij ; i; j ¼ 1; :::;Norb (26)

where the nonlinear Fock operator F is given by

F :¼ �1
2
Dþ Vcð�Þ þ VHð�Þ þK:

Here the nuclear potential takes the form

VcðxÞ ¼ �
PM
n¼1

Zn

x� ank k, Zn 4 0, an A R3, while the Hartree

potential VH(x) and the nonlocal exchange operator K read as

VHðxÞ :¼ r ?
1

k � k ¼
ð

R3

rðyÞ
k x� y kdy; x 2 R3; (27)

and

Kcð ÞðxÞ : ¼ � 1

2

XNorb

i¼1
cci ?

1

k � k

� �
ciðxÞ

¼ � 1

2

ð
R3

tðx; yÞ
k x� y kcðyÞdy;

(28)

respectively. Conventionally, we use the definitions

tðx; yÞ :¼ 2
XNorb

i¼1
ciðxÞciðyÞ; rðxÞ :¼ tðx; xÞ;

for the density matrix t(x,y), and electron density r(x).
Usually, the Hartree–Fock equation is approximated by the

standard Galerkin projection of the initial problem (26) by
using the physically justified reduced basis sets (say, GTO type

orbitals). For a given finite Galerkin basis set {gm}1rmrNb
, gm A

H1(R3), the occupied molecular orbitals ci are represented

(approximately) as ci ¼
PNb

m¼1
Cmigm; i ¼ 1; :::;Norb: To derive an

equation for the unknown coefficients matrix C = {Cmi} A
RNb�Norb, first, we introduce the mass (overlap) matrix S =

{Smn}1rm,nrNb
, given by Smn ¼

Ð
R3gmgndx; and the stiffness

matrix H = {hmn} of the core Hamiltonian H ¼ �1
2
Dþ Vc (the

single-electron integrals),

hmn ¼
1

2

ð
R3

rgm � rgndxþ
ð

R3

VcðxÞgmgndx; 1 
 m; n 
 Nb:

The core Hamiltonian matrix H can be precomputed in O(Nb
2)

operations via grid-based approach.
Given the finite basis set {gm}1rmrNb

, gm A H1(R3), the
associated fourth order two-electron integrals (TEI) tensor, B
= [bmnls], is defined entrywise by (10), where m, n, l, s A
{1,. . .,Nb} =: Ib. In computational quantum chemistry the
nonlinear terms representing the Galerkin approximation to
the Hartree and exchange operators are calculated traditionally
by using the low-rank Cholesky decomposition of a matrix
associated with the TEI tensor B = [bmnkl] defined in (10), that
initially has the computational and storage complexity of order
O(Nb

4).
Introducing the Nb � Nb matrices J(D) and K(D),

JðDÞmn ¼
XNb

k;l¼1
bmn;klDkl; KðDÞmn ¼ �

1

2

XNb

k;l¼1
bml;nkDkl;

where D = 2CCT A RNb�Nb is the rank-Norb symmetric density
matrix, one then represents the complete Fock matrix F by

F(D) = H + J(D) + K(D).

The resultant Galerkin system of nonlinear equations for the
coefficients matrix C A RNb�Norb, and the respective eigenvalues
L = diag(l1,. . .,lNorb

), reads as

F(D)C = SCL, CTSC = IN,

where the second equation represents the orthogonality con-
straints

Ð
R3cicjdx ¼ dij , and IN denotes the Nb � Nb identity

matrix, and is usually solved by self-consistent field (SCF) DIIS
iteration.60

Tensor approximation to the Newton kernel in 3D

Methods of separable approximation to multivariate spherically
symmetric functions by using the Gaussian sums have been
addressed in the chemical and mathematical literature since
ref. 9, 10 and 65, respectively.

In this section, we discuss for the readers convenience the
grid-based method for the low-rank canonical and Tucker
tensor representations of a spherically symmetric functions
p(||x||), x A Rd in the particular case of the 3D Newton kernel

p k x kð Þ ¼ 1

k x k, x A R3 by its projection onto the set of

piecewise constant basis functions, see ref. 7 for more details.

¶ Further optimization of the canonical rank in the small-size core tensor b can
be implemented by applying the ALS iterative scheme in the canonical format, see
e.g. ref. 50.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
M

ay
 2

01
5.

 D
ow

nl
oa

de
d 

on
 1

0/
16

/2
02

5 
10

:0
8:

57
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5cp01215e


This journal is© the Owner Societies 2015 Phys. Chem. Chem. Phys., 2015, 17, 31491--31509 | 31507

In the computational domain O = [�b/2,b/2]3, let us intro-
duce the uniform n � n � n rectangular Cartesian grid On with
the mesh size h = b/n (usually, n = 2k). Let {ci} be a set of tensor-

product piecewise constant basis functions, ciðxÞ ¼
Qd
‘¼1

cð‘Þi‘ x‘ð Þ,

for the 3-tuple index i = (i1, i2, i3), il A {1,. . .,n}, l = 1, 2, 3. The
kernel p(||x||) can be discretized by its projection onto the basis
set {ci} in the form of a third order tensor of size n � n � n,
defined entrywise as

P :¼ pi½ � 2 Rn�n�n; pi ¼
ð

R3

ciðxÞp k x kð Þdx: (29)

Given M, the low-rank canonical decomposition of the 3rd
order tensor P is based on using exponentially convergent sinc-
quadratures for approximation of the Laplace-Gauss transform
to the analytic function p(z) = 1/z as follows,

1=k x k ¼ 2ffiffiffi
p
p
ð

Rþ

e�t
2kxk2dt (30)

�
XM

k¼�M
ake
�tk2kxk2 ¼

XM
k¼�M

ak
Y3
‘¼1

e�tk
2x‘

2

;

where the quadrature points and weights are given by

tk ¼ khM ; ak ¼
2ffiffiffi
p
p hM ; hM ¼ C0 logðMÞ=M; C0 4 0:

Under the assumption 0 o a r ||x||oN, x = (x1, x2, x3) A
R3, this quadrature can be proven to provide the exponential
convergence rate in M for a class of analytic functions including
p(z) = 1/z, see ref. 10, 25 and 65,

1=k x k �
XM

k¼�M
ake
�tk2kxk2

�����
����� 
 C

a
e�b

ffiffiffiffi
M
p

; with some C; b4 0:

Combining (29) and (30), and taking into account the separ-
ability of the Gaussian basis functions, we arrive at the low-rank
approximation to each entry of the tensor P,

pi �
XM

k¼�M
ak

ð
R3

ciðxÞe�tk
2kxk2dx

¼
XM

k¼�M
ak
Y3
‘¼1

ð
R

cð‘Þi‘ x‘ð Þe�tk
2x‘

2
dx‘:

Define the vector (recall that ak 4 0)

p
ð‘Þ
k ¼ a

1=3
k bð‘Þ tkð Þ � a

1=3
k b

ð‘Þ
i‘

tkð Þ
h in

i‘¼1
2 Rn

with

b
ð‘Þ
i‘

tkð Þ ¼
ð

R

cð‘Þi‘ x‘ð Þe�tk
2x‘

2

dx‘;

then the 3rd order tensor P can be approximated by the R-term
canonical representation

P � PR ¼
XM

k¼�M
ak �

3

‘¼1
bð‘Þ tkð Þ ¼

XR
q¼1

pð1Þq � pð2Þq � pð3Þq 2 Rn�n�n;

(31)

where R = 2M + 1, and the canonical vectors are renumbered by

k - q = k + M + 1, pð‘Þq ¼ p
ð‘Þ
k 2 Rn, l = 1, 2, 3. For the given

threshold e 4 0, M = O(|log e|2) is chosen as the minimal
number, such that in the max-norm we have

||P � PR|| r e||P||.

The symmetric canonical tensor PR in (31) approximates the
discretized 3D symmetric kernel function p(||x||) = 1/||x|| (x A
O), centered at the origin, such that p(1)

q = p(2)
q = p(3)

q (q = 1,. . .,R).
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26 W. Hackbusch and S. Kühn, A new scheme for the tensor
representation, J. Fourier Anal. Appl., 2009, 15, 706–722.

27 W. Hackbusch and R. Schneider, in Tensor Spaces and
Hierarchical Tensor Representations, ed. S. Dahlke and
W. Dahmen et al., Lecture Notes in Computer Science and
Engineering, 102, Springer, 2014.

28 R. J. Harrison, G. I. Fann, T. Yanai, Z. Gan and G. Beylkin,
Multiresolution quantum chemistry: Basic theory and

initial applications, J. Chem. Phys., 2004, 121(23),
11587–11598.

29 T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic-
Structure Theory, Wiley, New York, 1999.

30 N. Higham, in Analysis of the Cholesky decomposition of a
semi-definite matrix, ed. M. G. Cox and S. J. Hammarling,
Reliable Numerical Computations, Oxford University Press,
Oxford, 1990, pp. 161–185.

31 F. L. Hitchcock, The expression of a tensor or a polyadic as a
sum of products, J. Math. Phys., 1927, 6, 164–189.

32 E. G. Hohenstein, R. M. Parrish and T. J. Martinez, Tensor
hypercontraction density fitting, Quartic scaling second-
and third-order Møller-Plesset perturbation theory,
J. Chem. Phys., 2012, 137, 044103.

33 V. Kazeev and B. N. Khoromskij, Explicit low-rank QTT
representation of Laplace operator and its inverse, SIAM
J. Matrix Anal. Appl., 2012, 33(3), 742–758.

34 B. N. Khoromskij, O(d log N)-Quantics Approximation of N-d
Tensors in High-Dimensional Numerical Modeling, J. Const.
Approx., 2011, 34(2), 257–289, Preprint 55/2009, MPI MiS,
Leipzig 2009, http://www.mis.mpg.de/publications/pre
prints/2009/prepr2009-55.html.

35 B. N. Khoromskij, Fast and Accurate Tensor Approximation
of Multivariate Convolution with Linear Scaling in Dimen-
sion, J. Comput. Appl. Math., 2010, 234, 3122–3139.

36 B. N. Khoromskij, Structured Rank-(r1,. . .,rd) Decomposi-
tion of Function-related Tensors in Rd, Comput. Method.
Appl. Math., 2006, 6(2), 194–220.

37 B. N. Khoromskij, in Tensor Numerical Methods for High-
dimensional PDEs: Basic Theory and Initial Applications,
ESAIM: Proceedings and Surveys, ed. N. Champagnat,
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