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Quasi-combinatorial energy landscapes for
nanoalloy structure optimisation

D. Schebarchov* and D. J. Wales

We formulate nanoalloy structure prediction as a mixed-variable optimisation problem, where the homotops

can be associated with an effective, quasi-combinatorial energy landscape in permutation space. We survey

this effective landscape for a representative set of binary systems modelled by the Gupta potential. In

segregating systems with small lattice mismatch, we find that homotops have a relatively straightforward

landscape with few local optima – a scenario well-suited for local (combinatorial) optimisation techniques

that scale quadratically with system size. Combining these techniques with multiple local-neighbourhood

structures yields a search for multiminima, and we demonstrate that generalised basin-hopping with a

metropolis acceptance criterion in the space of multiminima can then be effective for global optimisation

of binary and ternary nanoalloys.

1 Introduction

Alloy nanoparticles (nanoalloys1) exhibit structure-dependent
properties with potential applications in catalysis,2 sensing,3

plasmonics,4 etc.5,6 However, unlocking the full potential of
this class of materials requires reliable structure prediction at
the atomistic level, which, from a theoretical viewpoint, often
amounts to finding the ground state (the global minimum) of a
model system described by a highly nonlinear potential energy
function. For homogeneous metal clusters the number of meta-
stable states (local minima) is expected to grow exponentially
with the number of atoms,7,8 but for nanoalloys the growth is
significantly more rapid due to the presence of homotops9 –
local minima with a similar geometric motif but a different
ordering of atomic species. As a result, the exponential growth in
the number of non-degenerate minima can be further multiplied
by a combinatorial factor. We tackle this formidable global optimi-
sation problem using a mixed-variable approach that targets
multiminima – configurations that are local minima in more
than one sense of the word ‘‘local’’.

While most methods currently used for nanoalloy structure
prediction tend to focus on local minima in coordinate space,10–14

one could argue that it might be more effective to systematically
target a smaller subspace that is somehow guaranteed to
retain the global minimum. This reasoning motivated the
definition of biminima15 – configurations that are local minima
in two different metric domains: (i) in the usual coordinate
domain, measured by the Euclidean distance metric, and (ii)
in the permutation domain, measured by the interchange16

distance metric. From the viewpoint of basic topology, the
two metrics induce two local neighbourhood structures: one
continuous and the other discrete. It is clear that the global
minimum of a model nanoalloy ought to be a local minimum
with respect to both metrics/neighbourhoods and, therefore,
must be a biminimum. In fact, the global minimum in a specified
domain ought to be a local minimum in any subdomain that
retains the global minimum and admits a definition of ‘‘locality’’.
Hence, one could generalise further still and define multiminima
by invoking more subdomains with a different metric and/or local
neighbourhood structure.

Whether incorporating another neighbourhood structure
will make a global search more effective or not will depend
on two competing factors: (i) the additional cost associated
with multiminimisation and (ii) the consequent reduction in
the number of multiminima. In the present study we show
that targeting biminima15 can lead to a significant net effi-
ciency gain, which is explained by the topography of what we
call quasi-combinatorial energy landscapes. These effective
landscapes may not have a well-defined global combinatorial
structure, but can still be explored and (to some degree)
characterised using local combinatorial constructions. For
model nanoalloys with small lattice mismatch, representing a
scenario where global combinatorial counting arguments are
applicable, we find that the energetic preference for mixing/
segregation is linked to the fraction of locally optimal homo-
tops (with respect to the interchange distance). In strongly
segregating systems this fraction is found to be minuscule,
and it appears to grow with the preference for mixing –
consistent with our earlier findings for binary Lennard-Jones
clusters.15 Furthermore, the fraction of locally optimal homo-
tops appears to decrease with system size for segregating
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nanoalloys and increase for mixing nanoalloys. We are unable
to detect similarly useful trends for lattice mismatched nano-
alloys, largely due to the breakdown of global combinatorial
structure. However, our benchmark calculations for selected
binary (CunAu38�n) and ternary (Cu13AgnAu42�n) systems clearly
show that systematic multiminima-targeting provides a highly
effective strategy for global optimisation.

Incidentally, the idea of using multiple definitions of
‘‘locality’’ in global optimisation is not new: it has been
exploited by Mladenović et al. in the so-called variable neigh-
bourhood search metaheuristic.17–20 To the best of our knowledge,
this approach has been applied to either purely combinatorial17

or (to a lesser extent) purely continuous19 problems. Here we
apply it within a less restrictive and relatively unexplored realm
of mixed-variable optimisation, where the constituent degrees of
freedom can be different: continuous, discrete, categorical, etc.

2 Framework

We formulate nanoalloy structure prediction as a mixed-
variable optimisation problem, where each atom i is assigned
coordinates xi A R3 and a categorical label li A aM

a=1, with M
being the number of constituent atomic species. The objective
is to minimise a specified energy function E(X,L) with respect to

X = {xi}
N
i=1 and L = {li}

N
i=1, where N ¼

PM

a¼1
Na is the total number of

atoms and each Na (the population of species a) is fixed. Both
X and L are treated as variables, in spite of the obvious
redundancy (i.e. permuting labels has the same effect as
permuting the corresponding coordinates), with L being parti-
cularly useful for exploiting (quasi-)combinatorial features of
E(X,L).

2.1 Multiset permutations and the interchange distance

It is helpful to think of L as an indexed multiset whose distinct
permutations span the domain of nanoalloy homotops. For
example, consider all distinct permutations of a multiset of
N = 4 atoms, with half of the elements characterised as a-type
and the other half as b-type:

fa; a; b; bgðP1Þ; fa; b; a; bgðP2Þ; fb; a; a; bgðP3Þ;

fa; b; b; agðP4Þ; fb; a; b; agðP5Þ; fb; b; a; agðP6Þ:

With this domain we can associate an interchange distance
metric16 – the Hamming21 distance restricted to multiples of
two – giving the minimum number of label interchanges (or
swaps) required to arrive from one point in the domain to
another. In the example above, the distance between permuta-
tions P1 and P2 is one interchange (‘‘swap’’), and that between
P1 and P6 is two swaps (which is the maximum for N = 4). This
simple metric induces a local neighbourhood structure for each
permutation: it contains the permutation in question and all
others that can be reached from it by a single swap. Recalling
the above example again, the local neighbourhood of P1 con-
tains all other permutations apart from P6.

For further illustration consider a (slightly) more compli-
cated example:

fa; a; b; gg; fa; b; a; gg; fb; a; a; gg;

fa; a; g; bg; fa; b; g; ag; fb; a; g; ag;

fa; g; a; bg; fa; g; b; ag; fb; g; a; ag;

fg; a; a; bg; fg; a; b; ag; fg; b; a; ag:

The only difference is that now one b has been transmuted into
g, which results in the domain doubling in size, while the size
of a local neighbourhood has increased by one. In general, if Na

specifies the multiplicity of atomic component a, then the size
of the permutation domain is given by

N!Q
a
Na!

; (1)

where N ¼
P
a
Na, and the size of the local neighbourhood

induced by the interchange distance metric is given by

1þ 1

2

X

a

X

baa

NaNb: (2)

Hence, while the size of the entire domain grows combinatorially
(BN!), the size of the induced local neighbourhood scales quad-
ratically (BN2). In the optimisation techniques considered below,
the local neighbourhood size plays a central role.

2.2 Quasi-combinatorial landscapes and biminima

A locally optimal multiset can be defined as one with the lowest
‘‘energy’’ in its local neighbourhood. This definition can also be
combined with the conventional notion of a local minimum
(in coordinate space) to define biminima,15 which, in the
context of nanoalloys, correspond to homotops that are (meta)-
stable with respect to both the Euclidean and the interchange
distance metrics.

Fig. 1 illustrates how an energy function can exhibit local
minima in the two metric domains. It also illustrates how a
sequence of swaps at fixed geometry may differ from a sequence
where each swap is accompanied by a local geometry relaxation
(i.e. a quench). Local minima in permutation space may be
shifted, created or destroyed as a result of quenching (local
minimisation in coordinate space), and the net effect can be

Fig. 1 A schematic diagram illustrating how the energy of a nanoalloy
might vary along a continuous coordinate (a) or a sequence of atom
swaps/interchanges (b). In (b), the filled symbols correspond to a swap
sequence at fixed geometry, whereas the open symbols illustrate the
effect of quenching.
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difficult to track. It is even conceivable that a quenched
swap may not always be a reversible operation. This potential
irreversibility implies that a revisited permutation may be mapped
to different energy values, and so the total number of distinct
configurations that could be generated by a sequence of quenched
swaps is not necessarily bounded above by the combinatorial
number in (1). It is precisely for this reason that we refer to the
effective energy landscape in the permutation domain as quasi-
combinatorial. The term locally combinatorial may also be
appropriate, because we can still rely on (2) to enumerate the
local neighbourhood.

One obvious approach to biminima searching is to execute a
monotonically decreasing sequence of quenched swaps15,22–24

until the sequence becomes stuck at a biminimum. That is, if
we use DEij to denote swap gain24 – the energy change due to a
quenched swap of labels between atoms i and j – the policy of
accepting only swaps with DEij o 0 will guarantee that a sequence
will converge when DEij Z 0, 8i, j, which is precisely the definition
of a biminimum.15 Note that finding a swap with DEij o 0 is
usually easier than verifying that no such swap exists, because the
verification requires an exhaustive search through the entire local
neighbourhood in permutation domain. Without a reliable way of
bypassing this computational bottleneck, the best case scenario
for the cost of biminima searching is a linear scaling with the size
of the local neighbourhood.

Finally, it is worth noting that the concepts of quasi-
combinatorial landscapes and biminima are also applicable when
one of the constituent species represents vacancies (quasiparticles),
and so the framework of mixed-variable optimisation could sub-
sume the approach of dynamic-lattice searching.25,26 However,
since vacancies are usually not intrinsically defined in off-lattice
atomistic models, they have to be generated by some additional
means, and it may require introducing another, distinctly different
local neighbourhood structure. In that case the term triminima
would be more appropriate for describing the local optima.

3 Methods

Throughout this study, nanoalloys are modelled using the
Gupta potential27 with standard parameter values.28–30 All search
techniques described below have been implemented in the
GMIN program.31

3.1 Biminimisation

We perform biminima searching (‘‘biminimisation’’) using a
scheme similar to that of Lai et al.,23 which exploits correlations
between DEij (see Section 2.2) and DEij* – the energy change
evaluated immediately after the swap but before quenching.
Systematically attempting quenched swaps within a local neigh-
bourhood sorted by DEij* (from lowest to highest) is a cost-effective
way of finding DEij o 0. The first encountered swap with DEij o 0
is immediately accepted, and then the local neighbourhood is reset
and sorted by the new DEij*. The procedure terminates when a
complete scan of the entire local neighbourhood fails to produce
DEij o 0. Note that Lai et al.23 consider only the first N � 1 entries

in the sorted list, which does not guarantee that our definition
of biminima will necessarily be fulfilled. Also note that there
are multiple ways of scanning the local neighbourhood,15 which
could involve the use of point-group symmetry,32,33 though it is
reasonable to expect the relative performance of these different
schemes to be system specific.

3.2 Generalised basin-hopping

Since biminimisation (and, more generally, multiminimisation)
inherently constitutes a local search, we sample different multi-
minima using a generalisation of the basin-hopping (BH) global
optimisation technique.10,11 While BH involves steps in the space of
(conventional) minima, the new generalised variant (GBH) considers
the reduced space of multiminima. In both cases one has to specify
the temperature parameter for the metropolis acceptance criterion
and also provide an appropriate random-move set.34 We choose to
adaptively adjust the temperature to maintain the (rolling average)
acceptance ratio close to 0.5, and our move set consists of just two
operations: (i) random permutation of atomic labels and (ii) random
Cartesian displacement of atomic coordinates. Both operations are
applied at each GBH step, but for homotop optimisation the effect
of random Cartesian moves can be rendered ineffectual by setting
the maximum displacement to zero. Finally, when Nres GBH steps
fail to produce a lower-energy multiminimum, the search is restarted
from a completely random configuration/permutation. We note
that such large steps in configuration space can be used, since
no detailed balance condition is required.

3.3 Surface refinement

Results from Lai et al.23 indicate that incorporating a surface
refinement stage into a global structure search can be beneficial.
Hence, when performing a global search with random Cartesian
moves, we combine biminimisation with another procedure akin
to a dynamic-lattice search.25,26 This procedure relies on a nearest-
neighbour analysis to generate an appropriate set of vacancies
(see below) for a given biminimum. These vacancies and the
subset of least-coordinated atoms (irrespective of their chemical
identity) define an ad hoc local neighbourhood, and we sequentially
attempt quench-assisted swaps between atoms and vacancies
within this neighbourhood. If a swap leads to a reduction in energy
then it is immediately accepted and the local neighbourhood
structure is rebuilt. By analogy with biminimsation, the surface
refinement procedure terminates when an exhaustive scan of the
entire neighbourhood fails to produce a lower energy structure.
Note that, unlike biminimisation, the local neighbourhood struc-
ture used for surface refinement does not have a predefined
size. Finally, biminimisation and surface refinement are repeated
in tandem until one of them fails to produce a lower energy
structure, in the end converging on a triminimum.

To generate the vacancies we first identify the nearest neigh-
bours for each atom (i) and, if its coordination number is less
than twelve, we apply local inversion symmetry (about xi) on each of
neighbour’s coordinates to generate a local set of candidate
vacancies. We discard candidates that are within d = 0.8rNN

min from
another atom, where rNN

min denotes the shortest interatomic distance
in the current structure. The union of all local candidate sets is
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then sorted by atomic coordination number, and all but
the highest coordinated vacancies are discarded. If any of the
remaining candidate vacancies are separated by less than d,
they are merged and the corresponding coordinates are averaged.
In the end, we proceed with the surface refinement scheme only
if the coordination of remaining vacancies exceeds the lowest
coordination amongst the atoms.

4 Results and discussion

We start by attempting to characterise the quasi-combinatorial
energy landscape associated with nanoalloy homotops for a
representative set of binary systems: PtnPdN�n, AunAgN�n,
CunAgN�n for N = 38, 55 and 75. The initial coordinates are
derived from the (single-component) Lennard-Jones global
minima:11,35 truncated octahedron for N = 38, Mackay icosa-
hedron36 for N = 55, and Marks decahedron37 for N = 75. To
impose appropriate nearest-neighbour separation while preser-
ving the overall symmetry, these coordinates are multiplied by a
scaling factor (f) equal to the arithmetic average of the nearest-
neighbour distances (raa0 ) for each of the constituent metals (a),
i.e. f ¼

P
a
raa0
�
M, where M is the number of species. The labels

are initialised randomly but consistent with a specified stoi-
chiometry. The resulting configurations are then used for GBH
at high temperature (kBT = 1.0 eV) and without random

Cartesian moves, i.e. a converged biminimum is escaped solely
by virtue of randomly permuting the labels. The intention is to
(i) initiate biminimisation from a uniform sample of starting
points in the permutation domain, (ii) accumulate representa-
tive count statistics for energetically distinct biminima (using a
threshold of 10�6 eV), and (iii) estimate the relative encounter
probabilities of the (putative) lowest-lying biminimum. The results
are presented in Fig. 2.

While both PtnPdN�n and AunAgN�n represent lattice-matched
systems, the former favours segregation and the latter favours
mixing.38 In spite of this qualitative difference, the corresponding
count statistics from biminima sampling are comparable for
N = 38 and 55. In both cases the number of sampled biminima
is consistently orders of magnitude smaller than the number of
sampled homotops, even for compositions when the size of the
permutation domain is at its peak (50 : 50 stoichiometry).
Furthermore, the relative occurrence (‘‘hit rate’’†) for the most
elusive biminimum at a given stoichiometry often exceeds 0.5,
suggesting that in many cases one or two biminimisations can
be sufficient to find the lowest-lying homotop. This observation
can be interpreted in terms of the effective landscape topography
comprising only a few significant optima, which would make

Fig. 2 Hit rates for the (putative) lowest-lying biminimum and total biminima counts accumulated from up to B103 independent biminimisation runs for
PtnPdN�n (top), AunAgN�n (middle) and CunAgN�n (bottom) with N = 38 (left), 55 (centre) and 75 (right). The runs were initiated from a uniform random
sample of distinct starting points in permutation domain.

† The hit rate, or relative encounter probability, is equal to the number of times
the lowest-encountered biminimum has been hit, divided by the total number of
convergences to a biminimum.
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local (combinatorial) search techniques particularly effective. It
is also worth noting that biminima counts for PtnPdN�n and
AunAgN�n do not always peak at n = N/2, indicating that the size of
the permutation domain (1) is not the only determining factor.

Notable differences in biminima counts emerge for PtnPd75�n

and AunAg75�n, and the decrease in counts for PtnPd75�n

(compared to N = 55) is particularly surprising. It indicates that
the effective landscape topography may become ‘‘simpler’’ as
N increases. To corroborate this hypothesis, we applied the
same homotop sampling procedure to PtnPd98�n Leary tetra-
hedra,39,40 in the range 43 r n r 55, and in each case found
that a uniform random sample of about 2000 homotops was
mapped onto a single biminimum. This result suggests some-
thing quite remarkable: it is possible that, out of 98!/49!49! E
2.5 � 1028 homotops, only one is locally optimal with respect to
the interchange distance in the permutation domain. To check
if similar results can be expected for other systems, we sampled
biminima for PdnAuN�n (using the ‘‘average’’ Gupta parameters
from ref. 41) and again found biminima counts decreasing
with N, similar to PtnPdN�n. We suspect that this trend is a
general characteristic of segregating systems, where the number
of significant optima in the permutation domain appears to
diminish with system size. In contrast, the increase in biminima
counts for AunAg75�n (compared to N = 55) suggests that the
exact opposite may be true for systems that favour mixing, which
is consistent with our previous observations for binary Lennard-
Jones clusters.15

We now shift focus to CunAgN�n – a system with a relatively
large degree of lattice mismatch (more than 10%). Results for
N = 38 and 75 show strikingly large biminima counts, which
can be attributed to our sampling procedure spanning multiple
geometries that are distinctly different from the initial trun-
cated octahedron (N = 38) or Marks decahedron (N = 75). As an
illustrative example, in Fig. 3a and b we visualise the lowest-
lying biminima for Cu13Ag25 (a) and Cu34Ag4 (b). In both cases
the initial geometry is a truncated octahedron, which remains
intact throughout biminima sampling for Cu34Ag4, but gradu-
ally changes for Cu13Ag25 solely by virtue of quenching, and
eventually we find the structure illustrated in Fig. 3a. In fact,
the biminimum in Fig. 3a closely resembles (but not quite
matches) the putative global minimum,42 and it is noteworthy
that it has been found without random Cartesian moves, espe-
cially in view of the differences between the initial and the final
geometric motifs. This result implies that, for systems with large
lattice mismatch, quench-assisted local combinatorial optimisa-
tion (in the permutation domain) can provide an additional and
potentially significant guiding force towards the globally optimal
geometry. Hence, even if the notion of nanoalloy homotops loses
its global combinatorial character, the use of a local combina-
torial search will still remain a viable option.

It is worth noting that CunAg55�n yields total biminima counts
and hit rates that are comparable to PtnPd55�n and AunAg55�n

(see Fig. 2). This congruence is possibly due to the relative
robustness of closed-shell icosahedra, which evidently remain
(largely) intact for all three systems. However, subtle morphologi-
cal distortions still occur in CunAg55�n in the range 23 r n r 44.

These rearrangements often involve one or two Ag atoms being
dislodged from a vertex site and moved to a different position
on the cluster surface, as illustrated in Fig. 3c–e. In the same
system we also find configurations that look almost identical to
the naked eye (and could be mistakenly regarded as the same
homotop) but are actually different biminima. Snapshots in
Fig. 3f and g show two such biminima, illustrating how lattice
strain effects can lead to very subtle consequences that may be
difficult to detect. These observations also highlight the inher-
ent coupling of the combinatorial and the continuous sub-
problems in nanoalloy structure prediction, and untangling
these sub-problems in lattice mismatched systems may be
particularly difficult (and perhaps unnecessary).

Due to a growing interest in trimetallic nanoalloys,43,44 we have
also sampled biminima for selected PtlPdmAun and CulAumAgn

Mackay icosahedra with l + m + n = 55 and the Gupta parameters
taken from ref. 30 and 45. Compared with the binary counter-
parts, these ternary systems proved more susceptible to geometric
distortion during the quasi-combinatorial sampling procedure.
This complication precludes further characterisation of the effec-
tive quasi-combinatorial landscape, but it suggests that strain
effects may become more pronounced as the number of species
grows (at fixed total atom count).

Having demonstrated the (albeit limited) utility of biminima
in characterising the topography of quasi-combinatorial land-
scapes, we now consider the utility of bi- and multiminima for
the purpose of global optimisation. Fig. 4 shows that, for all
binary and ternary systems not containing both Cu and Au, the
average number of quenches required to find a biminimum
is only marginally larger than the local neighbourhood size.
While the reasons why Cu–Au-based systems stand out are not
entirely clear, the scaling for all other systems shows that most
of the computational effort is spent on verifying biminima
as opposed to locating them. This observation suggests that
developing more efficient ways of verifying biminima will be
worthwhile.

Fig. 3 Ball-and-stick representation of biminima for Cu13Ag25 (a),
Cu34Ag4 (b) and Cu44Ag11 (c)–(g). Cu atoms are smaller and coloured
red, Ag atoms are larger and coloured grey. Arrows in (e) indicate the
vertex sites from which two Ag atoms have been dislodged. The subtle
geometric differences between (f) and (g) are highlighted by a circle
around a most shifted Ag atom and an arrow pointing to a destroyed/
created nearest-neighbour ‘‘bond’’.
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As a final demonstration, in Fig. 5 we present mean first-
encounter times (MFETs) for global optimisation of CunAu38�n

and Cu13AgnAu42�n, with the target energies for the putative
global minima taken from ref. 29 and 30, respectively. We consider
three different variants of GBH as a global search strategy, each
with random displacement and permutation moves. The first
variant (GBH1) includes the surface refinement scheme described
in Section 3.3 and it involves complete scanning of the local
neighbourhood to verify biminima each time. In the second
variant (GBH2) we chose not to verify biminima and limit the
sorted neighbourhood scan just to the first ten entries (recall
Section 3.1). In the third variant (GBH3) we also disable the
surface refinement scheme to gauge its effectiveness. Finally, the
results are compared with previously reported benchmarks for
the adaptive immune optimisation algorithm (AIOA).29,30

Note that MFETs for GBH1 were averaged over a variable
number of hits, ranging from 10 to 103. Also, the benchmarking
procedure comes in two slightly different flavours: in one
the temperature parameter is reset to the initial value of
kBT = 0.05 eV each time the specified target energy is hit, and
in the other the temperature is not reinitialised during the

entire run. In both cases the random Cartesian displacement
was capped at 1.5 Å, while Nres (recall Section 3.2) was set to
50 for CunAu38�n and 10 for Cu13AgnAu42�n. These minor
differences in the Monte Carlo protocol are somewhat arbitrary,
but the agreement between them provides some reassurance
that the statistics are meaningful. Hence, from Fig. 5 we infer
that GBH1 generally outperforms AIOA, by more than an order
of magnitude in some cases, and is slower only in four
instances: CunAu38�n with n = 11, 17, 35 and 36. For
Cu13AgnAu42�n the superiority of GBH1 appears to be more
convincing. In a few cases we have checked that the relative
efficiency is not overly sensitive to the choice of Nres or the
initial temperature, and so the superiority of GBH1 can be
attributed to systematic multiminima-targeting.

It is worth reiterating that GBH1 carries a significant com-
putational overhead due to biminima verification. This over-
head is reduced in GBH2, often (but not always) yielding
significantly lower MFETs. The efficiency gain varies due to
variable correlation between exact (DEij) and approximate
(DEij*) swap gains. Nonetheless, it is clear that reducing the
local neighbourhood structure can lower the computational
cost by an order of magnitude. Although the particular approxi-
mation in GBH2 (adapted from Lai et al.23) is not easily
tractable and does not guarantee convergence to a biminimum,
biminima candidates could be verified in a separate post-
processing step if required. Alternatively, one could redefine
biminima by restricting interchanges to atoms that are near-
neighbours in coordinate space, which will make the size of the
local neighbourhood scale roughly linearly with the number of
particles (N), though it may also produce more biminima. Linear
scaling with N can also be achieved by relaxing the constraint of
fixed stoichiometry and using the Hamming distance,21 which
measures the minimum number of substitutions (as opposed to
swaps) required to obtain one multiset from another. We intend
to explore these possibilities in future studies.

Finally, MFETs obtained using GBH3 show that the effective-
ness of our surface refinement scheme is system-dependent.
For CunAu38�n with n Z 13 the scheme can either increase or
decrease MFET by up to an order of magnitude, while for
Cu13AgnAu42�n with n Z 21 it consistently improves the effi-
ciency by more than an order of magnitude. To elucidate the
general utility of surface refinement we consider MFETs for
single-component CuN and AuN clusters with N = 38 and 55,
focusing on the effect of random step size. Fig. 6 clearly shows
that, without surface refinement, choosing a random displace-
ment step that is too small or too large can severely hamper the
search performance, and there appears to be an optimal step
size of around 1.1 Å for all the cases considered (and it was used
in GBH3). The sweet spot exists because an overly small step
decreases the probability of escape from the catchment basin of
a current minimum, while an overly large step decreases the
probability of reaching a low-energy minimum. Evidently, the
use of surface refinement consistently reduces the penalty
associated with overly large steps, which can be advantageous
when an optimal step size is not known in advance and has to
be chosen arbitrarily.

Fig. 4 Mean biminimisation cost quantified by the number of quenches
for all the model nanoalloys considered in this study, each with a particular
local neighbourhood size. Note that the symbol ‘‘A’’ spans Pt, Pd, and Au,
while ‘‘B’’ stands for Pd, Au and Ag, respectively.

Fig. 5 Mean first-encounter times (MFETs), quantified by the number of
quenches, for (a) CunAu38�n and (b) Cu13AgnAu42�n versus n. The red
squares correspond to data from (a) ref. 29 and (b) ref. 30. Black circles
(GBH1), blue triangles (GBH2) and green crosses (GBH3) correspond to
data sets for three different variants of generalised basin-hopping. The
dashed and solid black circles represent Monte Carlo protocols with
slightly different handling of the temperature parameter.
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5 Summary

We have outlined a general strategy for global optimisation for
nanoalloys based on a mixed-variable approach and systematic
targeting of multiminima � configurations that are local minima
with respect to multiple metrics. The strategy was incorporated
into a global search method, namely generalised basin-hopping
(GBH), which was used to explore and characterise the quasi-
combinatorial energy landscape associated with nanoalloy homo-
tops. The number of biminima in these effective landscapes was
shown to systematically vary with the preference for mixing/
segregation, whereas the computational cost of finding biminima
scaled quadratically with system size in most cases. Based on
these observations, we conclude that biminima targeting is likely
to be more effective for model nanoalloys with a higher preference
for segregation. GBH was also demonstrated to be effective for
global optimisation of binary and ternary nanoalloys that feature a
significant level of lattice mismatch.

6 Associated content

Example input and output for generalised basin-hopping in GMIN31

can be found at http://www-wales.ch.cam.ac.uk/examples/GMIN/.
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