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The grid-based fast multipole method — a
massively parallel numerical scheme for
calculating two-electron interaction energies

Elias A. Toivanen, Sergio A. Losillat and Dage Sundholm*

Algorithms and working expressions for a grid-based fast multipole method (GB-FMM) have been
developed and implemented. The computational domain is divided into cubic subdomains, organized in
a hierarchical tree. The contribution to the electrostatic interaction energies from pairs of neighboring
subdomains is computed using numerical integration, whereas the contributions from further apart
subdomains are obtained using multipole expansions. The multipole moments of the subdomains are
obtained by numerical integration. Linear scaling is achieved by translating and summing the multipoles
according to the tree structure, such that each subdomain interacts with a number of subdomains that
are almost independent of the size of the system. To compute electrostatic interaction energies of
neighboring subdomains, we employ an algorithm which performs efficiently on general purpose
graphics processing units (GPGPU). Calculations using one CPU for the FMM part and 20 GPGPUs
consisting of tens of thousands of execution threads for the numerical integration algorithm show the
scalability and parallel performance of the scheme. For calculations on systems consisting of Gaussian

functions (¢ = 1) distributed as fullerenes from C,q to Cy,, the total computation time and relative

www.rsc.org/pccp

1 Introduction

Computational speed has doubled every 18 months since the
birth of the first computer. The exponential growth of the
computational efficiency is called Moore’s law." However, the
computational speed of the individual processors has already
practically reached its maximum using silicon-based techno-
logy, and the primary means to improve the performance is
parallelization.

The parallelization of quantum chemistry codes is not a
trivial task, especially when aiming at implementations that
run efficiently on thousands of central processing units (CPU)
or general purpose graphics processing units (GPGPU),
although great advances have been made in recent years.>™’
For example, Yasuda and Maruoka'® report a speed-up of four
when using a GPGPU-accelerated version of their electron
repulsion integral code, which is to be contrasted with the
theoretical peak performance advertised by GPGPU vendors
that suggest several orders of magnitude better results.
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accuracy (ppb) are independent of the system size.

Setting technicalities such as memory access patterns and
communication overheads aside, the software-hardware gap
ultimately results from a mismatch between computer algo-
rithms and the execution model of the computer hardware.
In particular, maximal performance can never be attained if
the focus is on the parallelization of individual code segments
interleaved by sequential parts, which is the core content of
Amdahl’s law."” It states that for massively parallel computers,
the wall time it takes to perform given calculations is deter-
mined by the computational time that is needed to perform the
operations in the serial part of the code. The law seems to
introduce severe limitations, because if 10% of the code is
run serially the maximum speed-up is a factor of about 10.
However, if the time needed for the serial part can be made
more or less independent of the amount of parameters needed
to describe the molecule, the total computational scaling
becomes independent of the size of the molecule, as long as
a sufficiently large computer is available. Alternatively, if
the size of the system is kept the same, a higher accuracy is
obtained at the same cost.

To be able to explore the computational capacity of future
computers one has to design algorithms that run efficiently on
massively parallel computers. Real-space grid-based methods,
also known as numerical methods are well-suited for these
architectures because the local support of the basis functions
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introduces new opportunities to divide the calculation into lots
of independent parts that can be performed in parallel. Once
numerical integration can be performed concurrently on suffi-
ciently many cores, the performance is not going to be limited
by the total amount of work but by the work per computational
node. In addition, the flexibility of numerical approaches also
renders accurate calculations with small basis-set truncation
errors (uEy) feasible."®* Thus, quantum chemistry calcula-
tions of the future employ local basis functions.

In this work, we discuss a fully numerical technique for
computing electrostatic interaction energies between charge
densities. In the context of ab initio electronic structure calcula-
tions, this is needed to compute large numbers of two-electron
repulsion integrals. The evaluation of these integrals constitutes
one of the computational bottlenecks of the self-consistent-field
(SCF) calculations. Implementation of the FMM scheme in
quantum chemistry codes that rely on atom-centered Gaussian-
type basis sets significantly reduces the number of explicit
integrals over the basis functions.>*° Instead of the ¢(M*)
integrals in the naive case, the FMM-accelerated prescreening
scheme computes all interactions with only O(M) work, as
demonstrated by e.g. Rudberg and Satek.”® We have adapted
the FMM scheme originally conceived by Greengard and
Rokhlin® and introduced it into quantum chemistry codes
provided by White and Head-Gordon et al*** to a fully
numerical framework. In the grid-based fast multipole method
(GB-FMM), the long-ranged and short-ranged contributions of
the two-electron interactions are identified and treated differ-
ently. The long-ranged interactions are computed using an
FMM scheme with numerically calculated multipole moments,
whereas the short-ranged contributions are obtained by numerical
integration as described in our previous work.'>**3¢ For a discus-
sion of alternative parallelization techniques for Poisson solvers,
we refer to the recent survey by Garcia-Risuefio et al.*”

Even though the FMM scheme is surely a key component
in the quest for linear scaling SCF calculations,*® our interest
in the FMM algorithm does not stem merely from asymptotic
complexity arguments. Instead, we also tackle a somewhat
different problem that is typical for grid-based methods,
namely that the memory requirements for representing func-
tions on a grid grow linearly with the volume of the system. The
FMM scheme allows one to circumvent such limitations as it
provides a natural framework for decomposing functions into
local grids that can be distributed across several computational
nodes opening the avenue for massive parallelization.

The article is outlined as follows. In Section 2, the GB-FMM
scheme is thoroughly described. The bipolar series expansion
of electrostatic interactions and the translation of multipole
moments are discussed in Sections 2.1 and 2.2. The partitioning
of the computational domain and the grids are described in
Sections 2.3 and 2.4. The expressions for the calculation of
the two-electron interaction energy using numerical integration
combined with the GB-FMM scheme are derived in Section 2.5.
The algorithm for calculating multipole moments is presented in
Section 2.7, whereas the algorithm of the direct numerical
integration of the near-field contributions to the two-electron
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interaction is described in Section 2.8. The different components
are put together in Section 2.9, where the final algorithm is given.
The timings and accuracy of the calculations are presented in
Section 3. The article ends with conclusions and a future outlook
in Section 4.

2 The grid-based fast multipole
method

The ultimate goal is efficient calculations of the N,(N, + 1)/2
distinct pair interactions resulting from N, charge distribu-
tions, that is

_ 1 / 3r 3’,/
V=[] s (1)

for1 <u<N,1<v<pu

In this section, we present different expressions and meth-
ods required to arrive to the final expression for the energy,
eqn (26). The algorithm to efficiently evaluate the interaction
energy is then given in Section 2.9.

2.1 Bipolar expansion of electrostatic interactions

The mathematical basis of the fast multipole method is the
bipolar series expansion®® of the Coulomb potential:

00 / 0
Z Z Z Z S[’" T/r?h/’m’(Q — P)S,/mr (I'l — Q)
- l" 1=0 m=—11'=0 m'=—1"

(2)

In eqn (2), P and Q, are two distinct (P # Q) but arbitrary
reference points and S;, are real solid harmonics in Racah’s
normalization.”®*" Ty, y,/(Q — P) are the elements of the inter-
action matrix T(Q — P). We provide explicit expressions for the
elements in terms of real spherical harmonics in Appendix A.
Eqn (2) conveniently decouples coordinates r and r’, which
significantly simplifies the evaluation of the interaction energy
in eqn (1). The pair interaction energy can now be written as

=33 i (], sute-Pnyar)
i% mi]' Tynym (Q —P) (JR3 Sy (X — Q)p,,(r/)d3;~/)7
3)

where we identify the multipole moments (monopole, dipole,
quadrupole, etc.) of the charge distributions

q,“v/”l(P) = [RBS/rvl(r - P),O#(l‘)dBI’. (4)

Organizing the multipole moments as vector q,, eqn (3) can
be rewritten as

Ui = 4u(PIV,(P). ()
with the potential moment vector given by
v,(P) = T(Q — P)q,(Q). (6)
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Fig. 1 The blue sphere overlaps with the red spheres, but not with the
green spheres. Hence, the interaction of the density enclosed in the box
marked with a black circle with the boxes marked with white circles must
be computed directly using eqn (1). On the other hand, the interaction
between the box with the black circle and the boxes with white crosses
can be computed using the multipole expansion in egn (3).

The elements of the potential vectors v,(P) have a direct
physical significance,*" as they are the expansion coefficients in
solid harmonics of the electric potential due to p,(r) expanded
around P:

00 /
Vu®) =33 voimSim(r — P). @)

1=0 m=—1

The main limitation of the bipolar expansion in eqn (2) is that
it converges only if |t — Q| + |r — P| < |Q — P|. In geometrical
terms, this means that it must be possible to enclose the two
charge densities in spheres which do not overlap, as shown in
Fig. 1. Furthermore, in a practical implementation the expan-
sion must be truncated at a certain order [/,,,. However, the
error diminishes systematically as /. is increased, implying
that this is in general not a problem.

In the fast multipole method, the bipolar expansion is
efficiently exploited by partitioning the charge densities into
spatial subdomains, such that each of these subdomains over-
laps only with a handful of other subdomains, as described in
the next Section. Grid-based methods have the advantage that
non-overlapping domains are very easily identified due to the
local support of the numerical basis functions.

Level O

Level 1
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2.2 Translation of multipole moments

An important property of multipole moments is that the
expansion point can be shifted, without explicit recalculation
of the multipole moments. The translation of the multipole
moment from Q to P is given by

qu(P) = W(Q - P)q,u(Q)' (8)

Expressions for the elements of the translation matrix W can
be found in Appendix A. The potential moments can be
translated in a similar fashion using

v.(Q) = W'(Q — Pv,(P). ©)

2.3 Domain partitioning and box hierarchy

A box here is a three-dimensional Cartesian domain. The Ath
box QW is defined as

(A) @A) (A) ,(A)

Q(A) = [XEﬁgn, xg}gxx] X D’mlm max] X [me, Zmax]) (10)

The zeroth box Q) is the complete computational domain.
The center of box A is point C® with coordinates

A A
C(A) N <x£:u), + xr(é\a)x yffu)] +y§nAa)x Zinil)j + Zﬁna)x>

£t Vnin TV i 7 (1)

Each box is completely enclosed by a sphere centered at C*)
with a radius

0 = (= ) (o — 5 0) T (2 — 0

(12)

We will refer to r* as the extent of box A. The enclosing
spheres of boxes A and B overlap when |[C®) — ¢®)| < /& + ®),

Boxes are recursively subdivided such that each box is the
parent to eight children boxes, thus forming the octree data
structure that is illustrated in Fig. 2. The indices of the children
of box A are denoted by Children(A). Likewise, the index of the
parent of box A is parent(A).

The boxes are grouped into levels, which we define

recursively as
level(0) = 0,

(13)

level(A) = level(parent(A)) + 1. (14)

Level 2

=] B T

Fig. 2 An octree data structure is obtained by subdividing a three-dimensional domain recursively.
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The Ith level contains 8’ boxes, and when the number of divisions
is set to Dyax, the number of childless leaf nodes at the highest
level is 8”™. In order to make an efficient use of the bipolar
expansion, the vicinity of every box at all levels is divided into two
groups: the nearest neighbors and the local far field. The nearest
neighbors of box A, NN(A), are the boxes which belong to the same
level as A and whose enclosing spheres overlap with that of A:

NN(A) = {B: level (A) = level (B), | — c®)| < &) + B,

(15)

Note that A is itself a member of NN(A). The number of
nearest neighbors ranges from 8 when A is in a corner to 27
when it is in the interior of the computational domain. The
local far field of the Ath box, LFF(A), consists of all the children
of the nearest neighbors of the parent of A, which are not
nearest neighbors of A themselves:

LFF(A) = U

BeNN(parent(A))

Children(B) | \NN(A). (16)

There are 4°-3° = 37 to 6°-3® = 189 boxes in the local far field
of any box. From this definition we note that, for boxes at levels
0 and 1, the local far field is empty, because box 0 has no parent
and no nearest neighbors.

An important property of this separation is that QW s exactly
covered by the boxes in NN(A)ULFF(A)uLFF(parent(A))u
LFF(parent(parent(A)))u..., for any box A. In this way, the
complete domain can be partitioned into a hierarchy of non-
overlapping domains,

JRs fodr = Y

BENN(A)

JQ(B)f(r)d3i‘ + f(d3r

BELFF(A) JQ(B)

(17)
N J IR+ ...
BELFF(Parent(A)) QB
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The decomposition in eqn (17) will always terminate with
boxes at level two. The concepts defined in this section are
illustrated in Fig. 3 in two dimensions, for Dy, = 4.

2.4 Grid representation

For each of the boxes at the highest level D,,y, an equidistant
Cartesian grid is constructed as presented below. A more
detailed discussion can be found elsewhere.**

The one-dimensional grids consist of N points separated by
a distance £, the grid step. For example, for the x dimension,
the points are x(lA) = xEﬁgn, x(ZAJ,. . .,x}f?) = xEﬁglx. A one-dimensional
basis function is assigned to each point, e.g. XJ(A’”())) is assigned
to point yJ(A). The basis functions are polynomials of degree P
with small support around their grid points. We employ sixth-
degree polynomials (P = 6) in the present work.

The three-dimensional basis set is an outer (tensorial)
product of the one-dimensional local basis sets. The expansion
coefficients are the values of the function in the corresponding
grid points. Taking the density p,(r) as an example, its expan-
sion in the local basis functions within box A is given by

A) _(Ay Ay Ay
20 2> () 1™ ()M ) (2). (18)
ijk

with the expansion coefficients (p,) = p,(x¥, ¥, 2{).

As we have shown before,*® this representation is adequate
for smooth charge densities. For all-electron calculations, the
presence of cusps at the nuclear positions requires a prohibitive
number of points, which can be circumvented by explicitly
representing those cusps, which is beyond the scope of the
present work but has been described in detail in our previous
work.*?

The total number of grid points is given by (2°™N)>.
Equivalently, this is (L/h)’, where L is the total length of the
computational domain Q. For a typical step of 0.1a, and
N =200, Dy,ax = 3 allows treating the systems with a volume of
up to 160 x 160 x 160a,’.

level(A)=4
Fig. 3

level(A)=3

level(A)=2

Illustration of the domain partitioning for D,y = 4. Each figure shows, for a selected box A (marked with a black circle): NN(A) (circles, both white

and black), parent(A) (in red), NN(parent(A)) (in blue) and LFF(A) (white crosses). The selected box (black circle) in each figure is the parent to the box

marked with a black circle in the figure to its left.
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2.5 The FMM energy expression

Using eqn (17), the expression for the energy in eqn (1) can be
reorganized as

1
U;tz/ = J pﬂ (r) J ,7[)”(1',)(13",
Adlevel(A)=Dpnay ? 2V BeNN(A) ¥ 2P I — x|
1 NA3
+ P (r)dr
BELFF(A) ow [’ —r|
[ 1
’ ‘ ———p, ()& + .| dr
BeLFF(parent(A)) * Q) |1' - l“
(19)

The contributions arising from the nearest neighbors are
grouped together into the nearfield interaction energy, U$). The
remaining terms constitute the far-field interaction energy U(FAF)

Uuu = UI(\TAF) + U]<?/]%3) (20)
A:level(A)=Dmax
U4} can be written more compactly as
A
U = | e e

where V(r), which is the near-field potential at box A, is
computed as a sum of contributions V*4)(r):

1

/d3,I:
mmﬁf:;fuﬁ) ;

BENN(A) J BENN(A)

(22)

Because all the density pairs contributing to the far-field
energy are non-overlapping, U can be calculated by exploiting

the bipolar expansion in eqn (3) as

ol = (qi) v (23)

where qE,A) are the multipole moments of the part of p,(r)
contained within Q(A),

(A) _ A 3
Qim = L)(A) Sim <l’ - C! )>,0H (I‘)d r, (24)

and the far-field potential moment vector vfj‘) is defined
recursively as

T@@,Cwﬁp
BELFF(A) (25)

+ WT <C(A) _ C(parem(A)))vaal'ent(A))'

The final expression for the energy is then given by

T
U = p VN ®dr+ (¢V) VY. (26)

Ac:level(A)=Dpax JQ(A)
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2.6 Parallelization

The linear scaling nature of the fast multipole method is
apparent from eqn (26): for a given set of far field potential
vectors and near field potentials, the energy is evaluated in a
single loop over the boxes. For an analysis establishing linear
scaling complexity also in the potential construction step, we
refer to the work by White and Head-Gordon.>' Here, we focus
on presenting the traditional FMM algorithm in a maximally
parallel fashion.

Each box A is assigned to a node, denoted with A. If the
GB-FMM scheme is parallelized to the fullest, the number of
computational nodes will be 8> + 8° +.. .+ 8”™ We will refer to
the 8”> nodes at the highest level as near-field nodes. It is not
required that all nodes should be physically different. For
example, in the benchmarks shown in Section 3, all non-near-
field nodes are in fact the same.

The algorithms required for the calculation of pair energies
are represented in Fig. 4-8. The operations, which are run
concurrently by all nodes, are represented within rectangles.
The near-field nodes must often carry out additional steps,
which are indicated separately. Grey rectangles indicate steps
that require some type of inter-node communication.

In order to carry out the necessary operations, each node A
stores the center of its own box, C(A), and the centers of all
its children, its parent and all boxes in LFF(A). In addition,
each near-field node must also store the grids of its nearest
neighbors (including its own), and be able to calculate or read
the expansion coefficients (pLA))l»jk, which are the expansion
coefficients of all the input densities in box A.

2.7 Evaluation of multipole moments

At the highest division level, the multipoles are integrated
using the expression in eqn (24). The fact that the multipole
moments have to be computed by numerical integration may
seem daunting, especially when the multipole moments of
Gaussian primitives can be evaluated more or less trivially.*?

All near-field nodes A concurrently do
jjk = (Pu)f?k) Vi, j,k
for all 0 < u <ly.x do
bjr= Zili(A"x)aijk v j,k
forall 0 <v <[y, —udo
Cr = Zj Ij(«A"y)bjk Yk
forall 0 <w <Ipxx—u—vdo
d =Y c,
for all (1,m) such that C'" # 0 do
G5tim = Qi+ Chd
(Note: d = [ x"*y"2" py (r)dxdydz)
ck—Zkep Vk
bjk — )71'[7.)‘1( v j,k

ajjk < Xiaijx Vi, j, k

Fig. 4 Algorithm for the numerical integration of the multipole moments
of the boxes with level(A) = Dmay.
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However, it turns out that the tensorial nature of the local basis
functions leads to a very efficient algorithm, as the multipole
moment integrals always separate to the products of one-
dimensional integrals, many of which can be reused.

The real solid harmonics can be expressed using Cartesian
coordinates as

Sin(r,0,0) = Clm x"y"2". (27)

uvw

where C',, are the transformation coefficients.*' The multipole
moments in the Cartesian representation are easily computed
by the following expression:
(A) _ l (Az) zw (Ay) 5y (Ax) (A) &
qy./m - Z CLZ?W Z Ik Z;; Z Ij ; Z Ii (pu)[/k X;‘7
uvw k J i

(28)

where the shifted coordinates are %; = x{¥ — ¢, y; = y —
™ and % = 2V — ¢®. The quantities />, I*?) and 1{*? are
one-dimensional integrals over the basis functions, e.g.

[(A)

Av /muxﬂ Aw"
1A = " 2 (x)dx.

(29)

The most expensive operations appear in the outermost
loops, with a computational cost that is asymptotically propor-
tional to (((Iax + 1)N?), which is a substantial improvement as
compared to the cost of O((lmax + 1)°N°) for naive
implementation.

For the boxes at lower levels, the multipole moments can be
computed recursively from the multipoles of their children
using eqn (8):

q (C<A>) —
BeChildren(A)

The algorithm to compute the multipole moments at all
boxes is outlined in Fig. 5. Initially, all near-field nodes must
integrate the multipole moments in their respective boxes as
described above. Then, the boxes at lower levels can recursively
reconstruct their multipole moments. For each of its 8 children,
each node receives the (In. + 1)* entries of the multipole
moment vector, which is then multiplied by the (I + 1)* x
(lmax * 1)2 translation matrix, and the result is accumulated

All near-field nodes concurrently do
Compute q;” (Eq. (28), Fig. 4)
All nodes A with level(A) > 2 concurrently do
for all boxes B € Children(A) do

Receive qLB) from node B

qﬁfl> . qLA) +W(CH — C(A))qLB)

Send q,(LA)

to node parent(A)

Fig. 5 Algorithm for calculating qif”, the multipole moments for all boxes
at all levels greater or equal to two for a charge density p,.
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All nodes A with level(A) > 2 concurrently do

Require qﬁq) (Fig. 5)
for all boxes B € LFF(A) do
(A.B) _ T(C(A) _ C(B))qLA)

Compute vy
Send vff’B) to node B

(B7A)
o

from node B

VLA) — v,(f> + VLB’A)

Receive v

(parent(A)

Receive v ) from node parent(A)

VE{*) - VLA> + WT(C(parent(A)) _ C(A))Vgnarent(A))
for all boxes B € Children(A) do

Send vg‘) to node B

Fig. 6 Algorithm for calculating vff), the potential multipole moments at
every box.

into qu). In the FMM literature, this step is often referred to as

the upward pass.

Once the multipole moments have been obtained, the
corresponding potential vectors vEf) are computed using the
algorithm described in Fig. 6. Each node computes its con-
tribution to the potential in each box B of LFF(A). This compu-
tational step consists of a series of constructions of interaction
matrices and the corresponding matrix-vector multiplications
with a cost of O(Iya"). The resulting potential vectors, containing
(Imax + 1) entries each, are then sent to the appropriate nodes B.
In this way, each node receives all the necessary contributions
which are added up to form the local far-field contribution to vi®).
Then, starting from the lowest level, which is level 2 in practice as
the contributions from levels 0 and 1 vanish, because they have
no local far field neighbors. Each node sends vg“ to its children,
which translate the contribution by means of eqn (9) and
accumulate it into their own vEf), which is commonly known as
the downward pass.

2.8 Calculation of the direct interactions

For the direct interactions, we use a low-rank separated repre-
sentation of the Coulomb potential based on the well-known
integral expression by Boys and Singer:****

L i‘.xe”z"‘zzdt R~ XR:w e’ i(3(r -1r). (31
2 \/E 0 = 4 lfz 1 2)-

We refer to our previous work for further details on how to
obtain the quadrature weights w, and points ¢,.>’ In this work,
the operator rank is R = 50 and the chosen quadrature para-
meters are ¢; = 2, t;= 50, Njj, = 25, and Ny = 25. The parameters
are chosen such that the accuracy of the near-field interactions
is not a bottleneck. Thus, in practical applications the total
number of quadrature points can be significantly reduced.

The calculation of the contributions to the potential of the
nearest neighbors in eqn (22) is done as a series of tensor
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R N NJ Nv\'
(B.A) ~ xp ((B)
(V:“ )[-/ ~ Z @p Okk, Z 0 Z O/i/ <pﬂ ) iik!
A ey N =1 =1 i

(32)
T
T <B>>

T (v ik

The linear transformation is executed very efficiently using
GPGPUs, as we have recently shown.'”> The performance
obtained on a single Nvidia K40 card is between 0.5 and 1
TFLOPs depending on the size of the matrices O*7.

The matrix elements of the O°” matrices are given by

(33)

1

. Cmax . L(A))?
05’ :J e (=) B yqe

All nodes A concurrently do
for all B € NN(A) do
(Eq (22), performed on GPGPU)

Compute V

Send V,E B) to node B

Receive VlEB ) from node B

v vt Ly A

Fig. 7 Algorithm for calculating \/A ), the nearest-neighbor contribution
to the potentials in all boxes at the highest level.

All nodes A concurrently do

View Article Online
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The algorithm to compute the near-field potentials is summar-
ized in Fig. 7. Each near-field node computes all contributions in
their neighbor boxes and sends the data to the neighbor nodes.
The computation itself is carried out very efficiently on the GPGPU.
The inter-node communication can be expensive: the majority of
the nodes have to send and receive 27N° coefficients, which for
typical values of N = 100-200 amounts from hundreds of MB to
over 1 GB for 64-bit floating point numbers.

The near-field energy contribution to the energy in eqn (26)
is then computed as

qu( WOVNEd '7211» L)ZIA‘)ZIM)( (A))!/k(VrEM)

(34)

ik’

which can be obtained efficiently using the algorithm for integrating
the multipole moments with /5 = 0 shown in Fig. 4.

2.9 Calculation of pair interactions

We are now ready to put together all the pieces introduced in
this Section into an overall algorithm that computes all pair
energies. The final algorithm is presented in Fig. 8. In the
initialization step, all nodes compute the translation and
interaction matrices that they need. Near-field nodes also
compute the necessary Coulomb matrices and the integral
vectors. Then, for each input density, each node computes
the necessary potential vectors (VLA]) and the potential contribu-
tions (VLA)(r)) of the near-field nodes. For each density p,(r)

All nodes: Near-field nodes:
for all B € LFF(A) d
Compute T(CW — C®)) for all B € NN(A) do
for all B € Children(A) do Compute 057 (Eq. (33))
Compute W(C®) — C)) Compute I® (Eq. (29))
Compute W7 (CParent(4)) _ c(4))

forall u:1<u<N,do
All nodes A concurrently do

All nodes:

Near-field nodes:

Compute VLA) (Fig. 6)

Compute Vu (F1g 7)

forallv:1<v<pudo

All nodes A concurrently do

Compute qy, @ (Fig. 5)

All near-field nodes A concurrently do

U@ _ @)

uv = Vu qv +fg

A>P$A) 3

All near-field nodes reduce:

W= G -0

Fig. 8 The grid-based FMM algorithm for the calculation of all pair interaction energies from N, charge densities.
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with 1 < v < p, the node computes its contribution to the
interaction energy U,,, either as the dot product (qg\))TvE,A) or
using the tensor contraction in eqn (34) for the near-field
nodes. All contributions are added up into a master node.

3 Results

3.1 Benchmark calculations on fullerene systems

The accuracy and parallel performance of the GB-FMM scheme
were analyzed in a series of benchmark calculations on full-
erene structures that were obtained from Mitsuho Yoshida’s
fullerene library database.*> We constructed model densities
from linear combinations of Gaussian functions centered on
the nuclear coordinates of the fullerene structures:

3/2 ,
o) = (1) Cawensem (9)
K

The densities were partitioned to the boxes at the highest
level of division. For example, when Dy,.x = 3, the density was
represented as an array of size 8% = 512 containing function
objects. These objects contained in turn the information about
the near field grids and the numerical meshes. The use of
densities of the form in eqn (35) permitted us to determine the
accuracy of the GB-FMM scheme. The so-called self-interaction
energy of the charge density (eqn (1) in the case u = v) was
computed and compared with its analytical value. The analy-
tical value was obtained as

ojoK
Dok qgqserf (RJKm)
U= W= +2 ,
2N T R

K>J

(36)

where Ry = |R; — Rg].

The Gaussian amplitudes were set to the nuclear charge of
carbon, gx = 6, and the exponents were set to unity, ox = 1.
These parameters ensured that the charge was reproduced and,
more importantly, that all model charge densities were globally
smooth.

The GB-FMM scheme was implemented in Fortran and
parallelized with MPI and cuBLAS, the CUDA-implementation
of the BLAS library. One single-core physical node was respon-
sible for computing the far-field potentials with the FMM, while
the near field potential calculations were divided among hybrid
nodes, each equipped with a GPGPU card (NVIDIA Tesla 40 K
cards that are controlled by Intel Xeon E5-2620-v2 CPUs). All
parallel runs were performed on the Taito GPGPU cluster of the
CSC computing center.

3.2 Accuracy

The fullerene Cgqo was picked as the test structure for studying
how the accuracy of the GB-FMM scheme depends on the grid
step &, the truncation of the multipole expansion /.y, and the
depth of the octree Dy,.x. The domain size was adjusted for
ensuring that the density was negligible at the domain bound-
aries. In the case of Cg, the cubic domain had a side length of

This journal is © the Owner Societies 2015
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24a,. The values Dy = 2, 3, 4 and [,y = 5, 7, 10, 12, 15 were
considered. The grid step was set to & = a2’ withi =1, 2, 3, 4.

In Fig. 9, the absolute error in the self-interaction energy is
plotted against the grid refinement parameter i. The error
is seen to be saturated below one millihartree in the case of
Diax = 2, while the 107°E; level is reached with Dy = 3
and Dp.x = 4. These absolute energies translate to relative
accuracies in the range of 1-10 ppb, which agree well with
our previous results.>*

The error in the energy saturates with respect to both the
truncation of the bipolar multipole expansion I,,x and the grid
step h, which implies that the remaining error results from
the quadrature parameters of the direct integration, e.g., the
discrete representation of the Coulomb operator.

3.3 Performance

The evaluation of the electrostatic potential is by far the most
time consuming step in the GB-FMM scheme. As the near-field
and far-field potentials are computed concurrently by construc-
tion, the timing is

tpot = MaX(tnp,trp)- (37)

The near-field contribution is 8°™*tpage, Where tpace is the
time for constructing a single near field potential with the
direct integration. The far-field contribution consists of evalu-
ating the 8”™ potential vectors, i.e., the expansion coefficients
of the far-field potentials.

In Fig. 10, we report timings for calculation of the potentials
for the Cyo, Ce0, Cis0, C320 and C;,4 systems together with the
absolute relative error. The domain sizes varied between 18a, x
19a, x 18a, and 59a, x 56a, x 56a,. The GB-FMM specific
parameters were Diax = 3 and [, = 15. The grid step and the
quadrature parameters were set to 0.1a, and Ny, = Niog = 25,
respectively.

While the cost of the direct integration of the potential on a
single-core CPU is competitive with the GB-FMM part for small
systems, the GB-FMM scheme scales significantly better with
the size of the system, both in terms of accuracy and perfor-
mance. In the GB-FMM calculation, a constant, ppb-level
relative accuracy is obtained for all system sizes, whereas the
accuracy of the direct numerical integration deteriorates with
increasing size of the domain.

The results obtained for the GB-FMM scheme can be
expected, as the accuracy of the scheme should not depend
on the size of the computational domain, because the entire
domain is never simultaneously considered. In addition, as all
the direct numerical integration parts of the calculations within
the GB-FMM scheme are performed on domain sizes of a
couple of atomic units per side, the GB-FMM should retain
the accuracy characteristic (0.1-1 ppb) of the direct numerical
integration for that size of the grid.

When the near field potential calculation is distributed
among 20 GPGPU nodes, the GB-FMM scheme is clearly super-
ior to the fully numerical integration method and exhibits
effectively constant scaling of the computational time with
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Fig. 9 Accuracy of the GB-FMM with respect to grid quality, truncation of the multipole expansion and the depth of the octree. The grid refinement
parameter i gives the grid step from h = ap/2'.

4000

Fig. 11 shows in detail how the limit of Amdahl’s law is
reached for the Cg4, system. The employed parameters were the
same as used in the calculations reported in Fig. 10. With [,y =
15 and Dp.x = 3, the GB-FMM part becomes the bottleneck
when the near field potential calculations are divided among
four to five nodes. The calculations of the near-field potentials
scale nearly ideally as expected.

® T
g @ @ DAGE (CPU) -
‘£ 3000 {®-® GBFMM (1 CPU + 1 GPGPU) _ -7 i
”8 @ @ GBFMM (1 CPU + 20 GPGPUs) oA F
= 2000 |- - |
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Fig. 10 Time of the potential calculation as a function of system size. The data
points correspond to the fullerene structures Cyo, Ceo, Cig0, Cz20 and Crzo.

respect to system size, which is a consequence of reaching the
limit of Amdahl’s law. When all GPGPU nodes performing the
numerical integration complete their task faster than the CPU
performing GB-FMM calculation, the running time of the
potential calculation is dominated by the single-core GB-FMM
part of the calculation. The calculation can be speeded up by
also distributing the GB-FMM part on several CPUs or GPGPUs.
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Fig. 11 Speed up of potential calculation in Cgg as a function of GPGPU
cards. While the near field potential calculation parallelizes well by con-
struction, the Amdahl's law limit is reached already with 4 to 5 GPGPU
cards as the serial far-field potential calculation forms a bottleneck.
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4 Conclusions and outlook Appendix A
A grid-based fast multipole method (GB-FMM) scheme for The interaction and translation matrices
calculating two-electron interaction energies has been devel- Introducing the auxiliary functions
oped and implemented. The computational domain is divided N m=0
into subdomains that can be assigned to nearest neighbors and
more distant subdomains. The far-field contributions to the P (I —m)Y(l +m)! m>0 (38)
two-electron interaction energies are obtained by employing ! 2
the bipolar series expansion of the Coulomb operator, whereas (—1)ma; m<0
the near-field contributions are obtained by fully numerical
integration of the corresponding Coulomb energy integral. In the
GB-FMM scheme, the multipole moments are calculated for the 0 m=0
individual subdomains and combined to multipole moments for . (I=m)(I+ m)!
groups of subdomains. The series expansions of the charge B =4 (=D)" T, m=> 0 (39)
density and the electrostatic potential are combined to yield the
electrostatic interaction energy of separated non-overlapping (=1t m<0
charge densities. The numerical integration algorithm has been
adapted for general purpose graphics processing (GPGPU) units. m_ (=™ (40)
The performance of the computational scheme has been demon- ! \/ (14 6,0) ([ +m)!(I — m)!
(=17 Cpct a4 (<1 m=>0,k>0
g J e B - ) By ] m> 0,k <0 "
/ ( 1) /Cmck { m+lB;1r/rkI]+\]m+M ( 1)A+mBm k]H\jm k|:| m< 0’ k >0
(-1)icpck [( Ay k(- 1)"1“/1'"?1,'3_’]*“] m <0,k <0.

strated by calculations using one CPU for the serial part including
the GB-FMM and up to 20 GPGPUs for the numerical integration
of the Coulomb energy. For the largest GPGPU cluster, the
parallel part of the code is faster than the serial one and since
the computing time of the serial part of the code is more or less
independent of the system size, the computational time is found
to be independent of the size of the system. The present calcula-
tions show that numerical calculations using local basis func-
tions can be made to run very efficiently on massively parallel
computers, because for local basis functions the computational
domain can be easily subdivided into smaller units whose
interactions can be computed independently. The algorithm
yields a computational method that formally scales linearly with
the system size, whereas the massively parallel computer archi-
tecture renders calculations whose wall time is independent of
the system size feasible. The scalability, performance and accu-
racy of the present numerical calculations on the GPGPU cluster
suggest that quantum chemistry calculations of the future will
most likely be made this way using local basis functions.

[( )kﬁm k \m k| _ﬁmerA
Wlm,jk =

This journal is © the Owner Societies 2015

1 Oko },71 m—ks‘”“k‘ 1)k ,,,+kS\n1+/c\
J

and a second set of auxiliary functions, because a real-valued
formulation is used

1
i m=20
O(’[” = (_l)m ! m>0 (42)
2(1 4 m)\(I — m)!
(71)'"0(17’" m<0
0 m=20
B = 2(1+ m)!(I — m)! (+3)
(_1)(771-%—1)’[;1*”1 m<0
= (_1)’”\/(2 = 0mo) (I = m)!(1 + m)!, (44)

leading to the following expression for the translation matrix.**

m>0,k>0

sy \mwﬂ m>0k<0
(45)

k| ( 1)”’*"[375;.1"5 |m+k‘] m<0,k>0

)m(x;;lJ/rks‘erk‘] m< O,k <.
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