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Recent predictions of absolute binding free energies of host—guest complexes in aqueous solution using
electronic structure theory have been encouraging for some systems, while other systems remain problematic.
In this paper | summarize some of the many factors that could easily contribute 1-3 kcal mol™ errors at 298 K:
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three-body dispersion effects, molecular symmetry, anharmonicity, spurious imaginary frequencies, insufficient
conformational sampling, wrong or changing ionization states, errors in the solvation free energy of ions, and
explicit solvent (and ion) effects that are not well-represented by continuum models. While | focus on binding

free energies in aqueous solution the approach also applies (with minor adjustments) to any free energy
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Introduction

The prediction of accurate absolute binding energies in aqueous
solution is one of the holy grails of computational chemistry,
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difference such as conformational or reaction free energy differences or activation free energies in any solvent.

mainly because of the potential use in rational drug design.
“Accurate” is typically taken to be 1 kcal mol ™", which roughly
corresponds to predicting the binding constant within an order
of magnitude at room temperature and it is understood that the
method must be generally applicable. The recent blind prediction
challenge SAMPL4 has shown that this goal has yet to be met
even for host-guest complexes that are significantly smaller than
proteins.’ Interestingly, the entry that arguably performed best
for one of the hosts (curcurbit[7]uril or CB7) was, for the first
time, based on the rigid rotor-harmonic oscillator (RRHO)
approximation and electronic structure theory and involved no
direct parameterization against experimental binding free energies.?
This method reproduced 14 experimental CB7-guest binding free
energies with a mean absolute deviation of 2.02 + 0.46 kcal mol
suggesting that, perhaps, the holy grail is within reach. However,
the mean absolute error was significantly larger for another host-
guest system indicating that there remains some work to be done.

In this paper I summarize why electronic structure/RRHO-
based approaches are starting to yield accurate binding free
energies. I also discuss many of the possible sources of error
when computing aqueous binding free energies with electronic
structure theory and how to correct for them.

General approach

The general approach for predicting the standard free energy of
binding (AG

molecule in aqueous (aq) solution

;aq) of a receptor (R or host) and ligand (L or guest)

R(aq) + L(aq) = RL(aq) (R1)
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AGb.gms
R(gas) + L(gas) —— RL(gas)

_AG::)I\' (R)I I_AG:())I\ (L) lAG\:)lv (RL)
R(aq) + L(ag) ——— Rl (aq)
baq

Fig. 1 Thermodynamic cycle for computing the binding free energy in
aqueous solution for a ligand (L) binding to a receptor (R) to form a
complex (RL).

using electronic structure theories is through a thermodynamic
cycle (Fig. 1)

AGy g = G5y (RL) = G (R) — G (L) @)
where
Gy (X) = Egas(X) + Ggye rruo (X) + AGG, (X) 2
= Gy (X) + AGG,, (X)

Egas(X), Ggusrruo(X), and AGY (X) is the electronic energy,
rigid rotor-harmonic oscillator (RRHO), and solvation free
energy, respectively, of molecule X. Note that Gg rruo(X)
contains the zero point energy. The standard state (denoted
by “*’) throughout this paper is 1 M, unless otherwise noted.
The solvation free energy is typically computed using a continuum

solvation model as described in detail below.

The electronic energy

One of the reasons electronic structure-based approaches are
starting to yield accurate binding free energies is the use of
dispersion corrections® in the evaluation of the electronic
energy and the structure (as well as the vibrational frequencies
as discussed below). Grimme* has shown that dispersion typically
makes a very big (>10 keal mol™") contribution to binding free
energies of host-guest complexes. Dispersion corrections are
therefore a must if DFT is used to compute the electronic binding
energy. Furthermore, Grimme has shown that three-body disper-
sion makes a non-negligible (2-3 kcal mol ") contribution to the
electronic binding energy. For convergent methods this effect is
only included in rather expensive methods that involve triple-
excitations such as MP4 and CCSD(T).

Interestingly, it has been found that dispersion corrected,
and short-range corrected, semiempirical methods such as
DFTB or PMS6, yield binding energies with accuracies similar
to conventional DFT calculations with large basis sets. For
example, Muddana and Gilson® used PM6-DH+ to compute
reasonably accurate relative binding energies for CB7-ligand
complexes. On the other hand, Yilmazer and Korth® found
significant deviations for PM6-DH+ and similar methods when
applied to larger protein-ligand models. Whether these minimal
basis set-based methods are sufficiently flexible to handle large
many-body polarization effects involving many charged groups
remains to be determined. In any case, Grimme and co-workers
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have computed Eg(X) at the PW6B95-D3(BJ)/def2-QZVP//
TPSS27-D3(B])/def2-TZVP level of theory with good results.?

Molecular thermodynamics

The translational, rotational and vibrational thermodynamic con-
tribution to the binding free energy is very large (> 10 keal mol )
and must be included for accurate results. Some years ago there
was a bit of confusion in the literature about whether the RRHO
approach was appropriate for condensed phase systems, but
Zhou and Gilson” have clarified this beautifully. The accuracy
of the dispersion and hydrogen bond-corrected semi-empirical
methods mentioned above has now made it feasible to compute
the vibrational frequencies for typical host-guest complexes and
this is another reason why electronic structure-based approaches
are starting to yield accurate binding free energies. (They appear
to be a qualitative step forward in accuracy compared to standard
force fields in this regard.) For example, Grimme has computed
Gy rrio(X) with PM6-D3H" and HF-3¢” with good results.

The standard state

Most electronic structure codes compute the RRHO energy
corrections for an ideal gas, where the standard state is a pressure
of 1 bar. As I'll discuss further below the solvation free energies are
computed for a 1 M standard state so the gas phase free energy
must be corrected accordingly

o(1 bar)

Gas RrHO(X) = Gy rrito (X) — RTln(V_l) 3)

where V is the volume of an ideal gas a temperature T and R is the
ideal gas constant. At 298 K this correction increases the free energy
by 1.90 keal mol .

It is tempting to argue that since the volume change in
solution is negligible one should use the Helmholtz free energy
Az rruo(X) instead of the Gibbs free energy. However, as I
discuss below, the solvation free energy corrects for the change
in volume on going from the gas phase to solution, so the Gibbs
free energy change should be used throughout.

The vibrational enthalpy for NDDO based semiempirical
methods

NDDO based semiempirical methods such as PM6 are para-
meterized against experimental standard enthalpies of formation
(AH F.gas)‘ However, in the case of intermolecular interactions such
as hydrogen binding the parameterization was done by fitting
AAHE ,; to AEg, values computed using electronic structure theory

(Stewart 2007).% The same is true for dispersion and hydrogen bond
corrected PM6 methods. Thus, if a PM6 based method is used to
compute the interaction energy the RRHO enthalpy corrections
should still be included, ie.

GZq (X) = AHI:gas (X) + G;asA,RRHO (X) + AG(s)olv (X) (4)

Molecular symmetry

Many host molecules and some guest molecules are symmetric
and this affects the rigid-rotor rotational entropy (Sgr) through

This journal is © the Owner Societies 2015
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the symmetry number (o), which is a function of the molecular
point group.

8n? (2mek T\ >
SRR = Rln(7( h2 ) \/111213 (5)

Here / and k are Planck’s and Boltzmann’s constant, respec-
tively and I, is the moment of inertia for principal axis x.
In practice it can be very difficult to build large molecules with
the correct point group and most studies use C; symmetry.
In this case the effect of symmetry must be added manually to
the free energy

o o(C

eas, RRHO (X) = Ggils‘,lR)RHO(X) + RT In(ox) (6)
As an example, CB7 has D5, symmetry and a corresponding ¢ value
of 14, in which case the correction contributes 1.56 kcal mol* to
the free energy at 298 K.

Anharmonicity and low frequency modes

Host-guest complexes can exhibit very low frequency vibrations
on the order of 50 cm™" or less, which tend to dominate the
vibrational entropy contribution.* Many researchers have ques-
tioned whether the harmonic approximation is valid for such
low frequency modes and this is an open research question.
The main problem is that it is very difficult to compute the
vibrational entropy exactly. Most methods for computing
anharmonic effects are developed to obtain the 1 or 2 lowest
energy states, but for very low frequency modes 10-20 states are
likely significantly populated at room temperature and there-
fore contribute to the entropy.

In the absence of theoretical benchmarks, comparison to
experiment can prove constructive. Kjeergaard and co-workers®'®
have recently measured standard binding free energies for small
gas phase compounds and compared them to CCSD(T)/aug-cc-
pV(T+d) calculations. For example, in the case of acetronitrile-
HCI the measured binding free energy at 295 K is between 1.2
and 1.9 keal mol ™", while the predicted value is 1.9 kcal mol™*
using the harmonic approximation.'’® Since the errors in AE
and the rigid-rotor approximation presumably are quite low,
this suggest an error in the vibrational free energy of at most
0.7 kecal mol ™', despite the fact that the lowest vibrational
frequency is only about 30 cm™"'. Furthermore, the error can
be reduced by 0.4 kcal mol " by scaling the harmonic frequencies by
anharmonic scaling factors suggested by Shields and co-workers. ">
Similar results were found for dimethylsulfide-HCL® So there are
some indications that the harmonic approximation yields free
energy corrections that are reasonable and possibly can be improved
upon by relatively minor corrections.

On the other hand in a recent study Piccini and Sauer
show that anharmonic effects need to be included to obtain
agreement with the experimental binding free energy of methane to
H-CHA zeolite. Specifically, they compute the vibrational binding
free energy by computing the 1-dimensional potential energy sur-
face for each low frequency mode and compute the vibrational
energy levels and corresponding partition function numerically (as
opposed to using the anharmonic fundamental frequency together

This journal is © the Owner Societies 2015
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with the harmonic oscillator partition function). This decreases the
binding free energy by 2.5 kcal mol " compared to the standard
harmonic oscillator treatment.

Grimme* has taken a different approach by arguing that low-
frequency modes resemble free rotations and using the corre-
sponding entropy term for low frequency modes. This changes
the RRHO free energy correction by 0.5-4 kcal mol ™", depending
on the system.

Low frequencies are especially susceptible to numerical
error and it is not unusual to see 1 or 2 imaginary frequencies
of low magnitude in a vibrational analysis of a host-guest
complex. Since imaginary frequencies are excluded from the
vibrational free energy this effectively removes 1 or 2 low
frequency contributions to the vibrational free energy. For
example, a 30 cm ™' frequency contributes about 1.7 kcal mol
to the free energy at 298 K.

Imaginary frequencies resulting from a flat PES and numerical
errors can often be removed by making the convergence criteria
for the geometry optimization and electronic energy minimization
more stringent and making the grid size finer in the case of DFT
calculations. If the Hessian is computed using finite difference it
is important to use central-differencing. If all else fails, it is
probably better to pretend that the imaginary frequency is real
and add the corresponding vibrational free energy contribution.
However, this needs to be systematically tested.

Conformations

One of the main problems in computing accurate binding free
energies is to identify the structures of the host, guest and
(especially) the host-guest complex with the lowest free energy.
Because both the RRHO and solvation energy contributions
contribute greatly to the binding free energy change, simply
finding the structure with the lowest electronic energy and
computing the free energy only for that conformation is unlikely
to result in the global free energy minimum.

For a molecule (X) with Non¢ conformations the standard
free energy is

Nconl\*l
Goy(X) = Goy(Xeer) — RTIn [ 14 Y e AGuX/RT | ()
é;lref

where
AGL (Xi) = Gq (Xi) — G (Xrer) (8)

and where X, is some arbitrarily chosen reference geometry -
for example the global minimum. With that choice for X,
conformations with free energies higher than 1.36 kcal mol™*
contribute less than 0.1 to the sum at 298 K. So a significant
number of very low free energy structures are needed to make
even a 0.5 kcal mol™" contribution to the free energy. Con-
formations related by symmetry should not be included here
as their effects are accounted for in the rotational entropy
(see above). Note that if the binding measurements are done
for racemic mixtures then all stereoisomers must be included
in the sum.

Phys. Chem. Chem. Phys., 2015, 17, 12441-12451 | 12443
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Molecular charge and pH

Virtually all binding measurements in aqueous solution are
performed in a buffer with a constant pH and many ligands
and/or receptors contain one or more ionizable groups. The
charge (g) of an ionizable (acid/base) group in aqueous solution
depends on its pK, and the pH:

1
=T ok O ©)

where 0 is 1 for an acid and 0 for a base. This is an average
charge for all the molecules in solution and will not be an
integer. This section describes how to handle charges that
different significantly from an integer value and/or change as
a result of binding. The pK, can be computed using electronic
structure theory or empirically using software such as Marvin."*
However, if the pK, value is perturbed by the binding the
situation may be complicated further. Here I illustrate this point
for a simple example where the ligand has a basic group that is
neutral when deprotonated and the receptor is non-ionizable.

R(aq) + L(H')(aq) = RL(H")(aq) (R2)

The apparent equilibrium constant is then (throughout this
paper I assume ideal solutions where the activity is equal to the
concentration)

,  [RL]+[RLHT]
K= R0 + (o) 1o
and the corresponding binding free energy is
o . 1 + 10PH-PKZ
AG = AGL(+) — RTIn (W)
(11)

1 + 10PKi—pH
:AGZq(O)fRTln( + 10 )

1 + 10PKi—pH

where AG;,(+) and AGg (0) is the binding free energy com-
puted using the charged (protonated) and neutral form of the
ligand and pk¢ and pK? are the pK, values the ligand bound to
the receptor and the free ligand, respectively.

For example, Koner et al.">'® have shown that binding of
benzimidazole and derivatives to CB7 can increase the pK, of
the ligand by as much as 4 pH units (from pK®, = 4.6 to pK? = 8.6)
which results in a 3.3 kcal mol " pH-dependent correction to
the binding free energy at pH 7. Put another way, using pK. to
determine the protonation state of the bound ligand would
result in an 3.3 kcal mol " error in the binding free energy.

For many ligands of interest the pK’ can be estimated fairly
accurately in a matter of second using programs such as
Marvin. The effect of binding on pkf can often be estimated
by chemical intuition since hydrogen bonds to charged acid
and basic groups tend to, respectively, lower or raise the pK,
even further. For example, if an amine with pk’ = 9 binds to the
receptor via hydrogen bonding, then pKj is likely higher than 9
and AG,, ~ AG;, (+) is a good approximation. However, if pKj,
is close to 7 then pKj should be computed. Also, it is possible
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for charged ligands to change to their neutral state if they bind
to hydrophobic or similarly charged receptors.

If pkf is known with some degree of confidence (e.g. from
experiment or Marvin) then pKj§ can be estimated by

o
AGAPK ,aq

c __ f
PRy = PR = R T (10)

(12)
where AG} ¢, is the free energy change for this reaction"”

RLH"(aq) + L(aq) = RL(aq) + LH'(aq) (R3)

However, if one suspects that empirical pK, predictors such as
Marvin give inaccurate results for pk?, then this value can be
computed using quantum chemistry. Ho and Coote'® have
written a very useful summary of different approaches to such
predictions. The accuracy for phenol and carboxyl pK, values
are as low at 1 pH units (unfortunately they did not give a value
for amines). However, if the pK, value is close to the pH of
interest a 1 pH unit-error can lead to prediction of the wrong
protonation and result in errors in the binding free energy on
the order of 1-3 keal mol .

If there are several (Njo,,) ionizable groups then eqn (11)
generalizes to

Nionz 1 + 1051' (pH*ng.l)

AGy, = AGy(—/+) — RTn (13)

i=1 si PH*pKf.,)

1+ 10 (
where AGgq(—/+) is the binding free energy when all acids and
bases are deprotonated and protonated, respectively, the sum
runs over all ionizable groups and s; is 1 and —1 if i is a base or
acid, respectively.

However, this assumes that the ionizable groups titrate
independently of one another, i.e. that the pK, value of one
group is independent of the protonation states of all other
ionizable groups. If that is not the case then it is difficult to give
a general expression for the pH-dependent free energy correc-
tion in terms of pK, values (though it can be derived for a
specific case). Next I present an alternative approach, but note
that in practice because one can obtain more accurate relative
pK, values (using eqn (12)) or similar'® than absolute pK, values
it may be worth the extra effort to derive the pH-dependent free
energy correction in terms of pK, values.

Legendre transformed free energies

Instead a general expression can be written in terms of
Legendre transformed free energies as suggested by Alberty'®>°
and modified here to electronic structure calculations:**

2Nionz ,
G (X)=—RTIn ( 3 e Gaxn/ RT> (14)
i=1

where X denotes an average over several protonation states of X,

2Nien« s the number of possible protonation states given Njop,
sites and

—n;(H")(AGS

solv

(H") — RT In(10)pH)
(15)

G (Xi) = G (X1)

This journal is © the Owner Societies 2015
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Table 1 Common continuum solvation models used with electronic structure theory, the level of theory used for parameterization and the solvation
energy of the proton used as a reference for the experimental solvation energies of ions used in the parameterization. Adapted from Ho?”

Method

Level of theory used for parameterization

Solvation energy of proton used as reference for ions

IEFPCM-MST*
DPCM-UAHF”
PCM-UAKS?
IEFPCM-SMD*

HF/6-31+G(d)
HF/6-31(+)G(d)°
PBE1PBE/6-31G(d)
MO05-2X98/MIDI!6D
MO05-2X/6-31G*
MO05-2X/6-31+G**
MO05-2X/cc-pVTZ
B3LYP/6-31G*

HF/6-31G*
COSMO-RS? BP/TZVP
Sms”" Independent of level of theory

—264.0 keal mol™*
—261.4 keal mol ™!
Unknown

—265.9 keal mol ™

Not specifically parameterized for ions
—265.9 kcal mol™*

“ Ref. 28 IEF and CPCM give virtuallgl identical results for water. ” Ref. 29 UAHF spheres have been used with CPCM with good results. ¢ Diffuse

functions are used only for anions.

This parameterization has not been published and the information is taken from the Gaussian09 manual.

The method has been benchmarked for CPCM by Takano and Houk.>® ¢ Ref. 31./ The parameterization was performed by minimizing the error for
all six methods simultaneously and any of the six methods can be used with the same parameter set. ¢ Ref. 32. " Ref. 33.

where n,(H") is the number of ionizable protons in protonation
state i, and AG, (H') is the solvation free energy of the
proton. So in the case of ligand L considered above, n,(H") is
0 and 1 for L and LH', respectively.
AGS,,(HT) is usually taken from the literature where estimates
vary between —264 and —266 kcal mol *,**> which can add to the
uncertainty in the predicted binding free energy change. There are
at least two ways of reducing the error. One way is to maximize
error cancelation by computing AGS,,(H™) (using explicit solvent
molecules as discussed below) using the same level of theory
method use to compute AGy .. The other way is to choose the
value of AGY (H') used as reference for the experimental
solvation free energies of ions that are used to parameterize
the continuum solvation model you use (Table 1). The first way is
best if explicit solvent molecules are used to compute the
solvation free energies of ions in the binding study and other-
wise the second method is best.

Using Legendre transformed free energies, eqn (1) can be
rewritten as

AGyuy = Gg(RL) = G (R) — Gg(L)  (16)

Since the electronic energy contribution to the standard free
energy can be very large in magnitude this form is more easily
evaluated

2Nimu-] ,
Gg(X) = Gg(Xeer) = RTIn| 1+ e AGGXI/RT) | (17)
f’;lref
where
AG (Xi) = G (X)) — Gy (Xeer) (18)

and where X, is some arbitrarily chosen reference protonation
state, for example that for which n{H') = 0. The sum can be
combined with that over different conformations [eqn (7)] as
discussed below.

This journal is © the Owner Societies 2015

Other ions and ionic strength

If the ligand and/or hosts contain ionizable groups then the
binding measurements were likely performed in a buffer, with a
certain ionic strength, to regulate pH. It is possible to include
this effect in continuum solvation models such as the PCM
method.”> However, given the relatively low (10-100 mM)
concentrations usually used in the experiments this will only
have a noticeable (>0.5 kcal mol™') effect on the energetics
involving multiply charged ions. As discussed below, the error
in the computed solvation energy for such ions is already large
and it is not clear whether it is worth including non-specific
ionic strength effects in the computations. At high ion con-
centrations, it is possible that these ions bind at certain sites in
the ligand, receptor, or ligand-receptor complex with sufficient
probability that they must be included in the thermodynamics.
If so the exact same equations and considerations outlined
above for H' also apply to, e.g. CI~ and pCl~ (computed from
the specified buffer concentration) is used instead of pH.

Solvation thermodynamics
Background

Most continuum models (CMs) of solvation compute the solvation
free energy as the difference between the free energy in solution

(G°‘CM (X)) and the gas phase electronic energy (Eyy(X))

soln,E

AG;

solv

X) = G (X) = Egs(X)

soln,E

(19)

0,CM
Gsoln.E

static interaction of the molecule and the continuum as well as
the van der Waals interactions with the solvent and free energy
required to create the molecular cavity in the solvent (cavitation).
The electrostatic interaction with the solvent alters the molecular
wavefunction and is computed self-consistently. Usually the gas

(X) typically contains energy terms describing the electro-

phase structure of X is used for the computation of G2 1.(X),

soln, E

though for COSMO-RS the structure is optimized in solution.

Phys. Chem. Chem. Phys., 2015, 17, 12441-12451 | 12445
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There is typically no explicit RRHO contribution for G>$™.(X) so

soln,E

the computational cost is comparable to that for Egag(X).
Some software packages automatically compute AG:(’)IC%(X)
and E,,4(X) in one run, while other packages only compute

Go,CM

o 1(X). Also, some programs just compute the electrostatic

0,CM

component of G "

(X) by default. However, the van der Waals

and, especially, the cavitation component can make sizable
contributions to the binding free energy and must be included
for accurate results. It is worth noting that any hydrophobic

contribution to binding will derive primarily from the change in

0,CM

cavitation energy.**Go; Y

(X) contains parameters (e.g. atomic

radii) that are adjusted to reproduce experimentally measured
solvation free energies

AGZP(X) = G2P(X) — G22P(X)

solv soln gas

(20)
The standard state for both G(;i*(X) and Gg2*(X) is generally
chosen to be 1 M.>>?° The latter is the reason a 1 M reference
state also must be used when computing Gy, rrio (X)-

Notice that the volume on going from the gas phase to
solution is included in the solvation free energy

AGL(X) = AATP(X) 4 p° (AVsov — Vas)

solv solv

(21)

where AV, is the volume change in solution due to addition
of the solute X to the neat solvent. For an ideal gas (p°Vgas = RT)
it follows that

AAG;

solv

= AAA4;

solv

+ p°AAVygy — RT (22)

and

AGy,

baq = Ay

g + 0" AV (23)

because the —RT term is cancelled by a corresponding term in
the translational enthalpy contribution to AGg, rrpo- AVsoln =
AAVy,y, is the change in the volume of the solution on upon
binding.

Atomic radii

The solvation energy is computed using a set of atomic radii
that define the solute-solvent boundary surface. These radii are
usually obtained by fitting to experimentally measured solvation
energies. Accurate solvation energies should not be expected
from methods that use iso-electron density surfaces or van der
Waals radii without additional empirical fitting. When using
fitted radii one should use the same level of theory for the solute
as was used in the parameterization (Table 1).

Ions

For neutral molecules solvation free energies can be measured
with an accuracy of roughly 0.2 kcal mol " and reproduced
theoretically to within roughly 0.5-1.0 kcal mol*, depending
on the method. However, the solvation energies of ions cannot
be directly measured and must be indirectly inferred relative to
a standard (usually the solvation energy of the proton). The
experimentally obtained solvation energies are typically accurate
to within 3 kcal mol ' and can be reproduced computationally
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with roughly the same accuracy.” The solvation energy of ions
are therefore an especially likely source of error in binding free
energies - especially if the ionic regions of the molecules become
significantly desolvated due to binding.

Gas phase vs. solution optimization

The fitting of the radii described above is usually done using
gas phase optimized structures only, i.e. any change in struc-
ture and corresponding rotational and vibrational effects are
“included” in the radii via the parameterization. However, for
ionic species gas phase optimization can lead to significantly
distorted structures or even proton transfer and in these cases
solution phase optimizations and, hence, vibrational frequency
calculations, tend to be used. However, numerical noise in the
continuum models can make it necessary to increase (i.e. make
less stringent) the geometry convergence criteria and can lead
to more imaginary frequencies than in the gas phase. One
option is to compute the vibrational contribution to AGg,; rrpo

using gas phase optimized structures as Sure et al. have done.?

When using solution phase geometries the gas phase single
point energies needed to evaluate AGZ,(X) represent added
computational expense one option is to use solution phase free
energies to evaluate the binding free energies

+ AGTM

) _ 0,CM
AGb;aq =AG b,soln,RRHO

b,soln,E

(24)
One problem with this approach is that AGESJ}?I > unlike AEg,,
is not systematically improveable due to the empirical para-
meterization. For a more thorough discussion of this issue see
Ho et al.,** Ribeiro et al.,>> and Ho.?”

Cavities

The atomic radii and corresponding cavity generation algorithms
are parameterized for small molecules. For more complex mole-
cules such as receptors this can lead to continuum solvation of
regions of molecules, e.g. deep in the binding pocket, that are not
accessible to the molecular solvent. Furthermore, any solvent
molecule inside such pocket is likely to be quite “un-bulk-like”
and not well-represented by the bulk solvent or fixed by the
underlying parametrization. However, how big an error this may
introduce to the binding free energy is not really known, but
certain models for the cavitation energy have been shown to give
unrealistically large contributions to the binding free energy.***”

Explicit water molecules

Adding explicit solvent molecules to the receptor and/or ligand
can potentially lead to more accurate results. For example,
including explicit water molecules around ionic sites reduces the
strong dependence of the solvation energy on the corresponding
atomic radii. Also, “un-bulk-like” water molecules now are treated
more naturally and the risk of solvating non-solvent-accessible
regions is reduced somewhat. However, adding explicit solvent
molecules increases the computational cost by increasing the
CPU time needed to compute energies, perform conformational
searches, and compute vibrational frequencies.
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There are several approaches to include the effect of explicit
solvent molecules in the binding free energy. Bryantsev et al.*®
suggest computing the solvation energy by

GZqﬁrl(X) = GZas(X) + AG:OIVJI(X) (2‘5)
where
AG:olv,n()() = AG;us (X(Hzo)n) + AG:olv (X(Hzo)n)
(26)
- AG:olv((Hzo)n))
(note that AGg,, ((X) = AGy,, (X)) and

AG,,

gas

(X(H20)11) = G,

gas

(X(HQO)n) -G,

gas

(X) - Ggas((Hzo)n)
(27)

and

AGV((H,0),) = AG,

solv solv

((H20),) + RT In([H,0]/n) (28)

with “°(liq)” referring to a standard state of 55.34 M (the
concentration of liquid water at 298 K), respectively. The term
RTIn([H,O]/n) is the free energy required to change the stan-
dard state of (H,0), from 1 M to 55.34/n M.

Bryantsev et al. have shown that using this water cluster
approach leads to a smooth convergence of the solvation free
energy with respect to the cluster size n. The optimum choice of
n is the one where an additional water molecule changes the
solvation energy by less than a certain amount defined by the user.
One can thereby compute the optimum number of water molecules
for the receptor (1), ligand () and receptor-ligand complex () and
then compute the change in solvation free energy as

AAG;

b,solv,x

= AG;

solv,/

(RL) - AG:olv,n(L) — AGq

solv,m (R) (29)
and computing AEg,s and AGg, rryo s before. One can show that

this corresponds to the free energy change for this reaction

R(H,0)n(aq) + L(H0),(aq) + (H0)(liq)

= RL(H,0)/(aq) + (H20)4(liq) + (H20)m(liq)  (R4)

In principle, the free energy is zero for

(H,0)(liq) = (H0),(liq) + (H20)m(liq) + sgn(d)H,04(liq)
(R5)

where d = — m — n and sgn(d) returns the sign of d. So the free
energy change for reaction (4) can also be computed as the free
energy change for

R(H0)n(aq) + L(H0),(aq) == RL(H.0)/(aq) + sgn(d)H,0\q|(liq)
(R6)

However, this is only approximately true in practice due to
errors in the computed gas phase and solvation free energies.
Furthermore, reaction (6) does not really lead to any significant
reduction in CPU time because the water cluster free energies
only have to be computed once. However, if reaction (6) is
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used then one must add an additional term correcting for the
indistinguishability of water molecules

Gzas,RRHO (X(Hzo)n) - GzasﬁRRHO (X(Hzo)n) — RT In(n!)
(30)

and similarly for the water clusters. Using reaction (4) leads to a
cancellation of this term and also maximizes error cancellation
in the other energy terms. Similar considerations apply when
using individual water molecules to the balance the reaction
instead of water clusters

R(H;0)nm(aq) + L(H,0),(aq) = RL(H,0),(aq) + d(Hzo)ldl(liq)
(R7)

One of the main reasons reaction (4) maximizes error cancella-
tion is that the number and type of hydrogen bonds involving
water molecules are very similar on each side of the equili-
brium. This can also be achieved when using reaction (6) or (7)
by ensuring that [ = m + n, in which case the error cancellation
may be comparable and will depend on the nature of the
ligand, host, and water arrangement. However, eqn (30) must
still be used when using reaction (6) or (7) in this way.

When using many explicit water molecules the error in the
continuum solvation energies can be reduced by ensuring that the
continuum solvation energy of a single water molecule matches
the experimental value of —6.32 kecal mol " at 298.15 K as close as
possible.

Enthalpy and entropy contributions to
the binding free energy

It is often instructive to decompose the binding free energy into
enthalpy and entropy contributions. The standard enthalpy and
entropy of molecule X in aqueous solution is

Hyo(X) = Egs(X) + Hgy rrio(X) + AHG (X) (31)

and

S;q(X) = S;as,RRHO (X) + A :olv (X) (32)

where the standard state eqn (3) and symmetry correction
[eqn (6)] is applied to the entropy term. Thus, in order to
compute these quantities one must compute the enthalpy
and entropy of solvation, which can be done by the COSMO-
RS** and SMST?° solvation methods. Chamberlin et al.*>* have
noted that most of the temperature dependence of the aqueous
solvation free energy comes from the non-polar term so simply
including the effect of temperature on the dielectric constant is
unlikely to give accurate results. Plata and Singleton®® have
recently shown that ASZ | (X) can make an appreciable con-
tribution to the energy change for reaction energies.

For a molecule (X) with N.ons conformations the standard
enthalpy and entropy is

Neonf
H,(X) =Y
i=1

(33)
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and

e—AGZq(X,)/RT
p(Xl) = Nconf
S e—AGZq(X,-)/RT
i=1

(35)
and AG;,(X;) is computed relative to the conformation with the

lowest free energy.
The Legendre transformed entropy and enthalpy is

: 9G4 (X
SE(X) = - (—Q )>
p.pH
= 85,(X:) — n:(H) (A%, (H) + RIn(10)pH)
(36)
and
H2 (X)) = H (X)) — mi(HY)AHS,, (HT) (37)

When comparing computed enthalpy and entropy changes to
experimental measurements on systems with ionizable groups note
that the observed values will depend on the buffer used if proto-
nation states change upon binding (see e.g. ref. 41). Unless the
experimental study has corrected for this effect by repeating the
measurements in different buffers, this effect can contribute to
the difference between the computed and experimental values.

A concrete example

In this section I apply the key equations discussed above to a specific
example: p-xylylenediamine (L, Fig. 2) binding to CB7 (R) for which a
binding free energy of —9.9 4 0.1 kcal mol " has been measured at
pH 7.4 and 298 K." The conformations and other details such as the
number of water molecules are just selected and constructed for
illustration purposes only using the Avogadro program® and the
MMEFF force field and should not be considered accurate.

CB7 has one conformation with D, symmetry and no
ionizable groups. It is assumed that the solvation energy can
be computed accurately without explicit water molecules. Thus,
the free energy is aqueous solution is

G5y (R) = G o(R) = G2 (R) + AG?

aq,0 gas so]v(R) + RTln(14) (38)

where G5 ((R) is computed in C, symmetry and 14 is the
symmetry number (o) corresponding to the D}, point group.

Ligand L has two basic groups and is assumed to have two
conformations a and b for each protonation state. The pK,
values for the basic groups are 9.2 and 9.8 according to Marvin,
so both groups are likely 100% protonated at pH 7. However,
for illustration purposes I will include all three protonation
states in the computation of the free energy. Furthermore, I will
assume that each charged amine group is microsolvated by
three explicit water molecules.
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Fig. 2 Representative conformations of ligand L (p-xylylenediamine),
receptor R (CB7), and a receptor-ligand complex RL used to illustrate
the use of the equations presented in this paper. (a) La, (b) Lb, (c) LH*b,
(d) LH,%*b, (e) R, and (f) RLH,%*a. The coordinates for the structures are
available here: http://dx.doi.org/10.6084/m9.figshare.1290639.

The free energy of conformer a of the doubly protonated
state (LH,>") is thus

Go

o6 (LH,*"a) =G

gas

(LH»*" (H,0)4a) +AG:,

solv

(LH,*" (H,0),a)

—G°

gas

((H2O)6) - AGSO]V ((H2O)6)

— RTIn([H,0]/6)— RT1n(2) (39)

where the gas phase energy is computed in C; symmetry and 2 is
the symmetry number of the C, point group. The lowest energy
structure of (H,0)s suggested by Bransyev et al. can be used for
compute G, , ((H20);), or the effect of additional conformations

can be included using eqn (7). Finally, the Legendre transformed
free energy [eqn (15)] at pH 7 is computed by
Gy 6(LH"a) = G3 o (LHy*a) — 2(AG

aq,6 solv

(H") — RT In(10)pH)

(40)
The corresponding free energy of conformer b, G5 ((LH,>*b),
which has C,, symmetry and for which ¢ is also 2, is computed in
the same way. Notice that each conformation in principle can
have different numbers of water associated with them. Similarly,
the free energies of the singly protonated and neutral ligand (with
C, and C, symmetry) is computed by

G°

aq13(LH+a) = G,

gas

(LH*(H,0);a) + AG?

solv

(LH*(H,0);q)

- G°

gas

((HZO)R) - AG:OIV((H20)3)
(41)
— RTIn([H,0]/3)

— (8G%,,(H") = RT In(10)pH)
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and

G2, o(LHa) = G

aq,0 gas(La) + AG;

o (La) + RT In(2) (42)

(here for conformer a and similarly for conformer b). Finally, the
free energy of L averaged over conformations and protonation
states is

’

Ga?.l,x(l:) = Ggq,O(La)
. RTln(l + oA (LO)/RT + o ~AG,gso(LH  a)/RT
) ) (43)
T e—AGﬂ;J(LH*b)/RT n e—AGag_G(LHZHa)/RT
" e—AG;:.G(LHZHh)/RT)
where
AG30(Lb) = Gig o(Lb) — Gy o(La) (44)

and similarly for the remaining terms in the sum. Notice that for
each conformation there are three protonation states rather than
(2%) because the two singly protonated structures are equivalent.

For the host-guest complex I have assumed that each
conformation can bind CB7 in only one way and that two explicit
water molecules per protonated group is lost upon binding, so that

G2 (RL) = G°

aq,x aq,O(RLa)

_ RTln(l + e AGaq0(RLD)/RT + e*AG;;l(RLH*u)/RT

—AG'

!’
~AG,o  (RLHFD)/RT | ~AGo

Te (RLH,2*a)/RT

(45)

’
n e—AGﬂZb(RLHf‘b)/RT)

Note that the effect of the 28 equivalent binding modes to other
oxygen atoms for e.g. LH,*'a (Fig. 2f) is accounted for by the
symmetry factors. Finally, the binding free energy is computed
using eqn (16).

Protein—ligand binding

In order for the electronic structure approach to be used in
drug design corresponding calculation have to be carried out
on proteins, which are significantly larger than the hosts that
have been used to benchmark the approach so far. QM/MM is
of course the obvious choice for computing the geometries and
gas phase energies, although linear scaling all QM methods
such as the FMO" method is also possible. Furthermore,
continuum methods such as PCM have been adapted for large
systems and interfaced to both QM/MM** and the FMO method.*®
Of course as the system size increases conformational sampling
will become a bigger practical issue.

The main issue is the computation of vibrational frequencies
for the protein and protein-ligand complex. The fast semi-
empirical methods currently used for computing the vibrational
frequencies (dispersion and hydrogen bond-corrected PM6 and
DFTB as well as HF-3c) must be interfaced with QM/MM codes
and/or be implemented in a linear scaling approach that allow for
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frequency calculations. Dispersion-corrected PM6 and DFTB are
already implemented in AMBER, a FMO implementation of DFTB
has recently been added to GAMESS*® and a similar HF-3¢/FMO
implementation is forthcoming from my lab.

Most QM/MM studies of enzyme catalysis constrain the
geometry of a significant portion of the system to avoid spurious
structural fluctuation far away from the active site contributing to
the barrier. This may well be necessary for binding free energy
calculations as well, in which case the effect of the constraints on
the vibrational frequencies must be accounted for.*” Alternatively,
only the Hessian of the un-constrained region can be computed.*®

So while there is some code-adjustment to be done it may
well be that the promising developments in electronic structure-
based prediction of aqueous binding free energies may also be
brought to bear on drug design within the next few years.

Summary and outlook

Recent predictions of absolute binding free energies of host-
guest complexes in aqueous solution using electronic structure
theory have been encouraging for some systems. It is interesting
to consider the underlying innovations that have lead to the
recent increase in accuracy in predicted binding free energies.
Advances in computer hardware and coupled cluster algorithms
made it possible to construct benchmark sets of accurate
electronic binding energies for a diverse set of molecules. These
benchmarks sets were then used to develop the dispersion
corrections needed for accurate DFT-based electronic binding
energies and the short-range (hydrogen bond) corrections to the
semi-empirical methods needed to compute accurate vibrational
frequencies for the RRHO free energy corrections. In fact methods
like HF-3¢,*® while containing empirical corrections, was developed
without reference to any experimental data. Another interesting
observation is that the dispersion and RRHO free energy contribu-
tions to the binding free energy have roughly the same magnitude,
but opposite signs. So including just one of the corrections is likely
to significantly increase the error relative to experiment and lead to
the wrong conclusions regarding their importance.

While there have been reasonably accurate predictions for
some host-guest systems, other systems remain problematic.
In this paper I summarize some of the many factors that could
easily contribute 1-3 kcal mol " at 298 K: three-body dispersion
effects, molecular symmetry, anharmonicity, spurious imaginary
frequencies, insufficient conformational sampling, wrong or
changing ionization states, errors in the solvation free energy of
ions, and explicit solvent (and ion) effects that are not well-
represented by continuum models.

While I focus on binding free energies in aqueous solution it
is worth noting that the approach also applies to any free energy
difference in solution, such as conformational and reaction free
energy differences or activation free energies. Furthermore, the
equations apply to solvents other than water as long as the
concentration of liquid water, the solvation free energy of
the proton changed, and the parameterization of the continuum
solvation model is changed to match the solvent of interest.
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Furthermore, while the recent successes with electronic structure-
based approaches have been for host-guest complexes they can be
extended to protein-ligand complexes with a few methodological
improvements (mainly related to the computation of vibrational
frequencies). Thus, it may well be that the promising developments
in electronic structure-based prediction of aqueous binding free
energies may also be brought to bear on drug design within the
next few years.
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