A near field optical image of a gold surface: a luminescence study†
Abstract
This paper addresses recent experimental findings about luminescence of a gold tip in near-field interaction with a gold surface. Our electrochemically etched gold tips show a typical, intrinsic luminescence that we exploit to track the plasmon resonance modeled by a Lorentzian oscillator. Our experimental device is based on a spectrometer optically coupled to an atomic force microscope used in tuning fork mode. Our measurements provide evidence of a strong optical coupling between the tip and the surface. We demonstrate that this coupling strongly affects the luminescence (intensity, wavelength and FHWM) as a function of the tip position in 2D maps. The fluctuation of these parameters is directly related to the plasmonic properties of the gold surface and is used to qualify the optical near field enhancement (which subsequently plays the predominant role in surface enhanced spectroscopies) with a very high spatial resolution (typically around 20 nm). We compare these findings to the independently recorded near-field scattered elastic Rayleigh signal.
- This article is part of the themed collection: Surface-enhanced spectroscopies