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Quantifying non-Markovianity for a
chromophore–qubit pair in a super-Ohmic bath

Jing Liu,ab Kewei Sun,ac Xiaoguang Wangbd and Yang Zhao*a

An approach based on a non-Markovian time-convolutionless polaron master equation is used to probe

the quantum dynamics of a chromophore–qubit in a super-Ohmic bath. Utilizing a measure of non-

Markovianity based on dynamical fixed points, we study the effects of the environmental temperature

and the coupling strength on the non-Markovian behavior of the chromophore in a super-Ohmic bath.

It is found that an increase in the temperature results in a reduction in the backflow information from

the environment to the chromophore, and therefore, a suppression of non-Markovianity. In the weak

coupling regime, increasing the coupling strength will enhance the non-Markovianity, while the effect is

reversed in the strong coupling regime.

I. Introduction

Recent advances in spectroscopic techniques have allowed
increasing deployment of nonlinear optical measurements to
probe the dynamic properties of various condensed-matter and
biological systems.1–16 An interesting example from two-dimensional
electronic spectroscopy studies is the conjecture that long-lasting
quantum coherence may exist in photosynthetic light harvesting
systems.1–7 Nonlinear single molecule spectroscopic techniques,
such as hole-burning and three-pulse photon echo spectroscopy,12

capable of generating truly homogeneous lineshapes by eliminating
inhomogeneous broadening, have been used to probe chromo-
phores embedded in organic glasses, revealing a wide range of
spectral behaviors, where the coupling of chromophores to the
surrounding medium (solvent, glass, host crystal, protein, etc.)
may give rise to non-Markovian dynamics.

For low-temperature glasses and amorphous solids charac-
terized by structural disorder, often only the two lowest energy
levels of the double minimum potential need to be considered.
Therefore, they can be modeled as a collection of two-level
systems, and indeed such a model has been successfully
employed to study their anomalous specific heat and thermal
conductivity.17,18 With the local environment modeled as a
collection of flipping qubits which modulate the chromophore
transition frequency,19 Suárez and Silbey20 proposed a microscopic
Hamiltonian to study the dynamics of a single chromophore in

glasses, and demonstrated its correlation with the stochastic
sudden jump model.21 Their dressed microscopic Hamiltonian
is taken as our starting point to investigate the dynamics of a
central chromophore embedded in a bath of qubits commonly
found in low-temperature glasses.

In the aforementioned chromophore–qubit pair, the energy
scales for the vibronic relaxation and spin-phonon coupling are
comparable placing the system-bath interaction outside the
usual weak coupling regime which is inaccessible to the tradi-
tional second-order perturbation methods.22–24 Therefore, non-
perturbative approaches,25–31 including the numerically exact
iterative path integral methods,29 sophisticated stochastic
treatments of the system–bath models,30 and hierarchical
equation of motion approach,31 have subsequently been proposed
to treat such systems of intermediate coupling. However, these
computationally intensive methods are inadequate for dealing with
large systems or multiple-excitations. Recently, the non-Markovian
time-convolutionless polaron master equation has been employed
to describe the excitation dynamics in multichromophoric
systems.24,32–36 The advantage of this master equation is
that it is capable of depicting the dynamics in intermediate
coupling regimes, handling initial non-equilibrium bath states,
as well as spatially correlated environments. This method has
been successfully applied to study the dynamics of two coupled
pseudo-spins in contact with a dissipative bath and in addition,
it was used to investigate the energy transfer of an extended
spin-boson model by including an additional spin bath.36

Open quantum systems may exhibit interesting non-Markovian
features that have been drawing sustained attention,37–40 and
may be responsible for novel phenomena in chemical systems,
such as dynamic control in polymers41 and transport enhancing
in biosystems.42 More importantly, different degrees of non-
Markovian behavior may bring about different physical phenomena.
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Thus, quantifying non-Markovian behavior will help gain a
better understanding in the underlying systems. In addition,
coherent control nowadays has been demonstrated over a large
number of quantum systems of different complexity. A precise
definition and quantification of the non-Markovianity brings
this quantity into the context of coherent control, allowing
researchers to consider it as a target variable. On-purpose
manipulation of the non-Markovianity opens up fascinating
perspectives on the optimization of energy and charge trans-
port in open quantum systems by engineering their coupling to
heat baths. Among various definitions of non-Markovianity that
emerged,43–48 one of the earliest, widely-used definitions was
proposed by Breuer, Laine and Piilo (BLP),43 which is based on
the decreasing monotonicity of the trace distance under the
completely positive and trace-preserving operations. One intuitive
physical interpretation of this monotonicity is that the information
of distinguishability always flows from the system to reservoir in a
Markovian process. For non-Markovian dynamics, this monotonicity
can be violated and the trace distance may increase during the
dynamics, indicating that the information of distinguishability may
flow back from the reservoir to the system.

In this paper, we propose a new measure of non-
Markovianity based on the aforementioned mechanism for
systems with dynamical fixed points. If N is the number of
initial states one takes for numerical calculation, then this
measure has a OðNÞ numerical advantage compared with the
BLP measure. By solving the time-convolutionless polaron
master equation of the chromophore–qubit pair, we find fixed
points for the chromophore dynamics. Utilizing the non-
Markovianity measure based on the fixed points, we are allowed
to quantify the non-Markovian behavior of the central chromo-
phore. Furthermore, we analyze the effects of the temperature
and the coupling between the chromophore and the qubit on
the non-Markovianity, and it is found that the temperature can
suppress the backflow of the information in our model. With
respect to the effect of the chromophore–qubit coupling, the
situation is more complicated with differing influences of the
coupling on the non-Markovianity in different regimes. We will
show that in the weak coupling regime, the increase of the
coupling strength can enhance the non-Markovianity, while in the
strong coupling regime, it will suppress the non-Markovianity. In
addition, the non-Markovian behaviors of the chromophore–qubit
pair and the corresponding quasi-particle after the polaron
transformation are also investigated. It is found that the non-
Markovian behavior vanishes after the polaron transformation
due to the much reduced coupling between the dressed particle
and the bath.

The paper is organized as follows. In Section II, we introduce
the model and the time-convolutionless polaron master equa-
tion of the chromophore–qubit pair with additional discussion
on the dynamical fixed points of the chromophore. In Section
III, we revisit the BLP non-Markovianity measure and propose a
new measure based on the dynamical fixed points of the
system. In Section IV, we apply the new measure to our model
and discuss the non-Markovian behavior of the chromophore.
Section V draws the conclusion of this work.

II. Model and dynamics

Chromophore is a term that commonly refers to a certain
moiety of a large organic molecule that gives rise to its optical
absorption and fluorescence properties, such as the pi-conjugated
double bonds between carbon atoms in carotenoids, or the chlorine-
type macrocyclic ring complexed by magnesium in chlorophylls. In
the context of our work, this term refers to an entire molecule when
it is embedded in a host environment, such as a pigment molecule
in crystalline (e.g., pentacene in p-terphenyl crystal) or amorphous
materials (perylene in polyethylene). In either context, a chromo-
phore can be simply modeled as a system with two electronic levels
(the ground and the excited state) whose transition frequency can be
modulated due to its interaction with the host environment.

In this paper, we consider a two-level chromophore coupled
to a phonon bath via a qubit, as shown in Fig. 1. A two-level
system contains a quantum superposition of two independent
(physically distinguishable) quantum states, which could refer
to the qubit, spin, polarization, molecular transition and so on.
A chromophore can be simply modeled as a system with two
states whose transition frequency can be modulated due to its
interaction with the host environment. In general, there can be more
than two levels in the chromophore. However, non-Markovianity
based on trace distance depicts the oscillating behavior of the trace
distance between two evolved states. It does not directly reflect
the oscillating information of populations in each level. Thus,
the assumption of a two-level chromophore helps reveal the
qualitative behavior of non-Markovianity. The Hamiltonian can
be written as13,20,49

H ¼ o0

2
sz0 þ

e
2
sz1 �

D
2
sx1 þ

a

2
sz0sz1

þ
X
k

okb
y
kbk þ

X
k

gk b
y
k þ bk

� �
sz1:

(1)

Here si0 := si # and si1 := # si for i = x, y, z and si is a Pauli
matrix. The subscript 0 (1) represents the subspaces of the
chromophore (qubit). We have set �h = 1 in this Hamiltonian.
o0 and e are the transition frequencies. D is the tunneling matrix
element. The coupling strength between the chromophore and
qubit is represented by the coefficient a, which is related to the

Fig. 1 Schematics of the model. The chromophore interacts with the
reservoir indirectly via a probe qubit.
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distance between the chromophore and qubit, as well as the spin

orientation of the qubit.
P
k

okb
y
kbk is the Hamiltonian of the

phonon bath, with b
y
k, bk the creation and annihilation operators,

respectively. gk represents the coupling between the qubit and the
reservoir. The Hamiltonian (1) can be also obtained through a
unitary transformation from a Hamiltonian in which the chromo-
phore and the qubit are not directly coupled, but both interact
with a common reservoir.13,20

To facilitate the dynamics calculation, we first perform a
polaron transformation on the Hamiltonian (1). The generator
of this transformation reads

U = 1
2Bsz1, (2)

where B ¼
P
k

gk=okð Þ b
y
k � bk

� �
. It is easy to verify the equality

that exp(U) = cosh(B/2) + sz1 sinh(B/2). After the polaron trans-
formation, the new Hamiltonian can be written as

H̃ = eUHe�U = H̃0 + H̃I + H̃b (3)

Here the effective quasi-particle Hamiltonian H̃0 has the form

~H0 ¼
o0

2
sz0 þ

e
2
sz1 �

D
2
sx1Yþ

a

2
sz0sz1 �

X
k

gk
2

4ok
: (4)

The bath Hamiltonian is unchanged as Hb ¼
P
k

okb
y
kbk and the

effective interaction Hamiltonian H̃I can be expressed by

~HI ¼ �
D
2
sx1ðcoshB�YÞ þ isy1 sinhB
� �

; (5)

where Y = hcosh Bi = hexp Bi, and h�i denotes the thermal
average. It is found that

Y ¼ exp �1
2

X
k

gk

ok

� �2

coth
1

2
bok

� �" #
: (6)

Given a bath spectral density JðoÞ ¼
P
k

gk
2d o� okð Þ, Y can be

rewritten as

Y ¼ exp �1
2

ð
do

JðoÞ
o2

coth
1

2
bo

� �� 	
: (7)

Throughout this paper, we consider the total initial state in the
original basis as

rtot(0) = rc # |0ih0|q # rb, (8)

where rc is the reduced density matrix of the chromophore,
|0ih0|q denotes the spin ‘‘up’’ state of the qubit, and rb =
exp(�bHb)/Z is the thermalized phonon state in the original
representation before polaron transformation. Here Z =
Tr[exp(�bHb)] is the partition function and b = 1/(kBT), with T
the temperature and kB the Boltzmann constant. In the paper
we set kB = 1.

In the interaction picture, the time dependent interaction
Hamiltonian can be expressed by H̃I(t) = ei(H̃0+Hb)tH̃Ie

�i(H̃0+Hb)t.
After some algebra, we have

~HIðtÞ ¼ �
D
2
sþ1ðtÞDðtÞ þ s�1ðtÞDyðtÞ
� �

; (9)

in which the time dependent operator s�1(t) reads s�1(t) =
eiH̃0ts�1e�iH̃0t with s�1 = (sx1 � isy1)/2 being the effective raising
(lowering) operator of the qubit. The reservoir correlated
operator D(t) has the form D(t) = eB(t) � Y, where

BðtÞ ¼
P
k

b
y
ke

iokt � bke
�iokt

� �
gk=ok.

The time evolution of the quasi-particle described by the
effective Hamiltonian (4) can be solved using the time-
convolutionless polaron master equation.24,36,43 In the polaron
representation, assuming that ~rcq is the reduced density matrix
of the quasi-particle, the quantum master equation can be
expressed by24,32,33,36

@t~rcqðtÞ þ i ~H0; ~rcqðtÞ
h i

¼ �ie�i ~H0tTrb ~HIðtÞ;Q~rtotð0Þ
� �
 �

ei
~H0t

�
ðt
0

dse�i
~H0tTrb ~HIðtÞ; ~HIðsÞ;Q~rtotð0Þ

� �� �
 �
ei

~H0t

�
ðt
0

dsTrb ~HIð0Þ; ~HIðs� tÞ; ~rcqðtÞ � rb
h ih in o

;

(10)

where

Q~rtotð0Þ ¼ ~rtotð0Þ � Trb ~rtotð0Þ½ � � rb; (11)

with ~rtot(0) = eUrtot(0)e�U being the density matrix of the total
ensemble in the polaron representation. The general definition
of the operator Q is given by50

Qr: ¼ r� TrbðrÞ � rb: (12)

Taking into account the initial state (8), one has

Q~rtotð0Þ ¼ rc � j0ih0jq � eB=2rbe
�B=2 � rb

� �
: (13)

In this model, with respect to the chromophore dynamics, it is
found that rc,fix = |0ih0|c is a dynamical fixed point, i.e., it does
not evolve with the passage of time, for which we will give a
short proof here. Taking |0ih0|c as the initial state of the
chromophore, in the Schrödinger picture, we have

rc(t) = Trqb(e�iH̃t|0ih0|c # |0ih0|q # rbeiH̃t), (14)

where the trace is taken over the subspaces of the qubit and the
environment. Based on the expression of H̃ and the fact that |0i
is the eigenstate of sz = |0ih0| � |1ih1|, one finds that

H̃|0ih0|c # |0ih0|q # rbH̃ = |0ih0|c # H̃qb(|0ih0|q # rb)H̃qb,

where H̃qb = H̃0qb + H̃I + Hb, and ~H0qb ¼
o0

2
þ e
2
sz1�

D
2
sx1Yþ

a

2
sz1 �

P
k

gk
2

4ok
. It should be noted that though the nota-

tions in this Hamiltonian seem similar to those in H̃, the operators
in H̃qb are actually confined to the subspace of the qubit and the
environment. Then eqn (14) can be rewritten as rc(t) =
|0ih0|cTrqb(e�iH̃qbt|0ih0|q # rbeiH̃qbt). Based on the cyclic permuta-
tion invariance of the trace, it can be simplified as

rc(t) = |0ih0|c. (15)
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Thus, |0ih0|c is a dynamical fixed point of the chromophore.
More generally, it is known that diagonal fluctuations cause
pure dephasing, while the off-diagonal fluctuations are respon-
sible for population transfer. In our scenario, there are no off-
diagonal fluctuations in the chromophore-related Hamiltonian. As
a result, the decoherence of the chromophore is pure dephasing
and all the diagonalized states are fixed points. Dynamical fixed
points, which are especially useful in the study of the decoherence-
free subspace, will be utilized in this work to construct a new
measure of non-Markovianity.

III. Non-Markovianity

To quantify the non-Markovian behavior, several measures
have been proposed,43–48 among which the BLP measure43

relates the non-Markovian behavior to the backflow informa-
tion from the reservoir to the system. The BLP definition is
based on the trace distance

Dtr(r1,r2) := 1
2Tr|r1 � r2|, (16)

where jOj ¼
ffiffiffiffiffiffiffiffiffiffi
OyO
p

. For a single qubit, it is known that its
density matrix can be expressed in the Bloch representation as

r = 1
2( + r�r), (17)

where r is the Bloch vector, r = (sx,sy,sz)
T with sx,y,z the Pauli

matrix, and is the identity matrix. In this representation, the
trace distance can be reduced to the Euclidean distance
between the Bloch vectors51

Dtr(r1,r2) = 1
2Jr1 � r2J. (18)

Here J�J is the Euclidean distance. r1 and r2 are the corre-
sponding Bloch vectors of r1 and r2, respectively.

The trace distance is monotonous when the system goes
through the quantum channels, which can be described by the
completely positive and trace-preserving maps. Physically, this
monotonicity is explained intuitively by the fact that the
information of distinguishability always flows from the system
to the environment when the system goes through a quantum
channel. Thus, the backflow of the information can be treated
as non-Markovian behavior, or a memory effect in which the
environment absorbs information from the system and returns
some back to it, improving the distinguishability of the system.
The BLP non-Markovianity is defined based on such a mecha-
nism:

N BLP: ¼ max
r1;2ð0Þ

ð
s4 0

dts t; r1;2ð0Þ

 �

; (19)

where

s t; r1;2ð0Þ

 �

: ¼ d

dt
Dtr r1ðtÞ; r2ðtÞð Þ (20)

is the time derivative of the trace distance during the evolution.
The maximum is taken over all pairs of initial states r1(0) and
r2(0). According to the definition, it can be found that
N BLP � 0. For a Markovian process, the non-Markovianity is
zero, i.e., N BLP ¼ 0.

Dynamical fixed points may adopt various forms in physical
systems, including states that are thermalized and ones within
a decoherence-free subspace of a quantum system.52–55 An
alternative definition of non-Markovianity is introduced below
based on the trace distance in the presence of dynamical
fixed points

N fix ¼ max
rð0Þ

ð
sfix4 0

dtsfix t; rð0Þð Þ; (21)

where

sfix t; rð0Þð Þ: ¼ d

dt
Dtr rðtÞ; rfixð Þ: (22)

Here rfix is the matrix for any dynamical fixed point, which
satisfies the equation qtrfix = 0, and the maximum is taken over
all the initial states r(0). It is easy to verify that N fix � 0, and
N fix ¼ 0 for Markovian dynamics. The greater the value of N fix,
the stronger is the non-Markovian behavior. However, the
absolute value of non-Markovianity is in itself not meaningful
as different dynamics or methods will show different ampli-
tudes of oscillations. Eqn (21) can be treated as a special form
of the BLP measure as they both rely on the same mechanism,
i.e., monotonicity of the trace distance under the completely
positive and trace-preserving maps. The value of N fix may be
equal to or less than that of N BLP. However, most of the
physical information is contained in the variation of the non-
Markovianity, not its absolute value. Therefore, despiteN fix not
containing as many pairs of initial states as N BLP, it is still
capable of describing the system behavior.

Moreover, compared with the BLP measure, the N fix mea-
sure has a numerical advantage. In principle, there are an
infinite number of states in the Hilbert space. To carry out
the numerical calculation of eqn (19), one has to sample a finite
number of them. Assuming that this number is N, to take over
all pairs of initial states, this generally requires N(N � 1)/2
times of calculations. Utilizing eqn (21), the calculation num-
ber is only N. Therefore, for some complex dynamics with fixed
points, eqn (21) provides an efficient algorithm with a OðNÞ
numerical advantage.

Since the maximization in N fix is not taken over all pairs of
initial states in the Hilbert space, this measure does not capture
the full information on non-Markovianity. This incompleteness
of information on non-Markovianity is a trade-off of numerical
advantage. However, since the non-Markovianity is a property
of system dynamics, it should be independent of the initial
states, in principle. As a matter of fact, dynamics can be called
non-Markovian if the trace distance of any two states has
increasing behavior during the evolution. Thus, the size of
the set in which the maximization is performed is not a decisive
factor on the issue of non-Markovianity. Admittedly, eqn (21) does
not give a maximizing set as large as that of the BLP measure. We
take a dynamical fixed point as the datum line because it does not
evolve over the considered timescale. We then calculate the trace
distance between this fixed point and all the states in the Hilbert
space, indicating that the dynamical information of all initial states
is involved in this measure. This explains why eqn (21) is capable of
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quantifying the behavior of non-Markovianity. Nevertheless, in
some extreme mathematical cases where the numerical advantage
of eqn (21) is not obvious, the BLP measure would be a better
choice.

As we discussed in Section II, the state rc,fix = |0ih0|c is a
dynamical fixed point of the chromophore. Thus, it is convenient
to use eqn (21) in our model to describe the non-Markovian
behavior of the chromophore.

IV. Discussion

In this section, we will apply the non-Markovianity measure
(21) in the model given in Section II. With this measure, we
further discuss the non-Markovian behavior of the chromo-
phore, as well as the chromophore–qubit pair, in the presence
of the phonon bath. The effects of temperature and the
coupling strength between the chromophore and qubit on the
non-Markovianity will be discussed.

Generally, the expectation value of an observable A of the
chromophore–qubit pair can be written as hAi = Trcqb[Artot(t)],
where rtot(t) is the total density matrix in the original repre-
sentation including the chromophore, the qubit and the pho-
non bath. The subscripts c, q and b represent the subspaces of
the chromophore, the qubit and the bath, respectively. Using
the inverse polaron transformation and inserting P þQ into
the expression, one can obtain the expectation of A as24,36

hAi = hAirel + hAiirrel, (23)

where hAirel is the relevant part, which can be written as

hAirel = Trcq[~rcq(t)Trb(eUAe�Urb)], (24)

and the irrelevant part hAiirrel reads

hAiirrel ¼ Trcqb eUAe�UQ~rtotðtÞ
� �

: (25)

When [A,U] = 0, the irrelevant part can be simplified into
hAiirrel ¼ Trcq ATrb Q~rtotðtÞ½ �f g. From the definition of Q in
eqn (12), it is easy to see that Trb Q~rtotðtÞ½ � ¼ 0. Thus, for those
observables that commute with the generator of the polaron
transformation, their expectations contain only the relevant
part, i.e.,

hAi = Trcq[A~rcq(t)]. (26)

A. The chromophore

With the above preliminary knowledge, we will try to reproduce
the dynamical information of the chromophore in the original
basis. For the chromophore–qubit pair, its density matrix in the
original basis can always be decomposed into the form56,57

rcq = 1
4( + rc�r0 + rq�r1 + m�rm) (27)

where rc and rq are the Bloch vectors of the chromophore and
qubit, respectively, while ri = (sxi,syi,szi)

T for i = 0, 1. and rm =
(sx # sx,sy # sy,sz # sz)

T. Through some straightforward
calculations, one finds that

rc = (hsx0i, hsy0i, hsz0i)T, (28)

where the expectation hsi0i = Trcq(si0rcq) for i = x, y, z. As [si0,U] = 0,
based on eqn (26), the expectation of si0 in the original representa-
tion is the same as that in the polaron representation, namely,

hsi0i = Trcq[si0~rcq(t)]. (29)

In this way, we can reproduce the dynamical information of the
chromophore. Using the expression of the Bloch vector rc, the
trace distance between rc and the fixed point rc,fix can be
written as

Dtr ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sz0h ið Þ2þ sx0h i2 þ sy0

� �
2

q
: (30)

The equivalent expression using the elements of the density
matrix is

Dtr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rc;222ðtÞ þ rc;12ðtÞ

�� ��2q
: (31)

Substituting this equation into eqn (21), the fixed-point non-
Markovianity can be obtained as

N fix ¼ max
rð0Þ

ð
sfix 4 0

sfix dt; (32)

with

sfix ¼
1

Dtr
rc;22ðtÞ@trc;22ðtÞ þ rc;12ðtÞ @tj jrc;12ðtÞ

�� ��
 �
: (33)

Fig. 2 displays the time evolution of the trace distance of the
chromophore. The initial states are chosen as rc1 = (1,0,0)T and
rc,fix = (0,0,1)T. Here rc,fix is the Bloch vector of the dynamical
fixed point of the chromophore: rc,fix = |0ih0|c. The parameters
are set as e = o0, D = 0.8o0, a = 2o0, and T = 0.5o0. A super-
Ohmic spectral density J(o) = koph

�2o3 exp(�o/oc) is taken
with the characteristic phonon frequency oph = o0, the cutoff
frequency oc = 4o0 and the coupling strength k = 0.1o0. The red
solid line in Fig. 2 is the result of the time-convolutionless

Fig. 2 The dynamics of the trace distance of the chromophore. The red
solid and blue dashed lines represent the results from the time-
convolutionless master equation and the Redfield equation, respectively.
The initial states are rc1 = (1,0,0)T and rc,fix = (0,0,1)T. The parameters are set
as e = o0, D = 0.8o0, a = 2o0, and T = 0.5o0.
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master equation. As a comparison, we also display the corre-
sponding dynamics of the trace distance from the Redfield
equation. It is found from Fig. 2 that utilizing the time-
convolutionless master equation, the trace distance has an oscillat-
ing component in its evolution, while it is monotonously decreasing
using the Redfield theory. This monotonicity exists for any initial
state, indicating vanishing non-Markovianity, which is in agreement
with the fact that dynamics governed by the Redfield equation
are Markovian. For the time-convolutionless master equation,
the descending trend of the trace distance is due to the dis-
sipative effect of the environment, indicating an information
flow from the system to the environment. However, this infor-
mation flow is by no means unidirectional. The oscillation of the
trace distance demonstrates the backflow of information from
the environment to the system, pointing to the non-Markovian
behavior in the dynamics of the chromophore.

As part of the system–environment correlation, the non-
Markovianity must be affected by the temperature of the
environment, as discussed in the literature.50,58,59 Here we also
examine the influence of temperature on the non-Markovianity.
Fig. 3 shows the behavior of non-Markovianity N fix as a func-
tion of temperature. The parameters in this figure are set as e =
o0, D = 0.8o0, and a = 4o0. The spectral density and the relevant
parameters are the same as those in Fig. 2. We have taken more
than 1000 initial states for each temperature point in this plot.
Fig. 3 demonstrates that an increase of temperature can sup-
press the non-Markovianity.

To further probe the temperature effect, we plot the evolution of
the trace distance with specific initial states rc1 = (1,0,0)T and rc,fix =
(0,0,1)T, as shown in Fig. 4. It is found that the increasing tempera-
ture can speed up the decay of the trace distance, as well as suppress
its oscillation. More phonons are excited with the rise of tempera-
ture, leading to acceleration of the decoherence of the chromophore
via the probe qubit. The acceleration of the decoherence will reduce
the oscillation amplitudes of the coherence of the density matrix of
the chromophore and increase its decay rate. Then, based on the
equation Dtr

2 = rc,22
2(t) + |rc,12(t)|2, one can see that the acceleration

of decoherence results in a faster decay of the trace distance, and its

oscillating amplitude, causing a further reduction of non-
Markovianity and therefore a suppression of the information
backflow.

The calculation of the BLP measure for the system studied in
our manuscript requires a computation time that is inaccessible,
making a direct comparison between the BLP non-Markovianity
and the fixed-point non-Markovianity impossible. However,
some of our results are in good agreement with a number of
earlier studies50,58,59 of the BLP non-Markovianity that show a
suppressed behavior with an increasing temperature. The fixed-
point non-Markovianity is thus a compromised form of the BLP
measure and is qualified to capture the non-Markovian behavior
of dynamics in this system.

Another important parameter affecting the system–environment
correlation is the coupling strength a between the chromophore
and qubit, which is proportional to the angular orientation para-
meter Z of the dipole–dipole interaction and inversely proportional
to the cube of the distance r between the chromophore and qubit,13

i.e., a p Z/r3. In previous studies where the dynamical processes are
solved by perturbation methods, it is difficult to gauge the effect of
the coupling strength on non-Markovianity due to the weak
coupling constraint. In our case, this constraint is reflected by
the parameter k in the spectral density, i.e., k cannot be arbitrarily
large. However, the coupling between the chromophore and qubit
can be chosen in a wide range, without affecting the accuracy of the
time-convolutionless master equation, allowing a study on the non-
Markovianity in the strong coupling regime.

Fig. 5 shows the variation of the non-Markovianity N fix as a
function of coupling parameter a. Other parameters in this
figure are set as e = o0, D = 0.8o0, and T = 0.5o0. The spectral
density and the relevant parameters are the same as those in
the previous figures. Similar to Fig. 3, we also take more than
1000 initial states for each value of a. When a = 0, the non-
Markovianity vanishes. This is because when the chromophore
is isolated, its evolution turns out to be unitary and the trace
distance is unchanged for a unitary transformation. In other words,
there is no information exchange between the chromophore and

Fig. 3 The variation of non-Markovianity N fix as a function of the normalized
temperature T/o0. The parameters are set as e = o0, D = 0.8o0, and a = 4o0. The
spectral density and the relevant parameters are the same as those in Fig. 2.

Fig. 4 Time evolution of the trace distance under different temperatures.
The values of temperature T are 0.5o0, o0 and 2o0 for the red solid line,
the blue dashed line and black dashed dotted line, respectively. The
parameters are set as e = o0, D = 0.8o0, and a = 2o0. The Bloch vectors
of the initial states are rc1 = (1,0,0)T and rc,fix = (0,0,1)T.
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qubit in this case. In the weak coupling regime, an increase of a can
enhance the non-Markovianity. This enhancement effect is well
known in the community and is one of the main reasons why the
Markovian approximation is applicative in the weak coupling
regime. However, when a is large, the effect is totally contrary. In
this regime, an increase of a will suppress the non-Markovianity.
In our case, the maximum non-Markovianity is obtained around
a = o0, a value that may change if system parameters vary.

To obtain a deeper understanding of how the system–bath
coupling suppresses the non-Markovianity in the strong cou-
pling regime, we plot the time evolution of the trace distances
for three values of a in Fig. 6. The red solid line, the black
dashed dotted line and the blue dashed line represent the trace
distances with a = 2o0, a = 3o0 and a = 6o0, respectively. Other
parameters are the same as those in Fig. 5. The black and blue
lines are shifted downward in the right panel to better distin-
guish the curves. It is found that an increase of coupling
strength will not affect the decay rate of the trace distance,

but does affect its oscillation amplitude. This is because in this
coupling regime, the behavior of the system trends to a way
similar to the overdamped behavior. The oscillation of the off-
diagonal element of the density matrix is suppressed.

To show this, we plot as a function of time the square norm of
the off-diagonal element of the chromophore’s reduced density
matrix in Fig. 7. Two specific initial states, labeled 1 and 2, are
considered: r1,11 = 0.5, r1,12 = 0.2 and r2,11 = 0.7, r2,12 = 0.4. The
solid (dashed) blue and red lines represent |r1,12|2(|r2,12|2) for
a = 2o0 and a = 4o0, respectively. Other parameters are the same
as in Fig. 5. It is shown in Fig. 7 that the oscillation amplitude of
the off-diagonal elements decreases with increasing a, but the
decay rate stays constant. As this oscillation attenuation happens
to all states but the fixed points in the Hilbert space, any
measure based on the trace distance will exhibit this behavior,
including the BLP measure. It is thus an intrinsic property of the
non-Markovian system.

Systems of coupled chromophores are very relevant for many
physical phenomena in physical chemistry. The only requirement
of eqn (21) is the existence of dynamical fixed points, which is very
common when the systems only have diagonal fluctuations. This
implies that the present work on a single chromophore can be
easily extended to treat multi-chromophore systems.

B. The chromophore–qubit pair

In this subsection, we look into the non-Markovian behavior of
the chromophore–qubit pair in the presence of the bath. First,
its dynamics can be obtained by calculating the vectors rc, rq

and m in eqn (27). The expression of rc has been given in the
previous subsection. Now we will focus on rq and m. Based on
eqn (27), one can easily find that

rq = (hsx1i, hsy1i, hsz1i)T, (34)

m = (hsx # sxi, hsy # syi, hsz # szi)T. (35)

As some of the operators above do not commute with the
generator U, the corresponding irrelevant parts of the expecta-
tions do not vanish. In general, this irrelevant contribution is

Fig. 5 The variation of non-MarkovianityN fix as a function of the normalized
coupling strength a/o0. The parameters in this figure are set as e = o0, D =
0.8o0, and T = 0.5o0. The spectral density and the relevant parameters are the
same as those in Fig. 2.

Fig. 6 The time evolution of the trace distance with three values of the
coupling strength a. Left panel: the red solid line, the black dashed dotted
line and the blue dashed line represent the trace distances with a = 2o0, a
= 3o0 and a = 6o0, respectively. Other parameters are the same as in Fig. 5.
Right panel: the solid red (dashed blue) lines in the left panel are shifted
upward (downward) to better distinguish the three cases.

Fig. 7 Time evolution of the square norm of the off-diagonal element of
chromophore’s reduced density matrix. Two initial states, labeled 1 and 2,
are considered: r1,11 = 0.5, r1,12 = 0.2 and r2,11 = 0.7, r2,12 = 0.4. The solid
(dashed) blue and red lines represent |r1,12|2 (|r2,12|2) for a = 2o0 and a =
4o0, respectively. Other parameters are the same as in Fig. 5.
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hard to obtain because of the complex form of Q~rtotðtÞ. For
simplicity, one can choose the zeroth order of Q~rtotðtÞ as an
approximation.24,36 In ref. 24, the zeroth order approximation
was taken in the Schrödinger picture, i.e.,

hAiSirrel = Trcq[Arcq(0)] � Trcq[~rcq(0)Trb(eUAe�Urb)],

while the approximation can also be made in the interaction
picture,

hAiIirrel ¼ Trcqb ei
~H0þHbð ÞteUAe�Ue�i ~H0þHbð ÞtQ~rtot;Ið0Þ

h i
;

where ~rtot,I is the density matrix of the total ensemble in the
interaction picture. When [A,U] = 0, the irrelevant part vanishes,
then the two approximations are actually the same.

Since the density matrix in the original basis is our main
concern, we calculate the differences of the expectations hsi1i
and hsi # si i for i = x, y by performing these two approxima-
tions. Through some straightforward calculation, it can be
found that the irrelevant part hsx1iIirrel = 2Re[w(t)hs+1(t)ircq(0)],
where the time-dependent function w(t) is defined as

wðtÞ: ¼ Y exp
P
k

i sin oktð Þgk2
�
ok

2

� 	
� 1

� �
, Re(�) denotes the

real part, and h�ircq(0) := Trcq[�rcq(0)]. Here rcq(0) = rc #

|0ih0|q. Similarly, one can obtain that hsy1iIirrel =
2Im[w(t)hs+1(t)ircq(0)]. As the polaron transformation generator
U has nothing to do with the subspace of the chromophore, one
arrives at hsx # sxiIirrel = 2Re[w(t)h{sx # s+}(t)ircq(0)], where {sx

# s+}(t) := eiH̃0t(sx # s+)e�iH̃0t is the time dependent operator
of sx # s+ in the interaction picture. It is therefore found that
hsy # syiIirrel = 2Im[w(t)h{sy # s+}(t)ircq(0)]. Utilizing the approxi-
mation in the Schrödinger picture, and considering the initial
state (8), the irrelevant parts of the expectations of these four
operators all vanish. We will compare below the expectation
values from these two approximations.

Denote Gi = hsi1iSirrel � hsi1iIirrel and Gii = hsi # siiSirrel � hsi #
siiIirrel, where i = x, y, as the differences in operator expectation
values between the two approximations. In Fig. 8, Gi and Gii are
plotted as a function of time, where the parameters are set as
e = o0, D = 0.8o0, T = 0.5o0, and a = 4o0. The spectral density
and the relevant parameters are the same as those in Fig. 2. The
initial Bloch vector for the chromophore is taken as rc1 =
(1,0,0)T. The blue solid, black dashed dotted, red dashed and
pink dotted lines represent Gx, Gy, Gxx and Gyy, respectively. It is
found that the differences in the expectation values are small
and short-lived, disappearing beyond o0t = 2. For convenience,
the approximation performed in the Schrödinger picture is
chosen because the irrelevant part of the expectation values
we are interested in always vanish in this case.

Thus, for the zeroth order approximation, taking into
account the initial state (eqn (8)), the expectation value of
operator A has the form

hAi = Trcq[~rcq(t)Trb(eUAe�Urb)]. (36)

Here A = sx1, sy1, sx # sx, or sy # sy. Density matrix dynamics
can be obtained for the chromophore–qubit pair in the original

basis. Keeping in mind the fact that eUsx1e�U = sx1 cosh B +
isy1 sinh B, and hsinh Bi = 0, and utilizing the zeroth approxi-
mation, the expectation value of sx1 in the original basis can be
written as hsx1i = YTreq[sx1~rcq(t)]. Similarly, one can obtain
that hsy1i = YTreq[sy1~rcq(t)] and hsi # sii = YTreq[si # si~rcq(t)]
for i = x, y. Moreover, based on eqn (26), we have hsz1i =
Treq[sz1~rcq(t)] and hsz # sz i = Treq[sz # sz~rcq(t)]. Finally, one
can obtain the density matrix of the chromophore–qubit pair in the
original basis under the zeroth order approximation as

rcq(t) = MY�~rcq(t), (37)

where � denotes the Hadamard product and

MY ¼

1 Y 1 Y

Y 1 Y 1

1 Y 1 Y

Y 1 Y 1

0
BBBBBB@

1
CCCCCCA
: (38)

Now we are in a position to study the non-Markovian behavior
of the chromophore–qubit pair before the polaron transforma-
tion and that of the phonon-dressed quasi-particle. Fig. 9 shows
the time evolution of the trace distances of the density matrices
for the chromophore–qubit pair and the quasi-particle. The
parameters in this plot are set as e = o0, D = 0.8o0, and a = o0.
The initial states of the chromophore–qubit pair are chosen as
rc,half # |0ih0|q and |0ih0|c # |0ih0|q. Here rc,half reads

rc;half ¼
1

2

1 1

1 1

 !
: (39)

After the polaron transformation, the initial states of the
quasi-particle take the same form. In Fig. 9, the solid and
dashed lines depict the trace distance of the density matrices
before and after the polaron transformation, respectively, and it is
clear that before the polaron transformation, there are oscillations in
the trace-distance dynamics implying non-Markovian behavior,
while after the polaron transformation the trace distance

Fig. 8 The variations of Gi and Gii for i = x, y as a function of time. Here
Gi = hsi1iSirrel � hsi1iIirrel and Gii = hsi # siiSirrel � hsi # siiIirrel. The parameters
in this figure are set as e = o0, D = 0.8o0, T = 0.5o0, and a = 4o0. The
spectral density and the relevant parameters are the same as those in
Fig. 2. The blue solid, black dashed dotted, red dashed and pink dotted
lines represent Gx, Gy, Gxx and Gyy, respectively.
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monotonously decreases with the passage of time, an observa-
tion in agreement with the well-known fact that the polaron
transformation reduces the effective interaction between the
quasi-particle and the bath.

V. Conclusion

In conclusion, utilizing a non-Markovian time-convolutionless
polaron master equation we probe the dynamics of a central
chromophore interacting with a phonon reservoir via a probe
qubit. An in-depth analysis is carried out on the non-Markovian
behavior of the dynamics, for which a measure of non-
Markovianity is provided based on dynamical fixed points of
the system. This measure of non-Markovianity is analogous to
the BLP measure but has a OðNÞ numerical advantage.

Using this measure, we have discussed the effects of the bath
temperature and the strength of the chromophore–qubit coupling
on the non-Markovian behavior of the chromophore. It is found
that an increase in the temperature brings about a reduction in the
non-Markovianity. In the weak coupling regime, an increase in
the coupling is found to enhance the non-Markovianity, while in
the strong coupling regime, it suppresses the non-Markovianity.
The non-Markovianity maximum is found in the near resonance
regime (around a = o0) for T = 0.5o0, a value that may be sensitive
to other system parameters such as the temperature and the
spectral density of the bath. In addition, we compare the non-
Markovian behavior of the chromophore–qubit combination before
and after the polaron transformation. It is found that the non-
Markovian behavior vanishes after the polaron transformation.

Non-Markovianity is of great interest in a variety of topics,
such as steady-state entanglement maintenance,60 quantum
teleportation,61 and precision estimation under noise in quan-
tum metrology.62 Thus, finding optimal conditions to maxi-
mize non-Markovianity is useful for many situations. It is our
hope that this work may inspire future experimental and
theoretical endeavor to quantify non-Markovianity in relevant
fields.
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