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The Birmingham cluster genetic algorithm is a package that performs global optimisations for homo- and

bimetallic clusters based on either first principles methods or empirical potentials. Here, we present a new

parallel implementation of the code which employs a pool strategy in order to eliminate sequential steps
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and significantly improve performance. The new approach meets all requirements of an evolutionary
algorithm and contains the main features of the previous implementation. The performance of the pool
genetic algorithm is tested using the Gupta potential for the global optimisation of the Au;oPd;g cluster,

which demonstrates the high efficiency of the method. The new implementation is also used for the

www.rsc.org/pccp

1 Introduction

Modern nanoscience involves the study of promising nanoscale
materials, which exhibit a wide variety of interesting physical
and chemical properties. Nanoparticles composed of atoms
and molecules lie between the atomic and bulk regimes with
strongly size and composition dependent properties.” It remains
desirable to close the gap between well-understood bulk properties
and our knowledge of atomic behaviour in nanoscale research.

A detailed structural characterisation of this transition regime
is therefore of high interest in order to rationalise the exceptional
characteristics of nanoscale materials. Generating geometric
structure candidates for a comparison with experimental obser-
vations is laborious for large systems and eventually becomes
infeasible. From a theoretical view it is useful to carry out a
global optimisation of the potential energy surface (PES) as a
function of all coordinates, while the level of theory needed has
to adequately represent the system being studied.

Since the electronic structure of large nanoparticles is expected
to resemble the bulk phase, tailored model or empirical potentials
(EPs) such as Gupta,” Sutton-Chen,’ and Murrell-Mottram,” fitted
to properties of the solid phase, enable a reasonable description
of the PES. For smaller nanoparticles, i.e. nanoclusters, a
quantum chemical treatment becomes necessary for which
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global optimisation of the Au;q and Auyo clusters directly at the density functional theory level.

the computational costs are greater than in the case of using
EPs. But unbiased global optimisation at this higher level of theory
therefore requires the development of an efficient algorithm.

Nanoalloys (nanoparticles composed of more than one
metal) are of considerable interest for their catalytic, optical
and magnetic properties.’ Their global optimisation is further
complicated by the presence of a large number of homotops -
inequivalent permutational isomers.*® For this reason, the
strategy was developed of optimising selected structures with
DFT after searching by means of atomistic models using the
second-moment approximation to the tight-binding model
(SMATB).” Evolutionary algorithms such as the Lamarckian
Birmingham cluster genetic algorithm (BCGA),” which combines
local minimisation with a genetic algorithm (GA), are useful tools
for searching the conformational space for the global minimum
(GM) structure and lowest-energy local minima, especially when
combined with first principles methods in the density functional
theory (DFT) based BCGA approach.” This procedure notably
enables the theoretical investigation of elaborate mono- and
bimetallic clusters using a GA with results consistent with
experiments."’® For details on global optimisation algorithms,
especially focused on genetic algorithms and basin hopping
techniques, the reader is referred to the literature.'”'

The first use of GAs for global geometry optimisation of mole-
cular clusters was reported by Hartke," and Xiao and Williams,*
using binary encoded geometries and bitwise acting genetic
operators on binary strings.*'>* Later a GA approach that
operated on cartesian coordinates of the atoms was introduced
by Zeiri,>* which removed the requirement for encoding and
decoding binary genes.’ This was followed by the development
of GAs for cluster optimisation by Deaven and Ho,>® who

This journal is © the Owner Societies 2015


http://crossmark.crossref.org/dialog/?doi=10.1039/c4cp04323e&domain=pdf&date_stamp=2014-12-06
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4cp04323e
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP017003

Open Access Article. Published on 01 December 2014. Downloaded on 1/18/2026 10:26:36 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

performed gradient driven local minimisations for newly
generated cluster structures. Further, Doye and Wales established
how local minimisations effectively transform a multidimensional
PES into a staircase-like surface, where the steps represent basins
of attraction.”® This coarse-grained representation of the PES
reduces the conformational space and therefore simplifies the
PES that the GA has to search. The local minimisations generally
correspond to a Lamarckian evolution, since individuals pass on a
proportion of their characteristics to their offspring. This proce-
dure has been found to improve the efficiency of global optimisa-
tions and is implemented within the BCGA program, following
the approach of Zeiri using real-valued cartesian coordinates.’>*
Recent GA implementations are the OGOLEM code for arbitrary
mixtures of flexible molecules of Dieterich and Hartke,”” the hybrid
ab initio genetic algorithm (HAGA), for surface and gas-phase
structures,”®*® and the gradient embedded genetic algorithm
program (GEGA) for the global optimisation of mixed clusters
formed by molecules and atoms.***" Very recently the surface
BCGA (S-BCGA)** and the first principles based GA of Vilhelmsen
and Hammer>® for the global optimisation of supported clusters
have been reported. Also very recently the perturbation theory
re-assignment extended GA for mixed-metallic clusters has
proven to be very useful.**

The traditional generation based BCGA program is a sequential
code where local optimisations of individuals are not independent
from one-another. In fact, a limitation on treatable cluster sizes
or rather the level of computational sophistication arises due to
the sequentially performed geometry optimisations acting as a
bottleneck.*® Newly created individuals of a given population
are geometrically relaxed with respect to their total energy.
The best population members, with respect to their fitness
(determined by a fitness function which depends on the total
energy), are then selected for mating and mutation in order to
create novel structures and to form the next generation. This
cycle is then repeated until the energy of the lowest-lying isomers
changes by less than a specified threshold within a certain number
of generations. Thus, if more than the optimum number of

Fig.1 Scheme of a global database (containing structural information)
organizing slaves which independently apply genetic operators to the n
individuals of the database. The population is held by a master acting as a
pool of constant size.

This journal is © the Owner Societies 2015

View Article Online

PCCP

10000 T T

s
o

(=)
—
>

A
S

speedup /
s / # of cores
8

L4
o N
S o

1000 - ° 0 64 128 192 256 320 1

° R number of cores

total cpu time / s

L]
[ ]

e Au,, local optimisation oo

PWscf

T T

10 100

number of cores

Fig. 2 Logarithmic benchmark plot of a local relaxation for the T4 isomer
of Aupg starting from a random atom displaced version of the already
optimised structure at the PBE/PWscf level of theory. It is shown, that the
optimum number of processors is below 100 cores in this case as using a
larger number of cores would not scale efficiently. The inset shows
the derivative of the total CPU time versus the number of processors.

The optimal number of processors for the global optimisation is in the
range 36-64.

100

1000

processors is used in a first principles based global optimisa-
tion, the overall CPU time plateaus and the cores are used
inefficiently due to the imperfect parallelisation of the local
optimisations. In order to improve the efficiency of this
approach, the goal must be to enable the independent relaxa-
tion of several geometries at the same time as schematically
shown in Fig. 1, where several GA processes simultaneously
optimise geometries managed by a global database (pool). This,
however, cannot be implemented efficiently within the generation-
based BCGA program.

Since the DFT-BCGA code employed here makes use of a
plane-wave self-consistent field (PWscf) pseudopotential
approach, a benchmark calculation of a geometry optimisation
for the predicted GM structure of Au,, (Tq symmetry)*® % has
been performed in order to demonstrate the importance of an
improved GA parallelisation to counter the imperfect DFT
parallelisation. The total CPU time in these minimisations,
starting from a random atom displaced version of the already
optimised structure is shown in Fig. 2. The Au,, cluster was
chosen for the benchmark calculations since, especially for
such a large system, local optimisations lead to a slowdown in
the global optimisation. The corresponding benchmark calcu-
lations indicate that the optimum number of processors should
be below 100 cores (the best price-performance ratio should be
for 36-64, as shown in the inset of Fig. 2) since a larger number
of cores would not speed up the calculations efficiently. The
total CPU time can be reduced by one order of magnitude going
from 10 cores to 100 but does not improve significantly when
using up to 300 cores. Benchmark calculations for a local
optimisation of the Au,, cluster show the same tendency, with
lower absolute CPU time, and are therefore not shown here.
This indicates the importance of developing a parallelised GA
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code which uses several GA subprocesses performing local
minimisations on an efficient and ideal number of processors
(48 cores in this case) at the same time, managed by a global
database (see Fig. 1).

In this work, we present a significantly improved GA implemen-
tation which incorporates the BCGA and eliminates serial bottle-
necks by replacing the generation based GA approach by a flexible
pool model,** here denoted as pool-BCGA. Within this pool strategy
individual subprocesses share the entire work leading to a paralle-
lisation of the algorithm. This procedure allows several geometry
optimisations to be run at the same time. The gain in speed is
obvious as local optimisations are the bottlenecks in a global
optimisation, especially when using ab initio methods in local
relaxations. In principle, one could also think about running parallel
geometry optimisation tasks in the generation based BCGA. But,
several ongoing optimisations would have different time demands
and therefore each generation would have to wait for the slowest
population members leading to processor idle times.

The development of parallel GA implementations has previously
been reported for both atomic and molecular clusters,>333>40:41
Global geometry optimisation at the DFT** or ab initio™ level is
generally found to be very expensive and not suitable for larger
clusters, for which global optimisation at a lower level of theory
would be appropriate. This leads to the commonly found two-stage
procedure of performing the global search at e.g. the force-field or
semi-empirical level, followed by a DFT or ab initio refinement of
the best candidates.** In the DFT-BCGA code used in this work, the
global optimisation is performed at the relatively cheap pseudopo-
tential PWscf level, which enables larger systems to be treated at
the DFT level, while the best candidates can still be refined using a
higher level of theory. However, the direct GA method is easily
implemented with higher level approaches such as MP2 and CC
calculations. The flexible concept replaces the generation based
algorithm by using a global database consisting of geometric and
energetic information about a specified number of individuals.
Several independent subprocesses make use of this database by
applying mating and mutation operators to the pool members and
form new individuals. These new individuals compete with current
members of the pool and are immediately added to the pool if they
are lower in energy.

We first test the method for the global optimisation of the
Au,,Pd,, cluster, using the Gupta potential, for an extensive
statistical analysis of the new implementation. The 20-atom
cluster is also interesting from a catalytic point of view,*> and
offers an ideal test system, especially due to the large number of
homotops N = (Nay + Npq)!/Nay!Npg! ~ 185000 for a given
geometry.® The resulting knowledge from these investigations,
in terms of mating and mutation, is further used for the DFT
based global optimisation of the Au,, cluster. It represents a
suitable test system for the DFT case in order to compare
the efficiency of both implementations, as it has been well
studied in the past.*®*®?” Finally, the parallelisation of the code
is tested by carrying out the global optimisation of Au,, at the
DFT level, a system previously well studied experimentally®®*”
while geometries have been found by genetic algorithms®**®
the basin-hopping approach® based on DFT.

and
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2 Methodology

2.1 Computational details

In the benchmark calculations, employing the Gupta empirical
potential in geometry optimisation steps, many-body scaling
parameters are chosen according to values for Au-Pd nanoclusters
with 34-/38-atoms*® and 98-atoms™ from the literature.

In the DFT calculations, the Perdew-Berke-Ernzerhof (PBE)
xc functional,®® and ultrasoft pseudopotentials of the Rabe-
Rappe-Kaxiras-Joannopoulos type,”* with nonlinear core
corrections are employed. For the calculation of electronic
energies, a kinetic energy cutoff of 40 Ry and an electronic self
consistency criterion of 107> eV are used. The efficiency
of electronic convergence for metallic states is improved using
the Methfessel-Paxton smearing scheme.’® Local relaxations
are performed with total energy and force convergence thresh-
old values of 107 eV and 107> eV A™*, respectively. All DFT
calculations are performed within the Quantum Espresso (QE)
package.*?

2.2 Pool-BCGA

To make use of the flexible parallelisation possibilities asso-
ciated with a pool configuration, the application of mating
and mutation operators to given geometries and their local
optimisation and fitness assignment is managed by indepen-
dently working pool-BCGA subprocesses synchronizing with a
global database. As well as handling the atom coordinates and
total energy of all structures currently in the pool, the global
database is also needed to coordinate the individual sub-
processes during runtime. The general workflow of the pool
strategy is depicted in Fig. 3. The first step (“initial-mode”)
consists of constructing an initial pool of individuals by

Read
input

Start
subroutine

Random
structure

Mutate

Relax
v
Fitness?
Sort pool

Fig. 3 The genetic operators are applied by the subprocesses on the
members of this pool. The flowchart shows how a single pool subprocess
works independently from other instances, while all subprocesses
communicate with the global database.
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generating random structures within a spherical or cubic
simulation cell, which is set to be larger than the dimensions
of the random cluster. This continues until the desired pool
size is reached followed by the second step (“pool-mode”). In
the pool-mode, mating and mutation operators are employed
on clusters chosen according to either a roulette selection
condition, where a random selection is weighted by the assigned
fitness, or a tournament selection, and adopt the Deaven-Ho
crossover method using a cut and splice crossover operator.”®
Random rotations are performed on parent clusters which
are then cut horizontally about one (1-point) or two (2-point)
positions parallel to the xy plane. Complementary fragments are
then spliced together. For 1-point crossover, the cutting plane
can be chosen at random or weighted according to the relative
fitnesses of the two parents, while in the 2-point case the cutting
planes are chosen at random.

In contrast to the default settings of the generation based
GA, where the number of offspring grows with an increasing
mutation rate, in a pool-GA calculation mutation and mating
are performed with a certain probability as the pool size is kept
fixed. This must be taken into account when setting the
parameters in a typical pool-GA run. The offspring structures
compete with the structures present in the pool according
to their total energy after their local optimisation. Offspring
with a better fitness (lower total energy) replace higher lying
pool members. After checking for repeated optimised struc-
tures using a moments of inertia selection routine, the pool is
sorted by ascending total energy. Finally, convergence is
achieved when the minimum energy in the pool changes by
less than a pre-defined energy difference (typically 107 eV)
within a specified total number of optimised geometries.
This ensures an elitist behaviour of the GA in combination
with good diversity in the pool. If convergence is not reached,
the subprocesses start a new cycle, repeating the steps
described above.

When executing the pool-GA, general runtime configuration
settings are read from input files before the GA initially
synchronises with the global database. The GA then enters
the pool convergence loop. If the convergence criterion is not
reached, the GA continues with a check for the current mode
(“initial-” or “pool-mode”’). As mentioned above, initial-mode
means that new structures are created by randomly choosing
atom coordinates inside the simulation cell while the pool-
mode uses either mating or mutation operators in order to
form new individuals. The new structures are then locally
optimised by either passing the atom coordinates to an external
ab initio quantum chemistry program (e.g. QE>® or NWChem®*)
or one of the empirical potentials (e.g. Gupta) embedded in the
code. This pool-based approach allows the code to be easily
restarted if it runs out of CPU time. The user is left free to
restart as many subprocesses as preferred, depending on the
available computational resources. However, aborted local
optimisations are not restarted. Instead, new subprocesses
are initiated, starting with new geometries which are generated
from the current pool configuration by the evolutionary principles
mentioned above.
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3 Results and discussion
3.1 Assessment with the Gupta potential: Au,,Pd;,

Here the a single pool-GA subprocess and the previous genera-
tion based GA are applied to the global optimisation of the
Au,oPd;, cluster using the Gupta potential. This procedure
serves as a test of the implementation before the GA is extended
to the DFT-based version. Using a less expensive calculation also
allows the parameter space for using the pool-GA to be classified
and to show the equivalence of both implementations. However,
only the parameters in which the two implementations differ
substantially are tested here. For a detailed description of the
BCGA code in general its functionality and settings, the reader is
directed to the literature.”

Fig. 4 compares the pool-GA, for different pool sizes, to a
random structure search. The same mutation rate is used in all
calculations, with an atom exchange mutation rate of 0.5 because of
homotops, beside the cluster replacement mutation adding new
random structures. By applying the atom exchange mutation opera-
tor to the replacement mutation, the GA becomes considerably
more efficient."””* The solid lines represent averaged evolutionary
progress plots from 1000 GA runs for each case. Evolutionary
progress plots describe the evolution of the globally lowestlying
structure with the number of generations or optimised structures,
respectively. The runs are averaged in order to test reproducibility
and permit a meaningful statistical statement. Increasing the
population size tends to reduce the efficiency of finding the GM.
This is due to the increasing number of individuals in the pool
and taking into consideration the same roulette selection
scheme and parameters used in all calculations, a higher prob-
ability for selecting bad parents is to be expected when the pool
size is increased. The optimum population size should be large
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Fig. 4 Comparison of averaged evolutionary progress plots for different
population sizes for a single pool-GA subprocess. A constant mutation rate
of 0.2 with an atom exchange rate of 0.5 is employed. Each solid line
represents the evolution of the global energetically lowest-lying structure
versus the number of optimised structures averaged over 1000 GA runs
to demonstrate reproducibility. The implementation is also compared to
a random structure search as internal standard for probing the general
efficiency and comparability.
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enough to accommodate a high structural diversity, but small
enough to remain largely elitist. A comparison to the generation-
based GA, in the same way as mentioned above, shows the same
behaviour and is therefore not depicted here. The random struc-
ture search, which in both cases acts as an internal standard,
illustrates the high efficiency of both GA implementations in
general and shows that a single pool-GA subprocess has a
comparable efficiency to the generation-based GA. The pool-GA
and the generation based approach compare well, as shown in
Fig. 5, where both implementations are compared to a random
structure search. Typically, the random search is not able to find
the GM. Fig. 6 shows lognormal fits to probability densities of
finding the GM after a certain number of optimised structures
within the 1000 GA runs for several pool sizes. An additional
plot, embedded in this figure, describes the linear scale up of
the maximum number of optimisations needed versus the pool
size. The good comparability of both GA approaches makes the
pool-BCGA implementation a powerful tool for the prediction of
cluster structures since many subprocesses can be run at the
same time, while the convergence of the pool, using a single
subprocess, compares well to the generation based code. This
allows a much higher efficiency through communication of
several subprocesses via the global database.

In order to test how the mutation rate influences both a single
pool-GA subprocess and the generation based code, Fig. 7 shows
averaged evolutionary progress plots where both GAs are com-
pared for different mutation rates while using a population size of
10. The general trend is that mutation reduces the efficiency of
finding the GM structure which means that mutation on average
produces higher lying structures. While the pool-GA, shown in
Fig. 7(a) rapidly loses efficiency with increasing mutation rate, the
generational GA (Fig. 7(b)) is less influenced, which initially might
appear as an unexpected result. It becomes clearer, however, if
one considers, that in the pool implementation the population
size is kept fixed. In the traditional BCGA the number of offspring

0,3 y T T T T T T T
Mutation rate 0.2, size 10
—— Pool

—— Generation

- - - Random

relative energy / eV

0,0

T 1 T
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Fig. 5 Comparison of averaged evolutionary progress plots for the generation
based GA and the single pool-GA for a population size of 10 using a mutation
rate of 0.2 and an exchange rate of 0.5. Also included is the result of a random
structure search. The GM structure of the AuyoPdip cluster at the Gupta
potential level is embedded.
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Fig. 6 Lognormal fits to probability densities of finding the GM in 1000 GA
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is, by default, 0.8 times the generation size. The mutation rate
is then multiplied by the sum of the generation size and the
number of offspring. For a population size of 10 and a mutation
rate of 0.2, this means 8 offspring are generated from mating
and 3.6 mutants on average since (10 + 8) x 0.2 = 3.6. For the
pool-GA, therefore, the efficiency seems to be lowered with
increasing mutation rate due to the reduced mating rate which
makes the implementation less elitist. However, the structural
diversity in a given population can be increased by using a low
mutation rate and, therefore, it should not be completely
neglected. Again lognormal fits to probability densities of
finding the GM after a certain number of optimised structures
within 1000 GA runs, depending on the mutation rate, are
shown in Fig. 8. The plot embedded in this figure shows an
exponential scale up of the maximum number of optimisations
needed versus the mutation rate. The probability densities for
mutation rates larger than 0.8 could not be well fitted due to
the very small efficiency of finding the GM.

3.2 Assessment with plane wave DFT

3.2.1  Auy,. Since the systematic global optimisation of neutral
Au, (n = 2-20) cluster structures has been reported previously
using GAs coupled with DFT,*®*® we employ this system in order
to test the efficiency of the DFT based pool-GA. First, global
optimisation is performed for the Au,, cluster using the sequen-
tial generation based DFT-BCGA program with a mutation rate
of 0.1 and a population size of 10. The pool-GA is further used
to perform a global optimisation of the same cluster with a pool
size of 10 and a mutation rate of 0.1 in order to test whether
both implementations find the GM and the same local minima.
Additionally, the total number of optimised structures is com-
pared for both cases in order to explicitly prove the parallelisa-
tion efficiency for a given example. The benchmark calculations
illustrated in Fig. 9 show the total number of optimised
structures for a limit of 12 hours walltime for up to 5 pool
subprocesses each ideally running on 48 processors, showing
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Fig. 7 Influence of the mutation rate on the averaged evolutionary pro-
gress plots averaged over 1000 GA runs for of (a) a single pool-GA
subprocess and (b) the generation based GA for a constant size of 10
compared to a random structure search as an internal standard. Mutation
reduces the efficiency of finding the GM.
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Fig. 8 Lognormal fits to probability densities of finding the GM in 1000
GA runs depending on the mutation rate. The number of optimisations
needed to find the GM scales exponentially with the mutation rate as can
be seen in the inset. The probability density for higher mutation rates or a
random structure search cannot be well fitted due to the very small
efficiency of finding the GM.
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the best price-performance ratio in local relaxations (see Fig. 2).
The generation based GA is also compared running on up to
240 cores, which is the same amount as in the calculations using
5 pool subprocesses. It is clear that the sequential GA plateaus
when using a large number of cores due to the imperfect DFT
parallelisation, while a linear scale-up in the pool-GA case is
evident, when using an optimum number of cores.

The resulting structures below 0.4 eV from the predicted
GM, as obtained at the pwSCF/PBE level of theory, are shown in
Fig. 10. Both implementations are able to find identical local
minima when optimising a comparable number of structures.
The evolutionary progress plot (Fig. 11) shows an example for
the pool-GA case, where the GM is found after the optimisation
of about 50 structures. This number, however, varies from run
to run due to the stochastic nature of the GA, which originates
from constructing the initial population by producing random
structures. In any case, it shows how the current best (lowest
energy) solution evolves towards the planar GM isomer 10-a
with D,;, symmetry.

The potential lowest energy isomers below 0.4 eV, as
obtained at this level of theory, including the planar GM isomer
10-a are in agreement with the previous findings of Gotz et al.*’
However, the trigonal prism with both triangular faces and two
rectangular faces capped, suggested by Choi et al.,>® has been
found to lie high in energy at this level of theory, as well as all
other isomers found in these previous studies. A new planar
isomer 10-g, which has been described for the Au,,~ cluster,””
and a 3D structure 10-e were also found to lie below 0.4 eV.
Nevertheless, it should be mentioned that the relative energies
obtained at this level of theory, using loose convergence criteria,
should always be treated with care. A reminimisation of the
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Fig. 9 Comparison of the total number of geometry optimisations from
the pool-GA, with up to five subprocesses each running on 48 cores, to
the generation based approach as obtained in 12 hours. A linear scale-up
of the total number of optimisations is observed when several parallel
working subprocesses are used on an optimum number of cores. The top
horizontal axis, showing the number of subprocesses, only corresponds to
the pool calculations.
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10-e 10-f 10-g 10-h

Fig. 10 Structures of Aujg below 0.4 eV from the predicted GM (10-a) as
obtained from the DFT-based pool-GA global optimisation approach. The
nomenclature of the individual isomers is sorted by increasing energy at
the pwSCF/PBE level of theory.

structures at a higher level of theory or the use of tighter
convergence conditions can unpredictably change the energetic
ordering, although 10-a is expected to remain the GM.

The PES can be described by a sequence of local minima inter-
connected by transition states where monotonic sequences form
funnels.”® A given topology, once in a funnel, must eventually
overcome several energy barriers in order to reach the GM or
another specific local minimum as the PES is explored. This means
that a given local optimisation within a GA optimisation task could
potentially relax into a so-called metabasin with small geometrical
deviation from the minimum. Therefore energetic discrepancies
should not only be discussed as depending on the xc functional
and pseudopotentials used, but should also be attributed to the
cases where local optimisations end in metabasins near a local
minimum, leading to an apparently wrong energy ordering.

However, this should not be interpreted as a problem.
Genetic algorithms used in this manner can be thought of as
a coarse grain filter. The idea is to reduce a large configuration
space to a manageable size. The reduced configurational space

relative energy / eV

200 300
structure #

Fig. 11 Evolution of the globally lowest-lying isomer for Aujo with the

number of optimised structures within a pool-GA run, relative to the energy

Eo of the GM isomer 10-a. Each step represents a new global minimum

depicted here within the pool-GA run.
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20-e 20-f 20-g 20-h

Fig. 12 Structures of Au,g below 0.5 eV from the predicted GM 20-a as
obtained from the generation based DFT-BCGA global optimisation
approach. The nomenclature of the individual isomers is guided by the
energy order at the pwSCF/PBE level of theory.

then opens up the possibility of a more detailed description of
only a few isomers at a higher level of theoretical complexity,
often required for the description of binary clusters in combi-
nation with experiments.

3.2.2  Auy,. The ability of the pool-GA to scale linearly with
the number of processors is shown in Fig. 9. This allows the
global optimisation of cluster structures, directly at the pwSCF/
PBE level, for clusters larger than previously possible with the
sequential GA in a reasonable time. The pool-GA is used to
perform a global optimisation on the Au,, cluster. Calculations
were performed with a pool size of 10 and a mutation rate of 0.1.
The tetrahedral structure (T4) of Au,, is well known and has been
shown previously by both theory,*****® and experiment.>**”

The structures of the putative pool-GA GM and minima lying
below 0.5 eV are shown in Fig. 12. The pool-GA successfully finds
the tetrahedral structure, 20-a, as the GM. The tetrahedron is
first found after the optimisation of only 56 structures. There is a
large gap between the GM and the next lowest-lying structure, a
distorted geometry with C; symmetry. Structures similar to 20-b
are seen in minima 20-e and 20-g, while structures 20-c, 20-f
and 20-h are C; geometries based on more subtle distortions of
the tetrahedron.

4 Conclusions

We have demonstrated the efficiency of the new pool-based
parallel implementation of the BCGA. The new implementation
leads to a greater efficiency for the global optimisation of mono-
atomic or binary clusters. The change in implementation makes
the approach efficient for an arbitrary numbers of parallel
processes, as shown by the benchmark calculations. In addi-
tion, the pool-BCGA can also adapt to the given utilisation of a
given high-performance computer, as it supports different
numbers of processors in order to achieve maximum efficiency.
Since processor speed is generally starting to plateau, it will be
more and more appropriate to develop better parallel algorithms
suitable for future computer architectures. The pool-BCGA is a
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good example of how this can be done efficiently. Additionally,
the use of distributed computing architectures (e.g. BOINC)
would be now enabled where server could potentially manage
the pool while optimisations can be run on an arbitrary number
of clients. Since the amount of data transferred between server
and clients is small, bandwidth requirements would be minimal.

By replacing the sequential working generation concept,
serial bottlenecks are eliminated. A typical pool calculation
can be started as a job array of several pool-GA subprocesses
enabling the treatment of larger cluster sizes than previously
studied or even opens up the possibility of using a higher level of
theory. Alternatively, one can think about using wavefunction
based methods in geometry relaxations for the global optimisa-
tion of small cluster systems as implemented in program
packages such as CFOUR,*® or NWChem v6.3,>* which enable
geometry optimisations based on coupled cluster methods.
Such a pool implementation would emerge as the method of
choice, especially in this sophisticated task of performing global
optimisation using multi-electron wavefunctions to account for
electron correlation with higher accuracy.

Also the very recently developed S-BCGA could be improved by
using the flexible pool concept, which would allow the study of
more complicated supported clusters, such as larger clusters and
nanoalloys, and permit calculations at a higher level of theory.

A comparison of the results obtained by the generation- and
pool-based BCGA show that the pool-GA is finally able to find
all isomers predicted by the generation based implementation
while both GAs give results in good agreement with existing
global optimisation calculations reported in the literature.
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