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Non-universal tracer diffusion in crowded media
of non-inert obstacles

Surya K. Ghosh,a Andrey G. Cherstvya and Ralf Metzler*ab

We study the diffusion of a tracer particle, which moves in continuum space between a lattice of

excluded volume, immobile non-inert obstacles. In particular, we analyse how the strength of the

tracer–obstacle interactions and the volume occupancy of the crowders alter the diffusive motion of

the tracer. From the details of partitioning of the tracer diffusion modes between trapping states when

bound to obstacles and bulk diffusion, we examine the degree of localisation of the tracer in the lattice

of crowders. We study the properties of the tracer diffusion in terms of the ensemble and time averaged

mean squared displacements, the trapping time distributions, the amplitude variation of the time

averaged mean squared displacements, and the non-Gaussianity parameter of the diffusing tracer. We

conclude that tracer–obstacle adsorption and binding triggers a transient anomalous diffusion. From

a very narrow spread of recorded individual time averaged trajectories we exclude continuous type

random walk processes as the underlying physical model of the tracer diffusion in our system. For moderate

tracer–crowder attraction the motion is found to be fully ergodic, while at stronger attraction strength a

transient disparity between ensemble and time averaged mean squared displacements occurs. We also put

our results into perspective with findings from experimental single-particle tracking and simulations of the

diffusion of tagged tracers in dense crowded suspensions. Our results have implications for the diffusion,

transport, and spreading of chemical components in highly crowded environments inside living cells and

other structured liquids.

I. Introduction

Macromolecular crowding (MMC) abounds in living biological
cells, with up to f E 30–35% of the volume of the cytoplasmic
fluid being occupied by large biopolymers such as proteins,
nucleic acids, ribosomes, as well as membranous structures,
and other complexes.1–5 These volume-excluding and often
non-inert obstacles alter the diffusion behaviour of cellular
components and the rates of biochemical reactions taking
place in this highly complex liquid.6–11 These changes occur
both due to an enhanced solution viscosity12 and the sheer
physical obstruction imposed on particle diffusion due to the
presence of the obstacles.

The mean squared displacement (MSD) of a tracer particle
in such crowded solutions often becomes anomalous13–18

hr2(t)i B Dbtb, (1)

where Db is the anomalous diffusion coefficient of dimension
cm2 s�b and b the anomalous diffusion exponent. Its typical

range 0 o b o 1 indicates slower-than-Brownian, subdiffusive
motion.13,14 Often, the subdiffusion (1) turns out to be transient
and at long times the MSD crosses over to Brownian motion.18,19

A wide range of scaling exponents bB 0.4–0.9 has been reported
for the obstructed diffusion of tracers of various sizes and
surface properties in crowded solutions inside cells. Examples
include the motion of small proteins,20 mRNA molecules,21

telomeric chromosomal loci,22 Cajal bodies,23 lipid and insulin
granules,24 and natural virus particles25,26 in the cytoplasm of
living cells. Further examples are membrane lipids and
membrane-bound proteins,27–29 water molecules associated to
membranes,30 hair bundles in ears,31 as well as several examples
for the motion of tracers such as proteins in complex liquids.32–34

Subdiffusive regimes in crowded systems have also been observed
and modelled for actively driven particles,35 and the dependence of
the effective diffusivity D(f) reveals a minimum as function of the
MMC volume fraction f.36

Anomalous diffusion of the form (1) is modelled in terms
of a wide range of stochastic processes.13–19 These include
continuous time random walks (CTRW),13,14,37 fractional Brownian
motion16,17,38,39 and the closely related fractional Langevin equation
motion,16,17,39–41 as well as diffusion processes with space42–45 and
time45–47 dependent diffusion coefficients. CTRW models are closely
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related to trap models, in which the tracer in the course of
diffusion is successively immobilised.13,48–50 Despite advances in
simulations29,51 and theoretical approaches,16,17 there is no consen-
sus on the physical understanding of the subdiffusion of passive
tracer particles in crowded solutions, that would be directly applic-
able to the cytoplasm of living cells.15,18 In particular, it is likely that
different physical origins dominate for different tracer sizes and
shapes, as well as length and time scales of the diffusion. The lack of
a consensus picture for diffusion in MMC environments suggests
that the observed anomalous diffusion is not universal but depends
on specific parameters.

To address such specific origins for deviations from Brownian
motion, extensive computer simulations of passive tracer diffusion
were performed by several groups. The recent approaches of ref. 52
and 53, for instance, considering the tracer motion in lattices of
immobile, randomly positioned obstacles or regularly ordered
obstacles jiggling in a confining potential demonstrated that the
anomalous diffusion regime is governed by the obstacle volume
occupancy, with significant subdiffusive motion observed at higher
crowder volume fraction f. This subdiffusion is transient and can
be quantified by the dependence of the local anomalous diffusion
exponent

bðf; tÞ ¼
d log r2ðf; tÞ

� �� �
d logðtÞ (2)

and the effective diffusion coefficient D(f,t), where we included
the explicit dependencies on the MMC volume fraction f
and time t. In denser obstacle lattices, diffusion is more localised
and the value of b(t) smaller.53 Remarkably, the transient sub-
diffusion regime was shown to disappear at higher obstacle
mobility.52,53 Moreover, the distribution of particle trapping
times in dynamical cages formed between the crowders observed
in simulations for mobile, confined, and static obstacles was
shown to be inconsistent with CTRW models52,54 Recent experi-
mental advances in the field of obstructed obstacle-mediated
tracer diffusion, including the regimes of transient anomalous
diffusion, are presented in ref. 55–57.

The study of obstructed diffusion by means of simulations
was pioneered by Saxton in a series of papers.58–60 In particular,
the effects of the fraction of lattice sites occupied by crowders
and of their diffusivity were examined. Specifically, effects of
tracer–obstacle binding on the anomalous diffusion properties
were studied and connected to a binding energy landscape for
immobile point-like obstacles positioned at a fixed concentration
on the lattice.59 Obstructed diffusion of point-like tracers in a lattice
of randomly positioned, static obstacles was investigated in ref. 61
and shown to give rise to a reduction of the tracer diffusivity D with
the obstacle concentration. Nonzero values of the diffusivity D even
for very densely packed obstacles appear in such a model due to the
existence of a percolation structure. True long-time subdiffusion
can only be realised at the percolation threshold in such lattices of
randomly distributed obstacles.18 On a cubic lattice, the critical
percolation thresholds corresponds to 31%.18 For a random walker
on the infinite incipient cluster, the scaling exponent of the MSD is
bE 0.697.62 The physical reason is the formation of a labyrinthine-
like environment,19 in which the tracer needs to escape dead ends

and cross narrow causeways present on all scales. For lattices below
the percolation transition as well as for regularly positioned
obstacles, as in the current study, the anomalous diffusion regime
is transient.

An interesting alternative to the modelling of transient
anomalous diffusion are Lorentz gas based models which were
developed to exploit the localisation transitions on a percolation
network of overlapping spherical obstacles.63,64 The scaling rela-
tions for the suppression of the tracer diffusivity as the system
approaches the critical percolation density �f was determined,
namely D(f) B [(f � �f)/ �f]m, where the percolation exponent is
m E 2.88.63 At the percolation threshold, persistent anomalous
diffusion with exponent b = 2/6.25 E 0.32 was found, for even
denser systems the particles are eventually localised.63

Here, we extend the class of systems considered by Saxton59

based on transient binding of tracer particles to physical
obstacles. We perform extensive Monte-Carlo simulations of
tracer diffusion on 3D lattices of sticky spherical obstacles of
varying radius R. In this obstruction-and-binding diffusion
model we examine the trapping time distributions of the
tracers, the time averaged MSD—which is a more relevant
observable when compared to experimental situations than the
ensemble averaged MSD (1)—and the effective tracer diffusivity
D. The model parameters are systematically varied, including the
crowder radius R and thus the volume fraction of crowders f and
the tracer–crowder binding energy eA. A schematic of the system
is shown in Fig. 1 along with sample trajectories of a tracer
particle. These novel features substantially extend the known
simulations results for obstructed tracer diffusion on 2D lattices
of reflecting spherical52,53 and cylindrical65 obstacles. Despite
the difference of mobile polymer obstacles to our scenario of
ordered reactive crowders, our results show interesting simila-
rities with the diffusion of tracer particles in dense solutions of
non-inert polymer chains recently reported by the Holm group.66

We discuss the consequences of this similarity below.
The paper is organised as follows. In Section II we introduce

the basic notations and the quantities to be analysed. We
outline the computational scheme and theoretical concepts.
In Section III we report the main simulations results and
support them by theoretical scaling arguments. We analyse
the effects of the MMC volume fraction and the strength of the
obstacle–tracer binding. Moreover, we compute the ensemble and
time averaged particle displacements as well as the distributions of
particle trapping times to the sticky obstacles. To rationalise the
stochastic behaviour and determine the concrete underlying
effective diffusion model, we also systematically compute the
non-Gaussianity parameter G. In Section IV the conclusions are
drawn and possible applications of our results to some experi-
mental systems are discussed.

II. Simulation model and
approximations

To mimic the conditions of a crowded environment, we con-
sider a primitive cubic lattice every site of which is occupied by
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a spherical obstacle, as shown in Fig. 1. The maximal size of the
obstacle Rmax for the conditions of close packing is Rmax = a/2
where a is the lattice constant. In the following we will use a = 2
in dimensionless units. The maximal volume occupancy by
obstacles on such a static cubic lattice is fmax = p/6 E 0.524,

compared to fmax ¼ p=
ffiffiffiffiffi
18
p

� 0:740 for the densest packing of
spheres in 3D.67 The obstacles are considered immobile in our
simulations.

In the simulations presented below, the point-like tracer
starts in the centre of a cage, at the maximal distance from the
eight surrounding obstacles. At the very start the tracer particle
thus performs free motion, until it encounters the surface of a
crowding particle to which it can subsequently bind. The length
scale of the spatial heterogeneity l* in the system is of the order
of the free path of the tracer between neighbouring obstacles,

l�ðfÞ � a 1� f1=3
� �

�
ffiffiffiffiffiffiffiffiffiffi
D0t�
p

. As we will show such hetero-

geneities effect subdiffusion at intermediate time scales t*,
while at much longer time-scales the diffusion becomes Brow-
nian, as demonstrated in Fig. 3. As many binding–unbinding
events take place during the length of the recorded traces in our
simulations, the initial particle position does not affect the long
time dynamics. The tracer particle becomes adsorbed onto the
obstacle surface with the binding energy eA and stays in the
bound state for the average adsorption time tads,i. While bound,
the tracer diffuses along the spherical obstacle surface with the
same diffusion coefficient as in the free unbound state, that is,
it moves along the surface of a crowder sphere with Dads = D0.
The tracer is considered unbound once it separates from the
obstacle for more than the distance 0.1Rmax, see also the
definition of the interaction potential below.87 In our simula-
tions we place a single tracer on the crowder lattice and then
average over many individual traces. The repeated binding and
unbinding events separating the particle motion between sur-
face and bulk diffusion lead to an effective distribution
between the modes of tracer motion, which is reflected in the
tracer particle MSD and other diffusive characteristics such as
average trapping times, see below.

The attractive interactions between the mobile tracer parti-
cle and immobile crowder spheres are modelled in terms of the

Lennard-Jones 6-12 potential, whose attractive branch is cut off
at the distance rcutoff, namely

ULJðrÞ ¼
4eA

s
r

� �12
� s

r

� �6	 

þ ecutoff ; r � rcutoff

0; r4 rcutoff

8><
>: : (3)

The parameter s is connected to the obstacle radius by R = 21/6s
corresponding to the minimum of ULJ(r). The attractive
potential ULJ(r) is truncated at the critical distance rcutoff = R +
0.1Rmax thus mimicking an attractive shell of a fixed width
0.1Rmax around the obstacles. Thus, the thickness of the attractive
layer around obstacles of different sizes is the same. The vertical
energy shift ecutoff is a constant which sets ULJ(rcutoff) = 0.

We simulate the motion of the point-like tracer of mass m
with coordinate r(t) in the presence of friction based on the
Langevin equation

m
d2rðtÞ
dt2

¼ �gdrðtÞ
dt
þ nðtÞ � r

X
j

ULJ r� Rj

�� ��� �
: (4)

Here g is the friction coefficient coupled to the strength of the
Gaussian noise through

n t1ð Þ � n t2ð Þh i ¼ 6kBT gmd t1 � t2ð Þ; (5)

where d(�) denotes the Dirac delta-function and kBT represents
the thermal energy. The noise has zero mean and vanishing
correlations in the different Cartesian directions. The sum in
eqn (4) runs over the positions of all crowding particles Rj. The
fact that we consider a point-like particle is not a severe
restriction, as a finite size of the tracer particle would corre-
spond to a re-normalisation of the crowder radius, compare
also ref. 61. Concurrently the surface diffusivity of the tracer
along the crowders would need to be adjusted.

In our simulations we neglect tracer–obstacle hydrodynamic
interactions, which can, in principle, affect the long-time
behaviour of the system. In particular, because of their long-
range 1/r-nature,10 the diffusing particles can feel the obstacles
at a finite distance without direct collisions, see e.g. ref. 36.
Note however that hydrodynamic interactions have recently

Fig. 1 Schematic of the three-dimensional tracer–obstacle system used in our simulations, for the obstacle radius R = 0.6 a and tracer–obstacle binding
strength eA = 2, 6, and 10 (from left to right). The tracer trajectories, as obtained directly from the simulations, are of the same length in all the three
panels. Note that the particle traces are rendered with a finite thickness although the tracer particle is point-like in the simulations. The fraction of time
that the particle spends in the surface-bound diffusion mode grows with eA.
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also been demonstrated to affect the short-time tracer diffusion
dynamics in fluids.69,70

In free space the solution of the Ornstein–Uhlenbeck process
(4) without the last term is well known,71

r2ðtÞ
� �

¼ 6mkBT
g2

gt
m
� 1þ exp �gt

m

� �h i
; (6)

describing the crossover from initial ballistic motion

r2ðtÞ
� �

� 3kBT =mð Þt2 (7)

before the characteristic time m/g to overdamped Brownian
motion

r2ðtÞ
� �

� 6kBT =gð Þt: (8)

This solution is reproduced by our simulations, see Fig. 2. The
local scaling exponent b(t) is computed as discretised logarithmic
derivative from the MSD traces obtained from the simulations (i.e.,
we compute the local derivative of log(MSD) with respect to the
logarithmically sampled time, see also eqn (3) of ref. 57).

The particle mass is m = 1 throughout the paper (we made
sure that the code works fine for varying particle mass and
solution friction, as shown in Fig. 2). In all figures below, time t
is shown in units of the simulation step dt = 0.001 of the Verlet
velocity integration scheme, the displacements appear in units
of the lattice constant a. The obstacle size below is given in
terms of the maximal geometrically allowed radius

Rmax = a/2 (9)

on the square lattice. Note that even zero-sized crowders R = 0
have an attractive shell of finite width around them, as deter-
mined by the specific nature of the attractive potential (3). In
the text, however, when we talk about ‘‘free diffusion’’, no
crowders are included in the simulations at all. In the presence
of the sticky excluded volume obstacles an exact solution is not
known, and we thus analyse this case by simulations. We find
that the fraction of time that the tracer particle spends in the

surface-bound mode increases with the volume occupancy by
obstacles and with the tracer–obstacle affinity eA. The effect of
MMC on the long-time particle diffusivity D(f) reveals a non-
trivial dependence at larger eA, as shown below.

III. Results

We discuss the simulations results with respect to three main
observables. In Section IIIA we study the ensemble averaged
MSD and the associated effective diffusivity. The trapping times
spent by the tracer on the obstacle surface are analysed in
Section IIIB, and in Section IIIC we investigate the time
averaged MSD based on single trajectory time series.

A. MSD, scaling exponent, and effective diffusivity

We study the MSD hr2(t)i of the tracer particles at varying volume
occupancy f of obstacles and the tracer–obstacle affinity eA. The
main results are shown in Fig. 3 and 4. Generally, we observe
that for small interaction strengths eA the anomalous diffusion
exponent b(t) varies along the time evolution of the MSD hr2(t)i.
At short times it starts out with the underdamped ballistic
motion (7) of the above Ornstein–Uhlenbeck process, as demon-
strated in Fig. 2. Such a short time superdiffusive behaviour is
due to inertial effects and was indeed observed experimentally,
for instance, in single particle tracking studies of fluorescent
beads in sucrose solutions;57 see also the detailed studies of
ref. 69 and 70 of inertial effects for the particle diffusion in a
fluid. Subsequently, Fig. 3 demonstrates that the MSD crosses
over to a transient subdiffusive regime with 0 o b(t) o 1. In the
long time limit the tracer particle performs Brownian motion with a
linear scaling of the MSD and b(t) = 1. Concurrently this regime is
characterised by a reduced diffusivity D(f) as compared to
unrestricted Brownian motion of the tracer. The dependence
of the effective diffusivity D(f) on the MMC volume fraction f is
shown for different interaction strengths in Fig. 4. For weakly
adhesive obstacles, the diffusion becomes monotonically slower
for larger crowders positioned on the lattice.

Let us look at these behaviours in some more detail. The
variation of the scaling exponent b(t) with the crowding fraction
and tracer–crowder attraction strength is shown in Fig. 3. We
observe that as both eA and f increase, the transient subdiffu-
sion regime progressively extends over a larger time window.
Remarkably, this anomalous diffusion spans up to two decades
of time for substantial tracer–obstacle attraction strengths, see
the plot of b(t) for eA ¼ 6kBT in Fig. 3. For relatively weak
tracer–obstacle attraction, at eA ¼ 2kBT , only marginally anom-
alous tracer diffusion was detected, with b B 0.85–1. Overall,
the subdiffusion regime extends over one to two decades of
time, similar to the results for inert static randomly-positioned
obstacles61 or for the motion of tracers in a random channel
with sticky surfaces.72

A physically similar renormalisation of the particle diffusivity
was discovered in ref. 73 for glassy states in sticky-particle
systems at relatively large volume fractions f. The phase dia-
gram of the hard sphere mixture with a short range inter-particle

Fig. 2 MSD from simulations (dots) of the free underdamped Langevin
equation versus the analytical Ornstein–Uhlenbeck solution (6) (solid
curves), plotted for different values of the friction coefficient g, as indicated
in the plot. The ballistic regime can be clearly distinguished in the case of
lower friction.
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attraction as well as a self-diffusive MSD dependence were
examined, for instance, by simulations in ref. 73. The implica-
tions of the square-well sphere-sphere interaction potential eA

and volume fraction f of crowders were rationalised in detail. A
progressive slowing down of the particle self-diffusion in the
attractive hard-sphere mixtures as functions of f and eA observed
in Fig. 4 and 5 of ref. 73 is similar to the properties of the tracer

diffusion on the lattice of moderately-sticky crowders
examined here.

For non-attracting obstacles corresponding to eA = 0 the ratio
D(f)/D0 of the diffusing coefficient of the tracer particle versus
its value in an un-obstructed environment as function of the
obstacle volume occupancy f in a simple mean field approach
is predicted to scale as

DðfÞ
D0
� 1� f ¼ 1� p

x3

6
; (10)

based on a volume exclusion argument in Section 8.3 of ref. 49.
Here x = 2R/a is the relative obstacle size with respect to the
lattice spacing. The reader is also referred to ref. 74 for the next-
order corrections in the dependence of D(f) on the volume
fraction of crowders. Indeed, in absence of an attraction
between the tracer and the obstacle surfaces, the behaviour of
D(f)/D0 as function of R shown in Fig. 4 is in qualitative
agreement with the prediction (10).

For moderate attraction, eA ¼ 2kBT , the decrease of D(f)/D0

with R becomes less pronounced at R \ 0.6. For even stronger
tracer–obstacle interaction, eA � 4kBT , remarkably the long-
time diffusivity D(f) becomes non-monotonic with the crowder
size R, as shown in Fig. 4. Physically, at higher f the available
space for tracer diffusion becomes effectively reduced from the
three dimensional volume to a lower dimensional space. This
creates pathways or channels between the ‘‘cages’’ created by
the obstacle and can effectively speed up the exploration of

Fig. 3 MSD hr2(t)i of the tracer particles and the corresponding scaling exponent b(t), plotted for two trace–crowder attraction strengths, eA = 2 and 6, in
units of kBT . The result (8) for the MSD of three dimensional Brownian motion is represented by the dashed line in the MSD plots. The number of
trajectories used for the averaging is N = 103, and each trajectory consists of 107 steps corresponding to the length T = 104 of the simulated time series r(t)
in terms of the simulation step dt = 10�3. Other parameters are as indicated in the plots. The obstacle radius is given in terms of Rmax = a/2. The data sets
for varying crowder radius are shown by open symbols.

Fig. 4 Long-time diffusivity D(f)/D0 in the terminal Brownian regime as
function of the obstacle size, plotted for varying tracer–obstacle attraction
strengths. Other parameters are the same as in Fig. 3. The dotted line
represents the prediction by eqn (10) for inert obstacles. The data sets for
varying adsorption strength are shown as filled symbols.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
N

ov
em

be
r 

20
14

. D
ow

nl
oa

de
d 

on
 1

1/
16

/2
02

5 
10

:0
0:

08
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4cp03599b


1852 | Phys. Chem. Chem. Phys., 2015, 17, 1847--1858 This journal is© the Owner Societies 2015

space by the tracer particle at higher f fractions. Note that this
effect would be modified when the surface diffusivity were
considerably smaller than the volume diffusivity. However, as
shown in the discussion of the trapping times below, another
contribution to this speed up-effect could be that for larger
crowder radius R the tracer is in a limbo between vicinal
attractive surfaces and thus manoeuvres between obstacles
without binding to them.

We note that in ref. 65 the diffusion coefficient of a tracer on
an array of cylindrical obstacles on a static two dimensional
square lattice was analysed in terms of the generalised Fick–
Jacobs equation and by Brownian dynamics simulations. For
the relative diffusivity as function of the crowding fraction f
the analogous behaviour D(f)/D0 = 1 � f = 1 � p(R/Rmax)2/4 was
found, where p/4 is the maximal surface coverage in this
situation.65

B. Statistics of tracer trapping times

The non-monotonic dependence of the long-time tracer particle
diffusivity on the crowding fraction is also manifested in the
non-monotonic variation of the times that the tracer spends in
the obstacle-adsorbed state. In Fig. 5 we present the statistics of
individual adsorption times to the crowding particles along a
long trajectory containing many binding–unbinding events. In
the main graph of Fig. 5 we observe the distribution of tracer–
obstacle adsorption times features a peak at short tads, while
the tails of the histograms indicates the expected exponential
decay. The corresponding mean adsorption time htadsi is the
average over all the binding events encountered in our simulations
for a particular set of the model parameters. As we can see, for
larger crowders these exponential tails become progressively longer
with increasing obstacle size up to some R o 0.6 	 a/2, that is, the

duration of binding events can become significantly longer. In the
inset of Fig. 5 we use a logarithmic abscissa to pronounce the initial
peak of the histograms. From this plot it becomes clear that several
extremely long binding events can shift the mean htadsi of the
binding time significantly, compare the relative positioning of the
maximum of the histograms and the mean values indicated by
the coloured dots.

Thus, a small number of extremely long binding events
govern the corresponding mean adsorption time htadsi. Here,
we mention the related study of ref. 75 in which the modes of
surface versus bulk diffusion of a tracer in spherical domains
were investigated. Also note that a different tracer diffusivity in
the obstacle-bound mode as compared to the bulk diffusion
can give rise to new interesting effects. In particular, an
optimisation of the overall passage times of a tracer in the
target-search problems on a lattice of trapping sites (obstacles)
with a likely slower diffusivity should be analysed in the future.

Let us now turn to the total time of adsorption tA experience
by the tracer particle during a trajectory of duration T gener-
ated. We thus sum up all the adsorption times experienced by
the tracer,

tA ¼
X
i

tads;i: (11)

Adding to this quantity the excursion times in the bulk between
the obstacles,

tB ¼
X
i

tbulk;i; (12)

we have T = tA + tB (the subscripts A and B denote the quantities
in the adsorbed and bulk state, respectively). As expected, the
total adsorption time tA obtained from the simulations is an
increasing function of the obstacle size R, compare Fig. 6. The
initial increase of tA with the crowder size R can be understood
in terms of the concept of a ‘‘phantom sphere’’. Namely, the
surface of a crowding sphere available for surface diffusion by
the crowding particles is S(R) = 4pR2. If the remaining volume
a3 � 4pR3/3 in a cubic unit cell framed by eight crowding
spheres were converted into a (‘‘phantom’’) sphere, the surface
of that sphere would amount to

SphðRÞ ¼ 4p
6

p
a

2

� �3
�R3

	 
2=3
: (13)

Following this crude argument to simply divide up the time
spent on the surface of the crowders and on the phantom
sphere surface (corresponding to the free volume of a unit cell
in the obstacle lattice), the ratio of the adsorption time to the
total time T of a sufficiently long trajectory can then be
approximated as

tA

tA þ tB
� S

S þ Sph
¼ x2

x2 þ 6=p� x3½ 
2=3
; (14)

where we again used the dimensionless variable x = R/Rmax =
2R/a. The maximal volume of the phantom sphere is given by
the volume a3 of the unit cell, corresponding to an effective radius
of the phantom sphere of Rmax,ph = (a/2)(6/p)1/3. The minimal

Fig. 5 Histograms P(tads,i) of individual binding times tads,i spent in the
obstacle-adsorbed state by the tracer particles, plotted for the parameters
of Fig. 3 with attraction strength eA ¼ 6kBT . The mean values htadsi for
each crowder radius are indicated as the dots on the horizontal axis of the
inset with the corresponding colour, indicating a non-monotonic beha-
viour with R. The main graph is shown in log-linear scale to show the
exponential tails of the distributions, whereas the inset features a linear-log
scale. The total length of the simulated trajectories is 107 steps. The
obstacle radius R is given in the legend in terms of Rmax = a/2.
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effective radius of the phantom sphere corresponds to obstacles,
which just touch each other on the square lattice, namely Rmin,ph =
(a/2)(6/p � 1)1/3.

The ratio tA/T given by eqn (14) is quadratic in the obstacle
size R for small volume occupancy by obstacles. This result is in
agreement with our simulations results for moderate tracer–
obstacle binding, as shown in Fig. 6. In fact, for the attraction
strength eA ¼ 2kBT the agreement with result (14) is quite good
given the simplicity of our model. In the shown double-
logarithmic scale of Fig. 6 over the range R/Rmax = 0.1–0.9 the
law (14) in fact only weakly deviates from the quadratic scaling
tA/(tA + tB) B (p/6)2/3x2. Naturally, the data for increasing
binding affinity progressively deviate from the formula (14),
for the strongest binding strength shown the particles move
almost exclusively on the obstacle surface, independently of the
obstacle size.

We observe that for small obstacle sizes and weak tracer–
obstacle attraction strengths the total adsorption time tA at
fixed R grows exponentially with eA, tA ’ exp eAj j= kBT½ 
ð Þ,
corresponding to the Boltzmann activation in an equilibrium
system. As demonstrated in Fig. 6 on the right, for strong
tracer–crowder attraction a saturation in tA(eA) is reached, such
that the activation curve for the ratio tA/(tA + tB) is analogous to
the expression for a simple two level system, tA= tA þ tBð Þ �
exp eAj j= kBT½ 
ð Þ= 1þ exp eAj j= kBT½ 
ð Þf g. For larger crowders,
when the tracers are confined predominantly to the obstacle
surface, the saturation effect at larger attraction strengths is
more pronounced, see Fig. 6.

In agreement with the results of Fig. 3 for the MSD, at
moderate tracer–obstacle binding the adsorption time progres-
sively increases for more voluminous obstacles on the lattice. In
contrast, at strong tracer–crowder adsorption the adsorption
time initially increases with the obstacle size

R = a[3f/(4p)]1/3 (15)

but above a critical volume fraction f the value of tA decreases,
as seen in Fig. 6 for the values eA ¼ 8kBT and 10kBT , as well as

for the mean values shown in Fig. 5. This decrease of the mean
adsorption time and thus a stronger contribution of bulk
excursions is consistent with the non-monotonic dependence
of D(f)/D0 at large tracer–obstacle binding strengths eA and
with the enhanced diffusivity for larger strongly adhesive
obstacles, see the curve for eA ¼ 8kBT in Fig. 4. We ascribe
this small yet somewhat counterintuitive effect to a competition
of binding to neighbouring surfaces due to which the tracer
particle is in a limbo in the bulk, possibly in conjunction with
the reduced effective dimensionality of the environment
mentioned above.

C. Time averaged MSD and non-Gaussianity parameter

To obtain more insight into the characteristics of the diffusive
motion of the tracer particle in the crowded environment, we
compute the time averaged MSD15–19

d2ðDÞ ¼ 1

T � D

ðT�D
0

ðrðtþ DÞ � rðtÞÞ2dt (16)

from the trajectory r(t) of the tracer of range t = 0,. . .,T. In
eqn (16) D is the so-called lag time, which defines the size of a
window slid along the trajectory r(t). The length of the trajectory
T is also referred to as measurement time. In addition to the

individual time traces d2ðDÞ we also consider the average

d2ðDÞ
D E

¼ 1

N

XN
i¼1

di2ðDÞ (17)

over N individual trajectories. When measured time series are
not long enough, this quantity provides smoother curves if
sufficiently many trajectories N are available.

In Fig. 7 we show the time averaged MSD (16) along with the
MSD hr2(t)i of N = 100 individual trajectories. Let us first focus
on the case of a moderate tracer–obstacle attraction strength,

eA ¼ 2kBT . We observe that the individual time traces d2ðDÞ
initially grow ballistically and then cross over to normal diffu-
sion, as indicated by the slopes in Fig. 7. The results for

Fig. 6 Left: total diffusion time tA in the adsorbed state of the tracer to the obstacle surface versus the obstacle size R, plotted in the log–log scale for
varying binding strengths. Data obtained from averages of the histograms as those presented in Fig. 5. The dotted asymptote represents eqn (14). Right:
plot of tA versus eA for varying obstacle radius. The dotted line indicates the exponential activation of tA mentioned in the text. At higher eA a saturation of
tA is observed.
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individual time traces d2ðDÞ show only minute amplitude varia-
tions at different lag times, quantitatively similar to the spread of
time traces of regular Brownian particles. Of course, when D
approaches the measurement time T, the statistics of the time

average defining d2ðDÞ worsen and some amplitude scatter occurs.
The average (17) almost perfectly coincides with the ensemble

average MSD hr2(t)i, compare the blue and green curves in Fig. 7.
The latter observation corroborates the ergodic nature of the
tracer motion, that is, the equivalence of ensemble and long time

average of physical observables, here r2ðDÞ
� �

¼ d2ðDÞ
D E

.15–17 The

linear long time scaling of the MSD defines the effective diffusion
coefficient D(f) we shown in Fig. 4. Note that prolonged adsorp-
tion periods of the tracer on obstacle spheres correspond to
effective trapping and delays the growth of either hx2(D)i or

d2ðDÞ. For more information on the violation of the equivalence
between time and ensemble averaged physical observables in
anomalous-diffusive stochastic processes we refer to the recent
review in ref. 17.

As shown for the binding time statistics above, the trapping
times are exponentially distributed and thus the long time motion
converges to regular Brownian motion with a reduced, effective
diffusivity D(f). This scenario is therefore fundamentally different
from subdiffusive CTRWs,14,37 in which the characteristic trapping
time diverges. Our Brownian motion-based physical rationale is
consistent with experimental observations of protein diffusion in
dense dextran solutions and with Monte-Carlo simulations of tracer
diffusion on lattices of immobile inert obstacles as reported in
ref. 56. In addition, we checked that the average time averaged MSD
features no dependence on the trace length T: the values of

d2ðDÞ
D E

almost perfectly overlap for different trace-lengths T, as

demonstrated in Fig. 8 indicating the Brownian nature of the
diffusion process.

A different situation is encountered when we consider
strong tracer–obstacle attraction, eA ¼ 6kBT in Fig. 7. We
immediately observe that up to t = D E 102 the time averaged

MSD d2ðDÞ significantly differs from the corresponding ensem-
ble average hr2(t)i. That is, on these time scales the systems

exhibits the disparity r2ðDÞ
� �

ad2ðDÞ. For times exceeding
t = D E 102 the agreement between both quantities becomes
excellent, the system is asymptotically ergodic. Individual

curves d2ðDÞ for single time traces show a somewhat increased

spread around their mean d2ðDÞ
D E

, however, this is still within

the range expected for (asymptotically) ergodic processes,76 and
is significantly different from weakly non-ergodic processes
such as subdiffusive CTRWs15–17,19,77 or heterogeneous diffu-
sion processes.17,42 For diffusion processes of the subdiffusive
CTRW type the spread of individual time averaged MSD traces
is expected to be finite even for vanishing lag times.16,17 This
kind of behaviour is definitely not observed in our simulations.

Here a very narrow spread of d2 in the whole range of tracer–
obstacle affinities and obstacle sizes is observed, see, e.g.,
Fig. 7. The transient non-ergodic features observed here imply
that the relaxation time towards ergodic behaviour is increased
for longer trapping times when the tracer–obstacle attraction is

Fig. 7 MSD hr2(t)i (green curves) and time averaged MSD d2ðDÞ defined in eqn (16) (red curves), as well as the ensemble average d2
D E

(blue curves) over
the simulated trajectories. Parameters are as indicated in the panels, the number of traces used for averaging is N = 100, and the length of the trajectories
is T = 104 corresponding to 107 simulation steps.

Fig. 8 Independence of the time averaged MSD d2ðDÞ
D E

on the length T

of the trajectory r(t). Parameters are the same as in Fig. 7.
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more pronounced. The fact that the disparity r2ðDÞ
� �

ad2ðDÞ is
most pronounced around the turnover from initial ballistic to
terminal Brownian motion is consistent with observations of con-
fined stochastic processes driven by correlated Gaussian noise.17,79

We now address a quantity that is based on the fourth order

moment of the time trace d2ðDÞ. This non-Gaussianity para-
meter G(D) was shown to be a sensitive experimental indicator
of the type of effective stochastic process driving the tracer
particle in crowded complex fluids.57 The non-Gaussianity
parameter in three dimensions is defined by18

GðDÞ ¼ 3

5

d4ðDÞ
D E

d2ðDÞ
D E2 � 1: (18)

For diffusion processes with a stationary Gaussian distribution
of increments such as Brownian motion and fractional Brownian
motion we have G = 0, while the parameter G becomes non-zero
for processes with non-stationary increments and/or non-
Gaussian distributions such as subdiffusive CTRWs or hetero-
geneous diffusion processes.44,57

We observe that for the simulated diffusion process in the
presence of attractive obstacles the non-Gaussianity parameter
shown in Fig. 9 is close to zero for almost the entire length of
the traces, apart from the initial regime of the motion including
inertial effects. These short time deviations from G E 0 are
particularly pronounced for relatively large obstacles with
strong tracer–obstacle attraction, as shown for the different
parameters analysed in Fig. 9. The fact that G E 0 together with
the equivalence of the ensemble and time averaged MSDs at
sufficiently long times are, of course, a mirror for the Brownian
nature of the observed motion. The smaller non-zero values of
G detected in the long-time limit in Fig. 9 are due to small
discrepancies between the ensemble and time averaged MSDs.

At short to moderate times the non-Gaussianity parameter
substantially deviates from the zero value characteristic of

Brownian motion for strongly adhesive and relatively large
crowders, see, e.g., the blue curve in Fig. 9. The deviations of
G(D) occur at time scales of t B 1–30 when the tracer diffusion
is inherently non-ergodic, as we see from the right panel of
Fig. 7 plotted for the same parameters (eA ¼ 6kBT and R/Rmax =
0.6). At very short times, t { 1, on which the MSD and time
averaged MSD coincide, the non-Gaussianity parameter respec-
tively assumes very small values. Otherwise, the deviations from
G = 0 we observe are within the range typically measured in
experiments57 for asymptotically ergodic stationary-increment
processes.

IV. Conclusions

We studied the passive motion of a tracer particle in an ordered,
stationary array of attractive spherical crowders. Based on a
truncated attractive Lennard Jones interaction between tracer
and crowding obstacles, we simulate long individual trajectories
of the tracer based on the Langevin equation. The resulting
motion features a transition from initial ballistic flights corres-
ponding to the inertial particle motion to a long time Brownian
diffusion behaviour. The magnitude of the effective diffusion
coefficient of this terminal Brownian motion is reduced for
increasing obstacle volume filling fraction and tracer–obstacle
attraction. However, a distinct non-monotonicity in this beha-
viour for large obstacle radii and high attraction strength is
observed, likely due to competing attraction from multiple
obstacles for which the tracer particle is in a limbo in the bulk.
The same effect also leads to a decrease of the time tA(f) spent
adsorbed to the obstacle surfaces during a long trajectory. The
long time Brownian dynamics was consistently shown to be
associated with approximately vanishing non-Gaussianity para-
meter. These dynamic features point out the crucial role of
varying tracer–obstacle binding strengths in the analysis of
crowded systems, as performed here. To put these qualitative
statements on a more physical foundation, additional simula-
tions will be necessary. In particular, we will study the time
averaged van Hove cross-correlation functions78 for the tracer
motion.

At intermediate times the tracer particle motion is anomalous,
with a distinctly time-dependent scaling exponent b(t). In this regime
the trapping to the obstacles becomes the dominant mechanism.
According to our results the time and ensemble averaged MSDs are
equivalent for moderate tracer–obstacle attraction strength, however,
a transient non-ergodic disparity between the two observables is
observed over a range of some 2.5 orders of magnitude for stronger
tracer–crowder binding. This transient form of weakly non-ergodic
behaviour was previously observed for correlated Gaussian processes
under confinement34,79 of the otherwise ergodic process.39 This
behaviour should be kept in mind when precise diffusive properties
are to be analysed from measured or simulated time traces of our
system.

Extensions of the current model should consider a range of
surface diffusivities of tracer particles bound to obstacles.
Moreover, the arrangement of crowders should release the

Fig. 9 Non-Gaussianity parameter (18) computed for the tracer diffusion
on a lattice of sticky obstacles, the parameters are indicated. As a reference
for almost perfect Gaussian behaviour G = 0, we present the non-
Gaussianity parameter for vanishingly small, inert obstacles. The length
of individual simulated trajectories is T = 104.
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static, ordered arrangement on a lattice. Thus, off-lattice simulations
could include the motion of crowders around their equilibrium
positions, similarly to the analysis in ref. 53. Differences in the sizes
of individual crowders and a certain randomness in the tracer–
obstacle affinity would be additional relevant generalisations of the
current system. Mobile obstacles were shown to profoundly reduce
the time range of the transient subdiffusive motion compared to
immobile crowders.53 However, the generality of these findings
needs to be explored in a broader parameter range. Currently, it
remains elusive to arrive at realistic models capturing the richness of
real MMC effects in living biological cells with their wide variety of
crowder shapes, surface properties, persistence length and degree of
branching as well as a poly-disperse size distribution, in addition to
cellular structural elements, as well as charge effects.5 Finally, active
processes such as energy-consuming transport in living cells35,80,81

needs to be added to achieve a closed picture of all facets of cellular
dynamics.

Our study complements several other recent analyses of
tracer motion in crowded environments. Thus, tracer diffusion
in a system of relaxed and stretched polymer chains in the
presence of tracer–polymer attraction was studied by Langevin
dynamics simulations with the Espresso package.82 We observe
that such obstructed diffusion with sticky obstacles resembles
our current results. For instance, the evolution of the time-
dependent MSD scaling exponent b (see Fig. 4 in ref. 82) shows
a transition from the initial ballistic regime to a subdiffusive
regime at intermediate times, and further to Brownian motion
in the long-time limit. The anomalous diffusion regime was
shown to span a larger time window for the relaxed as com-
pared to the stretched self-avoiding chains.82 Higher polymer
densities and stronger tracer–polymer interactions yield wider
regions of tracer subdiffusion.82 A continuation of this study for
tracer diffusion in a cylindrical pore with surface-grafted poly-
mer brushes of varying density showed that the subdiffusive
regime is more pronounced for weak-to-moderate tracer–poly-
mer interaction.66

We also mention an experimental study of impeded colloidal
diffusion in transient polymer networks with varying colloid–
polymer binding interactions.83 For the diffusion of an inert
tracer in a responsive elastic network system, when the tracer
size is of the same order as the unit cell of this gel, transient
subdiffusion was reported and shown to involve characteristic
collective dynamics of tracer and gel.78 The transient subdiffu-
sion in this study is in contrast to the experimentally observed
long-tailed distribution of trapping times of sub-micron tracers
in semi-flexible, inherently dynamic networks of cross-linked
actin84 and thus further underlines the non-universal character
of the dynamics in crowded systems. We finally mention that
diffusion in two-dimensional, oriented fibrous networks in the
presence of repulsive and attractive particle–obstacle interac-
tions was in fact studied experimentally in connection with
hydrogel-like structures of the extracellular matrix.85

Is crowding in cells merely an effect of cramming a rich
multitude of different bio-molecules into a minimal volume, or
does it have an evolutionary purpose in giving rise to dynamic
phenomenon such as (transient) subdiffusion?21,86 The combination

of advanced single particle technology and other experimental
methods along with improved in silico studies will lead to
significant advances in the understanding of these still elusive
questions.
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