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Divergent 4,2":6',4"- and 3,2":6',3"-terpyridines as
linkers in 2- and 3-dimensional architectures

4,2":6',4"-Terpyridine (4,2":6",4"-tpy) and 3,2":6',3"-terpyridine (3,2":6",3"-tpy) typically coordinate through
the outer pyridine rings, leaving the central ring non-coordinated. They therefore present divergent sets of

N,N’-donor atoms and are ideal linkers for connecting metal nodes in coordination polymers and
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networks. This Highlight illustrates the strategies that are currently used to encourage the formation of 2-
and 3-dimensional architectures as opposed to 1-dimensional chains. Functionalization in the tpy 4'-
position with substituents such as pyridyl or carboxylate that can bind metal ions is one strategy. The sec-

ond is to increase the coordination number of the metal centre. The third is to design ligands that contain

www.rsc.org/crystengcomm

Introduction

2,2":6',2"-Terpyridine (2,2:6',2"-tpy) presents a bis-chelating
donor set and coordination complexes are dominated by
octahedral {M(2,2":6',2"-tpy),} domains which, if bearing
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multiple 4,2":6",4"-tpy or 3,2":6',3"-tpy domains.

peripheral donor groups, function as ‘expanded ligands’
(Scheme 1) in supramolecular assemblies including coordina-
tion polymers.' The coordination chemistry of 2,2":6',2"-tpy is
abundantly represented, whereas the coordination behav-
iours of the other 47 isomers of terpyridine have attracted
less attention. Two isomers especially demand exploration
because of their ease of synthesis and functionalization in
the 4-position:** 4,2":6',4"-terpyridine (4,2":6',4"-tpy) and
3,2":6,3"-terpyridine (3,2":6',3"-tpy). Both ligands typically coor-
dinate metals through only the outer pyridine rings, and
Scheme 2 illustrates that, while the directionality of the
donor atoms in 4,2:6',4"-tpy is fixed, that in 3,2":6',3"-tpy is
varied by virtue of rotation about the inter-ring C-C bonds.
In terms of using these ligands as linkers in the construction
of coordination polyers, this distinction between 4,2":6',4"-tpy
and 3,2":6',3"-tpy presents interesting design issues, and it
might appear that assemblies directed using 4,2":6',4"-tpy may
be more predictable than those using 3,2":6',3"-tpy. However,
even with its apparent preorganization, 4,2":6',4"-tpy can yield
surprises when coordinating metals as is illustrated below.
The coordination chemistry of 3,2":6’,3"-terpyridines
remains largely unexplored. A search of the Cambridge

Scheme 1 Divergent metal binding mode of {M(2,2":6",2"-tpy),} unit
where X is a donor group, e.g. pyridyl, (spacer)-CO5 .
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3,2".6',3"-tpy

Scheme 2 Divergent N,N'-metal binding mode of 4,2":6',4"-tpy, and
variable binding modes of 3,2":6',3"-tpy accessible through inter-ring
bond rotation.

Structural Database (CSD v. 5.36 with updates to May 2015,*
using Conquest v. 1.17°), gives 205 hits for 4,2:6',4"-tpy and
only 25 hits for 3,2":6',3"-tpy (ligands and complexes). The
first coordination polymer of 4,2:6',4"-tpy was reported in
1998° and since the potential of this divergent ligand was rec-
ognized, there has been significant growth in the number of
publications in which 4'-functionalized 4,2":6',4"-tpys act as
linkers in coordination polymers and networks.” In the cur-
rent Highlight, we focus on ways in which reactions between
metal nodes and 4,2":6',4"-tpy or 3,2":6',3"-tpy ligands can be
directed to give 2- or 3-dimensional architectures. One guide-
line is to move away from the ubiquitous use of zinc halides
or zinc acetate. The former usually lead to 1-dimensional
chains” or discrete metallomacrocycles,”® and the latter to
chains containing linear {Zn,(u-OAc),} nodes.”’

The peripheral donor

A strategy adopted by many groups to switch the assembly
preference from 1-dimension to 2- or 3-dimensions is to
incorporate a peripheral donor group. Popular choices are
heterocycles (e.g. pyridine, pyrimidine) or carboxylic acids.
Note the analogy between 4'-(4-pyridyl)-4,2":6',4"-terpyridine
(py-4,2":6',4"-tpy) and 2,4,6-tris(4-pyridyl)-1,3,5-triazine (Scheme
3), a building block par excellence in coordination net-
works.'® If all three outer pyridine rings bind metals,
py-4,2":6',4"-tpy acts as a planar, 3-connecting node. In some
cases, serendipity rules, and one or more donors remain
coordinatively innocent when the ligand reacts with a metal
salt."" A pertinent example is ligand 1 (Fig. 1a). Its reaction
with Zn(acac), unexpectedly gives a discrete complex in which
1 coordinates to Zn through one pyridine ring only (Fig. 1b),
along with a linear polymer (Fig. 1b); CH:--N contacts are
implicated as one controlling factor in these two
assemblies."”
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4'-(4-pyridyl)-4,2":6',4"-tpy 2,4,6-tris(4-pyridyl)-1,3,5-triazine

4'-(4-pyridyl)-3,2":6",3"-tpy

Scheme 3 Structural analogy between 4'-(4-pyridyl)-4,2":6',4"-tpy
(py-4,2":6',4"-tpy) and 2,4,6-tris(4-pyridyl)-1,3,5-triazine, and the
structure of 4'-(4-pyridyl)-3,2":6',3"-tpy (py-3,2":6',3"-tpy).

The examples discussed below are not comprehensive, but
rather exemplify how peripheral pyridyl or carboxylate groups
are applied to direct the assembly of 2- and 3-dimensional
frameworks. A few recent examples have been selected, and
citations within these publications guide the reader to a
wider literature coverage of the area.

The cationic metal-organic framework (MOF) present in
[{Cu(py-4,2":6',4"-tpy)}-NO3;-MeOH],, has been prepared using a
solvothermal approach, with in situ reduction of copper(u) to
copper(1). Both Cu and py-4,2':6',4"-tpy are 3-connecting nodes,
and the resulting 4-fold interpenetrating 3-dimensional
framework (Fig. 2a) retains channels in which anions and
solvent molecules are accommodated. Solvent can be

(c)

Fig. 1 (a) Structure of 1, an example of a 4,2":6',4"-tpy functionalized
in the 4’-position with a metal-recognition site; Zn(acac), reacts with 1
to give (b) molecular [Zn(1),(acac),] and (c) polymeric [Zn(1)(acac)l,.
CSD refcodes QIXYIH and QIXYON.

This journal is © The Royal Society of Chemistry 2015
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(a)
Fig. 2 Part of the 4-fold interpenetrating frameworks in (a) [{Cu(py-
4,2":6',4"-tpy)}-NO3-MeOH],, viewed down the c-axis with anions and
solvent omitted, and (b) [Cuz(u-CN)s(py-4.,2":6',4"-tpy)l,, viewed down
the c-axis. CSD refcodes RIGPEE and COXGIG.

exchanged (MeOH for H,0) without a change in the lattice.
The nitrate anions in the hydrated MOF can be exchanged
with a range of anions, allowing the system to be applied for
anion sensing.® Retaining the 3-connecting Cu and
py-4,2":6',4"-tpy nodes, but introducing bridging cyanido
ligands into the MOF leads to [Cu;(u-CN);z(py-4,2':6',4"-tpy)].
which is also 4-fold interpenetrating (Fig. 2b).**

The trinuclear unit {Fe,NiO(Piv)s} (HPiv = pivalic acid) is
preorganized as a planar, 3-connecting node and combined
with py-4,2":6,4"-tpy gives a 2-dimensional (6,3) net."> Replace-
ment of py-4,2":6',4"-tpy by py-3,2":6',3"-tpy leads to a switch
from a (6,3) net to (4.8%)-fes topology.'® An attractive applica-
tion of py-4,2":6',4"-tpy is as a ‘lock’ in MOFs to prevent loss
of guest molecules. This is demonstrated by the introduction
of 4,2":6',4"-tpy to [{Na,Zn,(fda),(H,0),}-H,0], (H,fda = 2,5-
furandicarboxylic acid) which contains channels with a diam-
eter comparable to that of the 4,2:6',4"-tpy ligand."”

4’-(4-Carboxyphenyl)-4,2':6',4"-terpyridine (4'-(4-Hep)-
4,2":6',4"-tpy, Scheme 4) has been used in a range of coordina-
tion polymers, a number assembled in the presence of a co-
ligand."® If the peripheral carboxylate is monodentate or acts
as a chelating ligand, 4'-(4-cp)-4,2":6',4"-tpy can function as a
planar 3-connecting node and is therefore potentially analo-
gous to py-4,2:6,4"-tpy. But, as seen above, one or more
donor sites may remain non-coordinated leading to lower
dimensionality structures than anticipated. An example is
[Co(4'-(4-cp)-4,2":6",4"-tpy)(H,0),],, which is a 1D-coordination
polymer with 4'-(4-cp)-4,2":6',4"-tpy acting an a bridging N,O-
donor."® The addition of co-ligands in some investigations
makes it difficult to appreciate clear design strategies in the
use of 4'-(4-carboxyphenyl)-4,2":6',4"-terpyridines. Nonetheless,
the examples below illustrate the potential for their use in 2-
and 3-dimensional assemblies.

Interpenetrating sheets are observed in [{Cd(4'-(4-cp)-
4,2":6',4"-tpy)(OAc)(H,0)}-H,0-DMA], (Fig. 3a), but a change in
cadmium(u) salt, solvothermal conditions and solvent leads

This journal is © The Royal Society of Chemistry 2015
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4'-(4-Hep),-4,2:6',4"tpy

Scheme 4 Structures of 4,2":6',4"-terpyridines containing carboxylic
acid functionalities.

to [{Cd(4-(4-cp)-4,2":6',4"-tpy),}-2DMF],, which consists of a
non-interpenetrated net with Cd and ligand acting as 5- and
3-connecting nodes respectively.”® The same connectivity pat-
tern is observed in [{Cd(4-(4-cp)-4,2":6',4"-tpy),}-1.5H,0],, but
in this case, the nets interpenetrate." [{Zn,(4'-(4-cp)-4,2":6',4"-
tpy)2Cly}-0.5H,0], is structurally analogous to [{Cd(4’-(4-cp)-
4,2":6',4"-tpy)(OAc)(H,0)}- H,O-DMA],,  (Fig. 3a), whereas
[{Cd,(4-(4-cp)-4,2":6',4"-tpy)4}-3.5H,0],, exhibits doubly inter-
penetrating (4,4) nets.*

One structure deserves particular attention. The reaction
of CoCl,-6H,0 with 4'-(4-Hcp)-4,2":6',4"-tpy under basic
solvothermal conditions leads to [Co(4'-(4-cp)-4,2":6",4"-tpy)s ...

Fig. 3 (a) Double interpenetrating (6,3) sheets in [{Cd(4'-(4-cp)-
4,2".6',4"-tpy)(OAc)(H,0)}-H,O-DMA],, (DMA = N,N-dimethylacetamide);
CSD refcode HEXTAU. (b) Entangled framework in [Co(4'-(4-cp)-
4,2".6',4"-tpy),l,, CSD refcode DIQHAO.

CrystEngComm), 2015, 17, 7461-7468 | 7463
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The assembly of the entangled framework depicted in Fig. 3b
arises from the 8-connecting node shown in Fig. 3c in which
‘N’ represents an N-bound 4'-(4-cp)-4,2":6',4"-tpy domain, and
‘RCO,’ represents the carboxylate functionality in 4'-(4-cp)-
4,2":6',4"-tpy. The assembly is of note because of coexisting
interpenetration, self-threading and polythreading.>?

Despite possible steric crowding of the 2-substituted func-
tionality in 4’-(2-cp)-4,2":6',4"-tpy (Scheme 4), this ligand has
been shown to be a versatile building block in coordination
networks.”* The effects of removing the phenylene spacer on
going from 4'-(4-Hcp)-4,2":6',4"-tpy to 4’-HO,C-4,2":6",4"-tpy
have also been explored,” and recently, Wang and co-
workers have shown that the introduction of two peripheral
carboxylic acid groups opens up the pathway to zinc-
containing MOFs which exhibit selective CO, capture.*®

Going for higher coordination
numbers

The previous section illustrates the approach adopted by
many research teams to increase the dimensionality of coor-
dination networks which incorporate divergent tpy linkers.
We now move to our own strategies which have developed
from an initial penchant for coordination polymers containing
zinc(u1) nodes.” To encourage the assembly of 2- or 3-dimen-
sional networks using 4,2":6',4"-tpy linkers, our approach was
to increase the connectivity of the metal node. We originally
showed that going from zinc to cadmium®” facilitated a switch
from helical 1-dimensional chains [ZnCl,(4"-aryl-4,2":6',4"-tpy)],,
containing 2-connecting Zn nodes, to 2-dimensional sheets
[CA(NOs),(2),], containing 4-connecting Cd nodes (2 =
4'-phenyl-4,2:6',4"-tpy, Scheme 5). The 6-coordinate Cd atom
(with trans-nitrato ligands) binds four 2 ligands to give a (4,4)
net with each divergent 4,2":6',4"-tpy ligand bridging adjacent
Cd atoms. This is a motif that reappears in a number of
related compounds with 4-connecting Cd nodes and 4'-aryl-
functionalized 4,2":6',4"-tpy ligands, for example with ligand
3% (Scheme 5). However, the assembly principle is not gen-
eral, and the assembles formed with ligands 4-9 (Scheme 5)
provide pertinent examples; 4-9 are derivatives of 2 bearing
alkoxy tails. Cd(NO3)-4H,0 reacts with 4 (methoxy substitu-
ent) to give a 1-dimensional ladder (Fig. 4a) under room tem-
perature crystallization conditions with an input Cd:ligand
ratio of 3:1.%° A ladder is again seen when Cd(NO;)-4H,0 is
combined with 8 (n-hexoxy substituent, Fig. 4b) in a molar
ratio of 1:1, but if the amount of ligand is increased in the
crystallization experiment (ratio of moles of Cd:8 = 1:3), the
assembly switches to a (4,4) net (Fig. 5a).>° A closely related
(4,4) net is formed with 7, but on going to 5 with the shorter
n-propyl chain, a (6,3) net assembles in [{Cd,(NO3),(5)s}
-3CHCl;],, (Fig. 5b). Powder diffraction was used to confirm
the homogeneity of the bulk samples, and also indicates that
reaction of Cd(NOj3)-4H,0O with 6 leads to a (6,3) net. In this
network, packing involves the accommodation of the
n-propoxy chain in a pocket comprising three ligands 5; this
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6 R="Bu

7 R =nPentyl
8 R ="Hexyl
9 R ="Heptyl

Scheme 5 Structures of ligands 2-12.

pocket is big enough to accommodate an n-butoxy chain, but
not a longer chain. Hence, going from an n-butoxy to
n-pentoxy chain switches the architecture from a (6,3) to (4,4)
net.*® Reactions of Cd(NO;),-4H,0 with 10 or 11 also give
ladders (Fig. 4c).*’ The study of network assembly with
cadmium nitrate and ligands 5-9 was systematic, using a 1:3
ratio of Cd:ligand, and constant volumes of the same

(b)
Fig. 4 1-Dimensional ladders in (a) {Cd2(NOs3)4(4)3}-CHCl5:-MeOH],,*°
(b) [Cd2(NO3)4(MeOH)(8)3],,%° and (c) [{Cdo(NO3)4(11)3}-2CHCl3
-4MeOH],,.3! Overlay of the structure and a TOPOS®? representation.
Nitrato ligands and solvent molecules are omitted.

This journal is © The Royal Society of Chemistry 2015
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Fig. 5 2-Dimensional nets: (a) (4,4) net in [{Cd>(NO3)4(8)4}-CHCl3
-MeOH],, and (b) (6,3) net in {Cds(NOs)4(5)5}-3CHCLs],.*° Overlay of
the structure and a TOPOS®? representation.

solvents (MeOH and CHCI;).*® Overall, however, rationalizing
the observations for Cd(NO;),/4,2":6',4"-tpy networks with
ligands 2-11 is made difficult by variable ‘input ratios’ of
metal:ligand and solution concentrations, and the fact that
not all bulk samples have been analysed by X-ray powder
diffraction.

The preference for the ladder motif is unclear. Given that
the reaction of cadmium(u) nitrate with ligand 8 can lead to
either a ladder or a (4,4) net, it seems unlikely that substitu-
ent effects are the dominant factor, and the preference is pos-
sibly associated with concentration effects. Concentration
effects are the well-established roots for the competitive for-
mation of metallomacrocycles versus metallopolymers.®* Of
relevance is our recent observation that, in the same crystalli-
zation vessel but in different zones resulting from different
concentration gradients, the assembly of the coordination
polymer [ZnCl,(L)], (L = 4'<(2',3',4',5',6"-pentafluorobiphenyl-4-
yl)-4,2":6",4"-terpyridine) competes with that of the metallo-
square [{ZnCly(L)},].>*

It is tempting to think that an octahedral {MX,N,} metal
centre (N = donor atom from a 4,2":6',4"-tpy ligand, X = ancil-
lary ligand) is predisposed to acting as a 4-connecting
node only if the ancillary ligands are mutually ¢rans. This
is not the case. The reactions of cadmium(u) nitrate with
7, 8 and 9 all lead to (4,4) nets, but in [{Cd,(NO3)4(7).}
-3CHCL], and [{Cdy(NO3)4(8),}-CHCl;-MeOH],, the nitrato
ligands are trans, while in [{Cd(NO;),(9),}-2MeOH],, they
are cis. Fig. 6 illustrates views through part of a sheet in
each of [{Cd,(NO;)4(8)s}-CHCl;-MeOH],, and [{Cd(NOs),(9),}
-2MeOH],, showing how trans/cis isomerisation at Cd
affects the profile of the net; the profile of the sheet in
[{Cd,(NO3)4(7)4}-3CHCL;],, mimics that in [{Cdy(NO3)4(8).}
-CHCl;-MeOH],, (Fig. 6a).

The structural similarities between the (4,4) nets in
[CdX,(3),]. (X = NOs, Br, I) and [CoCly(3),],,>® demonstrate
the use of cobalt(n) as an alternative to cadmium(u) for
increasing the dimensionality of architectures involving
4,2:6',4"-tpy linkers. The (4,4) nets in [{2Co(NCS),(2),-5H,0},[*
and [{Cd(NO;),(2),}-MeOH-CHCL;],”” mimic one another,
and reaction of Co(NCS), with 12 (Scheme 5) produces a
(4,4) net with a ‘ball-and-socket’ packing of adjacent

This journal is © The Royal Society of Chemistry 2015
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(b)

Fig. 6 Comparison of the profiles of the (4,4) nets in (a)
[{Cd2(NO3)4(8)4}-CHCl3-MeOH],, with trans-NOs~ ligands and (b)

[{Cd(NO3),(9),}-2MeOH],, with cis-NOs~ ligands. Nitrato ligands and
solvent molecules are omitted for clarity.

sheets involving CHyeepu " *Npyridine interactions.>® The
latter is an interesting example in which a change in
solvate causes a switch in packing of the (4,4) nets. In
[{4Co(NCS),(12),-MeOH}-H,0],, the sheets are equally
spaced (Fig. 7a) while in [{Co(NCS),(12),}-0.5H,0],,*’
adjacent sheets have alternating close and wide spacings
(Fig. 7b).

(b)

Fig. 7 Comparison of the packing of sheets in (a) [{4Co(NCS),(12),
-MeOH}-H,0l,, (CSD refcode FAKRIU),*® and (b) [{Co(NCS),(12),}
-0.5H,01,.%”

CrystEngComm), 2015, 17, 7461-7468 | 7465
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Expanding dimensionality using
ditopic bis(4,2":6',4"-tpy) and
bis(3,2":6',3"-tpy) ligands

The tool-kit of the supramolecular chemist is made richer by
the use of multitopic ligands, ie. ‘tying together’ metal-
binding domains in preorganized arrays. Ligands containing
multiple 2,2:6',2"-tpy metal-binding sites are invaluable for
accessing a range of exciting supramolecular architectures.*®
In contrast, ligands with multiple 4,2:6',4"- or 3,2":6',3"-tpy
are still little investigated. In 2013, Yoshida et al. demon-
strated the potential for such ditopic ligands in reactions of
13 or 14 (Scheme 6) with bis(3-cyanopentane-2,4-dionato)-
cobalt(n).>® Ligands 13 and 14 are both 4-connecting, and the
combination of bis(3-cyanopentane-2,4-dionato)cobalt(n) with
13 gives 2-dimensional nets that are triply interpenetrating.
The rather poor solubilities of bis(4,2":6',4"-tpy) ligands
with phenylene spacers can be rectified by introducing
solubilizing alkyl chains. This turns out to have an added
advantage: the octoxy tails in ligand 15 (Scheme 7) direct
the assembly of 2D—2D parallel interpenetrated sheets in
[{Zn,Cl4(15)}-4H,0], and [Zn,Br,(15)],.*>*" The interpenetra-
tion is lost when the long alkoxy chains are replaced by
methoxy groups in [{Zn,Br,(16)}-2C¢H,Cl,], and [{Zn,1,(16)}
-2.3C¢H,4CL,],, (see Scheme 7 for ligand 16). All four coordina-
tion polymers consist of similar (4,4) nets in which the ligand
(15 or 16) behaves as a planar, 4-connecting node. This is
illustrated in Fig. 8 for [{Zn,Br,(16)}-2C¢H,CL,],; the centroid
of each phenylene ring in 16 (i.e. the 4-connecting node in
the network) is shown in red in Fig. 8, emphasizing that the
zinc centres do not play a role in defining the connectivity of
the network. Each sheet in [{Zn,Cl,(15)}-4H,0],, [Zn,Br,(15)],,
[{Zn,Br,(16)}-2C¢H,CL,], and [{Zn,I,4(16)}-2.3C¢H,CL,],, has a
corrugated profile (Fig. 8b). In the coordination networks
with ligand 16, the MeO groups point above and below the
sheet, and sheets nest together with inter-sheet face-to-face
n-stacking interactions.*" In contrast, in [{Zn,Cl,(15)}-4H,0],

Scheme 6 Structures of the isomeric ligands 13 and 14.%°
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15 R = n-octoxy

16 R =Me

Scheme 7 Structures of the ditopic bis(4,2":6',4"-tpy) ligands 15
and 16.

and [Zn,Br,(15)],, the octoxy chains (in extended conforma-
tions) run through the plane of the sheet and play a
role in guiding the 2D—2D parallel interpenetration®® shown
in the TOPOS*? representation in Fig. 9.

In the examples above, the connectivity of the 2-dimen-
sional networks is entirely governed by the ditopic ligand,
and this is clearly seen in Fig. 8a. In contrast, the reaction of
1,4-bis(n-octoxy)-2,5-bis(3,2":6',3"-terpyridin-4'-yl)benzene, 17,
with Co(NCS), leads to a 3-dimensional network in which
both ligand and cobalt atom act as 4-connecting nodes. Effec-
tively, this combines the strategy of ‘going for higher

(a)

(b)
Fig. 8 (a) Part of one (4,4) sheet in [{Zn,Br4(16)}-2CsH4Cl,], with a
TOPOS representation of the net overlaid on the structure. (b) Side
view of the net showing the corrugated profile. The centroid of central
phenylene ring in 16 is shown in red (4-connecting node), and Zn
atoms in green.*

This journal is © The Royal Society of Chemistry 2015
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Fig. 9 2D—2D parallel interpenetration of (4,4) nets in [{Zn,Cl,(15)}-4H,Q0],
and [Zn,Br,(15)],,. 404

Planar 4-connecting =~Tetrahedral 4-connecting

Scheme 8 Bis(4,2":6',4")- or bis(3,2":6",3"-tpy) ligands 15 and 17 as
planar or ~tetrahedral 4-connecting nodes. Either ligand could adopt
either node-geometry.

Fig. 10 [Co(NCS),(17)-4CHCls],: (a) superimposition of the structure of
part of the assembly with a TOPOS®? representation, looking down
the b-axis; the octyl chains and H atoms are omitted for clarity; (b) the
{42.8% vt net with Co nodes in pink and ligand nodes (centroid of the
phenylene ring) in blue.

coordination numbers’ described in the previous section,
with the approach of using multiple metal-binding domains
introduced above. The rotational freedom of ligands 15 and
16, and of their 3,2":6',3"-analogues exemplified by 17, allows
them to act as 4-connecting nodes on a path that lies between
the limits of planar to approximately tetrahedral (Scheme 8).

This journal is © The Royal Society of Chemistry 2015
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Highlight

[Co(NCS),(17)-4CHCl,], adopts a 3-dimensional {4%.8"} Ivt net
(Fig. 10) in which the Co atom (with trans-thiocyanato
ligands) is a planar 4-connecting node, and ligand 17 is an
approximately tetrahedral 4-connecting node. The paucity of
{4*.8%} Ivt nets among MOFs makes [Co(NCS),(17)-4CHCl;], a
particularly noteworthy assembly.*>

Conclusions

The design of 2- and 3-dimensional networks in which the
linkers are divergent isomers of terpyridine is a rapidly
expanding area of research. Ultimate goals include MOFs for
gas adsorption, and photo- or redox-active networks. This
Highlight has demonstrated approaches to encourage the for-
mation of 2- and 3-dimensional architectures, thus moving
away from the 1-dimensional chains that pervaded earlier
investigations of the coordination chemistry of 4,2":6',4"-tpy.
Functionalization in the tpy 4'-position with, for example,
pyridyl, pyrimidyl or carboxylate donors is an approach
widely adopted. However, the ligand is not necessarily coordi-
nately saturated (the central pyridine ring of the tpy domain
being ignored in this definition of ‘saturated’) and the addi-
tion of co-ligands also complicates the design ‘plan’. Our
own strategies are two-fold: (i) to increase the coordination
number of the metal centre and retain potentially two-coordi-
nate, divergent 4,2":6',4"- or 3,2":6',3"-tpy linkers, and (ii) to
design ligands than contain multiple 4,2":6',4"- or 3,2":6',3"-tpy
domains. The latter strategy has proved to be particularly suc-
cessful, and one that is ripe for further development.
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