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Structure-directing factors when introducing
hydrogen bond functionality to metal-organic
frameworks+

Ross S. Forgan,*® Ross J. Marshall,® Mona Struckmann,® Aurore B. Bleine,?
De-Liang Long,® Maria C. Bernini® and David Fairen-Jimenez*®

The introduction of H-bond donor/acceptor functionality into metal-organic frameworks (MOFs) can have
a beneficial effect on their molecular recognition, uptake selectivity and catalytic properties. The changes
in ligand geometry induced by incorporation of functional groups may also affect the topology and com-
position of the resultant MOFs. Herein, we present a comprehensive study of functional group incorpora-
tion into MOFs, linked by either Zn®* paddlewheel units or monomeric Zn?* corners, which exhibit pcu
and dia topology, respectively. Crystallographic analysis shows that amide groups can be easily incorpo-
rated into isoreticular pcu pillared-MOFs, whilst integration of urea units results in materials with dia topol-
ogy. Molecular simulations allow the examination of hypothetical structures with differing constitutions and
topologies, and highlight the influence of the urea units in generating the experimentally observed topolo-
gies. Noncovalent interactions between independent nets may be significant structure-directing influences,
a finding which has great implications for the design of MOFs containing more complex functional groups.

1. Introduction

Metal-organic frameworks (MOFs)," crystalline network struc-
tures comprised of multitopic organic ligands, or struts,
linked by metal ions or metal clusters, have found application
in many areas as a result of their tunable functionality
and porosity, including, but not limited to, gas storage,>
molecular separations,’ catalysis,” drug delivery® and sens-
ing.® Enhancement of desired properties is often achieved
through functionalization of the MOF, either by post-synthetic
modification” or by installing functional groups into the con-
stituent ligands prior to MOF assembly. Pendant nucleophilic
groups, such as -NH, and OH moieties, are known to
enhance® CO, capture through strong interactions with the
quadrupolar moment of the gaseous substrate, and, in some
cases, through formation® of transient covalent bonds
between the MOF and the guest. Amide moieties incorporated
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into MOF struts give a convenient synthetic route to larger
linkers, and are known'® to enhance CO, capture through
favourable H-bonding and dipole-quadrupole interactions. A
diverse range of amide-containing MOFs has been prepared™*
in the last few years to take advantage of this improved affinity
for CO,. Incorporation'? of urea units into MOFs generates
heterogeneous organocatalytic species, which act as H-bond
donor centres to the substrate(s) in question.

Incorporation of hydrogen bond functionality directly into
MOF struts is clearly an attractive method for tuning and
enhancing desirable properties, and an isoreticular series of
frameworks containing differing functional groups would
offer insight into the individual effect of each moiety on
properties such as gas uptake and molecular recognition.
Amide and urea units, however, bring the added complica-
tion of altering ligand geometry when compared to
unsubstituted control ligands, with deviations of the disposi-
tion of the donor units from linearity that may influence the
structure of the resultant MOFs.

In order to examine the effect of introducing hydrogen
bonding units into MOFs on their topologies in a sequential
manner, we have initially chosen the family of so-called
pillared"® MOFs - structures comprised of two dimensional
sheets of diacids linked by dimeric Zn(u)-paddlewheel
secondary building units (SBUs) that are connected in
the third dimension by nitrogen donor pillars in the pcu
topology - as a system that allows the sequential incorpora-
tion of increasing numbers of functional groups. A series of
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functionalised diacid ligands (L1-2H-L3-2H) and pillars
(P1-P3) has been collated (Fig. 1a) and, using the known'*
compound [Zn,(L1),(P1)], as a basic starting point (Fig. 1b),
the structures of four new resultant MOFs are reported. Of
these structures, two of them show a pcu topology, whereas
the two other structures, obtained with a pillar (P3) that
includes the urea unit, exhibit a dia topology. In addition to
these four materials obtained experimentally, we have built a
series of new hypothetical structures of varying compositions
and topologies in order to analyse the geometries and inter-
actions between ligands and pillars present in both pcu and
dia topologies. Density functional theory calculations have
been used previously to examine the energy landscapes
of MOFs" as well as their physical properties.'® However,
since these calculations are computationally expensive, we
followed'” a classical simulation approach that allowed us
to easily obtain the new hypothetical constructs and examine
their structures.

2. Results and discussion

In addition to the known structure [Zn,(L1),(P1)],, four
further MOFs were isolated"® after solvothermal treatment
(see experimental section) of mixtures of [Zn(NO;),]-6H,0, a
diacid ligand and a pillar in N,N'-dimethylformamide (DMF),
and their structures elucidated by single crystal X-ray dif-
fraction (Table 1). While the first two structures using the
unfunctionalised and monoamide functionalised ligands
and pillars showed the same Zn-paddlewheel units and pcu
topology as the parent [Zn,(L1),(P1)], precursor, the two
other structures, using the urea-functionalised P3 pillar,
showed a monomeric Zn”>* metal corner and a change into a
dia topology.

The first compound, 1, [Zn,(L1),(P2)],, forms through
the combination of the unsubstituted ligand L1 and the

COMDb)

i s Bh ZnaL1)P1)],

Fig. 1 a) Structures of the diacid ligands (L1-2H-L3-2H) and di-pyridyl
pillars (P1-P3) examined in this study. b) Portion of the solid-state
structure of [Zn;(L1),(P1)],, the basic framework upon which the work
is based. Redrawn from CCDC deposition FEFCUQ with hydrogen
atoms and disorder omitted for clarity.
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monoamide functionalised pillar P2 with Zn>*, and exhibits
the same pcu topology as the base structure, with paddlewheel
SBUs connecting the diacids in two-dimensional sheets along
the ab crystallographic plane and dipyridyl pillars linking
the sheets along the ¢ axis. In common with the parent,
unfunctionalised species, the MOF shows two-fold interpene-
tration, but the introduction of the amide moiety into the pil-
lar results in a change in orientation of the SBUs with respect
to one another. The near rectangular arrangement of SBUs
seen across the Zn>'-L1 sheets in the unfunctionalised
analogue is distorted to a parallelogram arrangement in
[Zn,(L1),(P2)],, with inter-SBU angles of 75.8° and 104.2°.
The offset introduced (Fig. 2a) by the amide unit in P2 also
results in distortions down the c¢ axis, along which the pillars
link the sheets, with inter-SBU angles of 74.6°, 79.7°, 100.3°
and 105.4° deviating significantly from right angles. Each
amide unit forms (Fig. 2b) a hydrogen bond to an ordered
DMTF solvent molecule, from the amido NH to the formamide
CO, at a N---O distance of 2.79 A, with flanking CH---O inter-
actions from the B-aromatic CH units of each ring to the
formamide oxygen atom (C--O = 3.12 A, C--O = 3.38 A)
supporting the molecular recognition of the substrate. The
carbonyl oxygen of the amide moiety in P2 is also involved in
a CH---O interaction, with P2 linkers from individual nets
forming reciprocal dimers (C---O = 3.35 A) that ensure the
close proximity of the two interpenetrated nets of pcu topol-
ogy (Fig. 2¢).

Compound 2, [Zn,(L2),(P1)],, has an amide functionality
incorporated in its acid linker, L2, rather than in the pillar,
which is the unfunctionalised P1. A structure analogous to
the previous examples again forms; a 2-fold interpenetrated
pcu material (Fig. 2¢), with Zn>* paddlewheel SBUs linking
the ligands. In a manner similar to 1, the arrangement of
SBUs in the Zn>**-L2 plane is distorted from the parent struc-
ture, with inter-SBU angles of 70.1°, 70.3°, 109.1° and 110.4°
resulting from the offset nature of amido-substituted L2. The
unsubstituted pillar P1 links the sheet at angles close to 90°,
however, in a manner similar to the parent structure (Fig. 2d).
The sheets of acid ligands adopt an alternating arrangement
(Fig. 2e), likely induced by a complementary pair of short
CH---O contacts (C---O = 3.34 A) between the amide oxygen of
one molecule of L2 and an aromatic CH of another from the
second, interpenetrating net. Half of the L2 units are involved
in this interaction, while the other half form a bifurcated
hydrogen bond to an ordered DMF guest, with the amido NH
and one aromatic 3-CH forming interactions with the form-
amide CO (N---O =2.96 A, C---O = 3.34 A).

In contrast to the previous structures, compound 3,
[Zn(L1)(P3)],, obtained through the introduction of the urea-
functionalised pillar P3 to the synthesis, results in an alto-
gether different structure and topology. Instead of the dimeric
paddlewheel SBU, a monomeric Zn>" cation coordinates
(Fig. 3a) two carboxylic groups of two unsubstituted L1 mole-
cules and two N donors of two molecules of P3, forming a
distorted octahedral coordination sphere that yields a distorted
tetrahedral 4-connected node, with inter-SBU angles of 95.1°,

This journal is © The Royal Society of Chemistry 2015
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Table 1 Crystallographic data for compounds 1-4

Compound 1 Compound 2 Compound 3 Compound 4
Formula Cs57Hg7NgO15Zn, Ce4HgoN1,0137Zn, C37H 6NgO9Zn C33H47NgO19Zn
Mass (FM) 1248.93 1438.15 812.19 855.21
Crystal size (mm) 0.408 % 0.356 x 0.142 0.536 x 0.262 x 0.145 0.100 % 0.050 x 0.040 0.110 x 0.080 x 0.050
T (K) 150(2) 150(2) 150(2) 150(2)
Crystal system Triclinic Monoclinic Monoclinic Monoclinic
Space group P1 P24/c P2,/n P24/c
a(A) 15.1431(6) 19.7220(5) 16.381(3) 14.529(2)
b (A) 15.2322(6) 28.0588(6) 14.170(3) 16.543(2)
c (A) 16.0597(4) 28.0835(4) 19.415(4) 21.125(3)
a(®) 98.484(2) 90 90 90
B9 102.682(2) 94.423(2) 104.25(3) 104.305(9)
7 (9) 104.206(3) 90 90 90
V(A% 3423.1(2) 15 494.4(6) 4367.9(16) 4919.8(12)
zZ 2 8 4 4
p (g ecm™) 1.212 1.233 1.235 1.155
F(000) 1304 6032 1704 1792
0 range (°) 2.818-25.772 2.880-26.000 1.926-25.764 1.971-25.132
Reflections 54284 125275 70868 26904
Independent reflections 13023 30417 8546 12472
Rine 0.0360 0.0624 0.0960° 0.0876
GOOF (F?) 1.062 1.054 1.086 1.098
Final R indices [I > 20(I)] R; = 0.0662 R; = 0.0812 R, = 0.0905 R; = 0.1026
WR, = 0.2062 WR, = 0.2480 WR, = 0.2450 WR, = 0.2844
Final R indices (all data) R, =0.0759 R, =0.1393 R, =0.1336 R, =0.1688
WR, = 0.2157 WR, = 0.2952 WR, = 0.2956 WR, = 0.3282

“ Twin abs correction applied.

Fig. 2 a) Portion of the solid-state structure of [Zn,(L1),(P2)],, showing the disposition of the SBUs induced by the amide pillar. b) The molecular
recognition of a DMF solvate molecule by the amide unit of P2, which also forms a complementary H-bonded pair with a P2 unit of a separate
net. c) The pcu topology present in both 1 and 2 with an inset showing the connection in the third dimension. d) Portion of the solid-state struc-
ture of 2, which has a more regular arrangement of SBUs compared to 1. e) Packing diagram of one of the two interpenetrated nets of
[Zn,(L2),(P1)],,, viewed down the crystallographic c axis, showing the alternating pattern of L2 linkers.

95.1°, 101.6°, 110.0°, 110.0° and 140.0° deviating significantly  are interpenetrated (Fig. 3b), with DMF solvent molecules
from the ideal 109.5°. Four identical diamondoid (dia) nets  occupying significant rectangular channels (Fig. 3¢) running

This journal is © The Royal Society of Chemistry 2015 CrystEngComm, 2015, 17, 299-306 | 301
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Fig. 3 Representations of the crystal structure of [Zn(L1)(P3)],. a) The
four-connected Zn?* node which connects the ligands. b) Packing
structure showing the four-fold interpenetration of the material, with
each net coloured differently. c) An alternative view of the packing
structure to show the one dimensional channels that run down the
crystallographic b axis. d) The hydrogen bond interaction between a
urea proton of P3 and a carboxylic oxygen atom of L1 in an adjacent net.

down the crystallographic b axis, which may impart perma-
nent porosity on the framework if successfully removed with-
out collapse. Interestingly, the structure shows an important
interaction between the interpenetrated nets (Fig. 3d),
through a H-bond between a urea NH of each P3 and a car-
boxylic O of each L1 (N---O = 2.97 A). This is also manifested
in the distorted Zn-O bond lengths, with distances of 2.564
and 1.951 A for the H-bonded and the non-interacting
oxygens of the carboxylate, respectively.

In common with 3, compound 4, [Zn(L2)(P3)],, forms an
interpenetrated dia topology, with a distorted octahedral Zn>*
coordination sphere consisting of two molecules each of L2
and P3. The amido-functionalised ligand L2 is disordered
across two positions, with the offset of the amide moiety
resulting in large thermal ellipsoids for the adjacent aromatic
carbon atoms of the ligand. Compared to 3, the structure is
also four-fold interpenetrated, with slightly smaller but still
distinct one-dimensional channels running down the crystal-
lographic a axis. Disorder in both the solvent and the amide
unit make intermolecular interactions difficult to ascertain
but, as in compound 4, a bifurcated interaction between the
NH units of the urea pillar P3 and a carboxylic O atom from L2
in an adjacent net is observed (N---O = 2.76, N---O = 2.85 A).
Again, the H-bonding is reflected in the Zn-O bond dis-
tances, with values of 1.979 A and 2.566 A for the non-
interacting and H-bonded oxygen atoms, respectively. Differ-
ent nets also interact via n-n stacking between pyridino rings
of adjacent molecules of P3, at a distance of 3.27 A.

Some trends are noticeable from the structural data of these
four compounds. The introduction of the urea-functionalised
pillar P3 gives MOFs of a dramatically different dia topol-
ogy compared to the pcu topology seen for both the
unfunctionalised parent structure and the two amide-
containing frameworks. Presumably, the bent nature of the
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urea moiety, which results in the non-linear (ca. 160°) dis-
position of the N-donors of the pyridyl units of P3, makes the
dia topology more favourable. While the four compounds
have structures comprising interpenetrating nets, those
based on the longest pillar P3 lead to the formation of a
more open framework and a higher degree of interpenetra-
tion, i.e. four-fold interpenetrated dia nets, classified as Illa
type. On the contrary, those composed of shorter pillars P1
and P2, give only two-fold interpenetrated pcu-nets, corre-
sponding to class ITa."® This is in agreement with the origin
of interpenetration, since it can be ascribed to the presence
of large free voids in a single network?® and it is well known
that one effective way to increase the number of interpen-
etrating folds is to extend the length of the ligand sustaining
the framework (Fig. 4).>"

The introduction of functional groups into the frameworks
results in H-bonds between the urea NH of each P3 and a car-
boxylic O of each L2 or L1, for compounds 3 and 4 respec-
tively, of adjacent nets in the solid-state interpenetrated
structures, possibly acting as structure-directing effects.>”
Unmasking these functional groups to act as substrate bind-
ing sites would necessitate breaking of these interactions
during activation. It should also be noted that choice of sol-
vent can affect the structures formed by these functionalised
ligands and pillars. A hydrothermal synthesis involving L1,
P1, Zn>** and base has been shown, by Rietveld refinement of
powder X-ray diffraction data, to yield>* a non-porous coordi-
nation polymer, with five-fold interpenetrated dia topology,
while a solvothermal synthesis using L2, P1 and Zn** in aque-
ous DMF gave®” a triply interpenetrated structure linked by
an alternative paddlewheel SBU into an elongated pcu

Fig. 4 a) Crystal packing in the solid-state structure of [Zn(L2)(P3)],
viewed down the crystallographic a axis to show one-dimensional
pores. b) A bifurcated hydrogen bonding interaction in the crystal
structure, between the urea unit of P3 and a carboxylic oxygen atom
of a molecule of L2 from an adjacent net. c) The four-fold inter-
penetrated dia topology, with inset, adopted by both [Zn(L1)(P3)], and
[Zn(L2)(P3)],.

This journal is © The Royal Society of Chemistry 2015
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topology with overall formula [Zn(L2)(P1)],. In this regard,
the pcu topology has a higher degree of interconnectivity
compared to the dia topology, and therefore higher metal-
ligand interactions that in the absence of additional external
factors may provide robustness to the framework as well as
minimise the energy. Higher metal-ligand interactions and,
consequently, higher node-connectivity are frequently associ-
ated with increasing synthesis temperature,”® which, in turn,
favours the formation of thermodynamically more stable
phases.?®

In an attempt to rationalise the formation of the different
topologies and to understand the effect of functional group
incorporation on materials properties, we turned to molecu-
lar simulations in order to build hypothetical new structures
corresponding to the synthesised materials with swapped
linkers, i.e. allowing us to examine the arrangement of
ligands and pillars in topologies in which they are not
observed experimentally. That is, compound 1 was used as a
parent structure of three new hypothetical ones using the
ligand and pillar combinations of compounds 2-4, and this
was repeated for each experimental structure. Therefore,
from the initial 4 structures we built 12 new ones, named as
[X-(L)(P)]*, where X is the mother structure, L and P corre-
spond to the ligands and pillars used according to Fig. 1,
and * denotes a computational structure. The strategy is
similar to the methodology we have used previously for rht
topology'” and alternative pillared MOFs."** We start with
the asymmetric unit of every mother structure, maintaining
the metal cluster (i.e. Zn paddle wheel or Zn), the pcu or dia
topology as well as the corresponding group symmetry, but
we swap the organic linkers. After the asymmetric units are
modified, the symmetry operations of the space group allow
the construction of the new structures. The unit cells are
then subject to energy minimisation and geometry optimisa-
tion based on molecular mechanics, which include van der
Waals and electrostatic interactions, modifying the size
of the unit cells and the atomic coordinates of the new
structures.

Interestingly, pcu topology hypothetical structures built
with the L1 and L2 ligands and P3 pillar (i.e. those with the
constituents of the dia topology structures 3 and 4) do not
show any H-bonding between the urea moieties of each P3
and carboxylic units of either L1 or L2. This observation con-
trasts with the experimental dia compounds 3 and 4, which
show these close interactions. Fig. 5 illustrates how, in the
case of the hypothetical [1-(L1)(P3)]* structure, the urea NH
groups from P3 point to the centre of the main cavities, pre-
cluding any possible interaction with L1. This observation
reinforces our hypothesis about the importance of the
H-bonds between adjacent nets present in compounds 3 and
4 in the formation and stabilisation of MOFs with dia topol-
ogy instead of pcu. Indeed, it suggests that dia topology is
effectively allowed and preferred when the urea moiety is
incorporated into the pillar.

The fact that compounds 3 and 4 show a higher degree of
interpenetration is not unexpected, since the dia topology is

This journal is © The Royal Society of Chemistry 2015
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Fig. 5 a) Crystal packing of and b) detail of the solid-state structure of
[1-(L1)(P3)]*. Ligands L1 have been simplified for clarity and are repre-
sented in purple in (a). Note that the urea protons of P3 are pointing to
the centre of the cavity and not to the carboxylic group of L1.

the most preferred one for interpenetrating frameworks.
This is because these arrays can be more easily assembled
from tetrahedral coordination centres than from octahedral
(in particular, most of the arrays with high interpenetration
degree Z > 6 are diamondoid). The most abundant topolo-
gies are the most symmetrical ones because they provide the
most isotropic medium during crystallization. For instance,
the diamond net has the automorphism group isomorphic to
the Fd3m space group and may have an infinite number of
distorted geometrical realizations (embeddings) of the space
group symmetries corresponding to subgroups of Fd3m. As it
was demonstrated, any pair of nets can interpenetrate in
some embedding, but in crystals there are physical reasons
(like the condition of close packing), which essentially
restrict possible combinations of interpenetrating nets.>’
These observations support once more the importance of
these interactions between interpenetrated structures and the
possibility of the urea acting as a structure-directing agent.
To investigate the propensity for urea moieties to form
noncovalent interactions with carboxylate units in the solid
state, we examined existing structures deposited with the
Cambridge Structural Database.>® Using a fragment-based
search approach, 16 crystal structures, ranging from 1D coor-
dination polymers to 3D MOFs, were identified, all of which
containing both a carboxylate group coordinated to a metal
and a N,N'’-disubstituted urea function in an extended net-
work. Of these 16 structures, 10 contained H-bonding

CrystEngComm, 2015, 17, 299-306 | 303
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interactions between urea NH units and carboxylate oxygen
donors; eight involved interactions between individual rib-
bons of one dimensional coordination polymers*® and two
between distinct two dimensional grids.>*° Significant hydro-
gen bonding interactions were also present in the remaining
structures, between different coordination polymer strands
(three by urea-urea hydrogen bonded tapes,** and one through
hydrogen bonding with a terminal water ligand>*°) as well as
H-bonding to solvent (two examples with sterically constrained
ligands'***') and one example of hydrogen bonding to nitrate
counterions as well as to carboxylate units.>* In all but two
of these cases, the urea groups of individual ribbons, sheets
and nets form significant H-bonding interactions with adja-
cent ribbons, sheets and nets. The abundance of these
noncovalent contacts in the solid-state structures of coordina-
tion polymers indicates they represent a significant structure
directing influence, and may explain the preference for 3 and
4 to adopt the dia topology.

In order to compare the textural properties of the
synthesised and hypothetical compounds, we first measured
their geometrical surface area” by rolling a 3.681 A-diameter
sphere, which corresponds to a nitrogen molecule, across the
surface of the material. The pore size distributions (PSD)
were calculated by recording the largest sphere that can fit in
a random point within a structure without overlapping the
van der Waals surface of the framework.?® In addition, we
calculated the N, adsorption isotherms at 77 K of the
synthesised materials using grand canonical Monte Carlo
(GCMC) simulations®* to predict their potential adsorption
performance. Table S11 shows the geometrical surface area
of all the materials. Fig. 6 shows the simulated N, adsorption
isotherms and the geometric PSD. Geometrical surface areas
of all the synthesised compounds are very similar, with
values ranging from 2000 and 2400 m* g™*, and all four com-
pounds present microporous cavities with diameters ranging
from 6 to 8 A. The simulated N, isotherms each present a
type I shape and show total pore volumes between 0.65 and
0.77 cm® g~'. The textural properties (e.g. PSD, geometrical
surface area and total pore volume) are directly related, with
compound 2 showing the largest PSD, geometrical surface
area and total pore volume, followed by 1 and 4. In addition,
the N, adsorption isotherm of compound 2 is displaced to
higher relative pressures when compared with the other
isotherms. The shape of the adsorption isotherms is related
to the balance between the strength of the fluid-fluid and
fluid-solid interactions, which in turn is a strong function of
the length of the linker and therefore the pore size.*®

3. Conclusions

We have utilised a combination of crystallographic and com-
putational analyses to investigate the systematic incorpora-
tion of amide and urea functional groups directly into metal-
organic frameworks with pcu and dia topology. Introduction
of amide units is tolerated within the pcu topology (compounds
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Fig. 6 a) GCMC simulated adsorption isotherms of N, at 77 K,
b) geometric pore size distribution of the synthesised compounds. The
table shows the geometrical surface area, pore size distribution (PSD)
and total pore volume of the synthesised compounds.

1 and 2). However, integration of urea functional groups was
not found to be possible under the synthetic conditions
examined and led to the isolation of four-fold interpenetrated
networks of dia topology with different compositions and
SBUs (compounds 3 and 4). The comparison of hypothetical
computationally created and experimental structures has
shown that the presence of significant hydrogen bonding
interactions between urea moieties of the pillars and carbox-
ylate groups of the acidic linkers may contribute to the for-
mation of the dia topology found in structures 3 and 4.
Prediction of MOF topology and structure from a certain
combination of ligands and metals remains difficult but
possible,36 with control over variables such as solvent,
temperature and concentration required. Our results demon-
strate that noncovalent interactions between linkers may be
significant structure-directing factors, which has implications

This journal is © The Royal Society of Chemistry 2015
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for the integration of functional groups into MOFs to alter
molecular recognition and catalytic properties.

4. Experimental

All the frameworks described were prepared by dissolution
of the ligand, pillar and [Zn(NO;),]-6H,O in DMF, with
crystallisation induced by heating the colourless solution in a
sealed vial for a period of approximately 2-5 days. Detailed
descriptions, alongside ligand syntheses and computational
details, are given in the ESI.{ CCDC 1011797-1011800 contain
the supplementary crystallographic data for this paper.
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