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One-dimensional coordination polymers of alternating metal—metal
bonded trinuclear [Cos(dpa)sl?* (dpa = the anion of 2,2'-dipyridyl-
amine) building blocks and [ReFgl®>~ (1), [ZrFel>~ (2) or [SnFel®~ (3)
linkers have been self-assembled and crystallographically characterized.
Magnetic measurements reveal a significant ferromagnetic coupling
(J/ks = +9.9 K) between S = 1/2 {Cos°*} and S = 3/2 Re'V magnetic
sites through a single, unsupported fluoride bridge in 1.

One-dimensional metal-ligand coordination polymers are of
particular interest in the molecular magnetism community for
their potential as single-chain magnets (SCMs)." Because the
stereochemistry around the metal ion determines the topology of
coordination-driven self-assembled systems, a simple approach
to magnetic linear polymers entails the use of paramagnetic
metal complexes possessing two empty, or at least kinetically
labile, coordination sites. These acceptors can then be associated
into chains using paramagnetic linkers with two donor sites, the
most common of which have been trans-cyanidometallates.”
Possessing rich magnetic and electronic properties, in addition
to axial geometry, paddlewheel complexes are attractive building
blocks for the construction of linear one-dimensional systems.
Indeed, many dinuclear metal ion tetracarboxylates, e.g. {Cr,*"},
{Cu,*}, {Rh,*"} and {Ru,**}, have strongly Lewis acidic axial sites
and form extended chain structures in the absence of exogenous
ligands by coordination of a carboxylate oxygen atom to the axial
position of an adjacent molecule.”> On the other hand, copper
and zinc paddlewheels have been extensively used in the
formation of three-dimensional metal-organic frameworks,*
while one-dimensional coordination polymers using exogenous
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spacers and {Rh,""},” {Cu,*"},® {Re,**},” {Zn,**}® units are also well
represented. Of particular note are magnetic systems, some quite
sophisticated, constructed of {Ru,>’} (S = 3/2)° and {Ru,**} (S = 1)"°
building blocks and which display remarkable properties.

We here turn our attention to Extended Metal Atom Chains
(EMACs), which contain three or more metal ions typically
supported by oligopyridylamines." While dinuclear divalent
paddlewheel complexes are often diamagnetic, EMACs tend to
have an odd number of metal centers and to be paramagnetic.
This is due to a variety of factors, including an odd number of
electrons, accidental degeneracy of frontier orbitals, or dissymmetry
in the linear complex giving rise to an isolated high-spin metal ion.
However, with the exception of a few coordination polymers based
on [Niz(dpa),]*,"* EMACs have rarely been used to build extended
systems.

The [Cos(dpa)s]** unit (Chart 1) is expected to be a useful
building block, based on the interesting physical properties of
the [Cojz(dpa),Cl,] analogue. Its core consists of three aligned
cobalt metal ions possessing a delocalized 3-electron 3-center
bond, and depending on crystal packing effects, the spacing of the
Co ions can be equal (as in the orthorhombic [Coz(dpa),Cl,]- CH,CL,
phase), or unequal, (as in the tetragonal [Cos(dpa),CL,]-2CH,Cl,
phase)."”® Both forms show a spin-crossover (SCO) process from
S =1/2 to S = 3/2 or 5/2. Remarkably, the one electron oxidized
compound, [Cosz(dpa),Cl,](BF,) undergoes a two-step SCO, from
S=0toS=1toS=2.""Finally, the axial chloride ligands can be
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Chart 1 Schematic representation of the [Cos(dpa)4l®* unit.
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cleanly removed from [Co;(dpa),Cl,] using silver salts, generating
MeCN," BF, ,"® CN, N(CN),”~ or NCS™ *” adducts. Nonetheless,
[Cos(dpa),]** has not been widely used in extended structures, even
if organization into rigid multi-dimensional systems is an appealing
strategy to introduce cooperativity in the SCO process and thus
to generate possible spin transition phenomena. Recent work
by Shatruk and coworkers on putative 2D grids formed by four
ditopic [Cos(dpa),*" units coordinated to [Co(CN)e]*~ or [Fe(CN)s]*~
is the only example of the assembly of [Cos(dpa),]** units into
extended networks.'® Unfortunately, these materials could not
be crystallographically characterized.

In order to obtain 1:1 neutral chains, we have selected the
dianionic metalloligands [ReFe]*~, [ZtFo]>~ and [SnFe]*~ to link
the [Cos(dpa),J** building block. (PPh,),[ReF,]-2H,0 was recently
reported to exhibit a pronounced magnetic anisotropy,'® a
property that was retained in 1D coordination polymers featuring
{M"-F-Re"} linkages. Furthermore, the [Ni(viz),(ReF)] (viz =
1-vinylimidazole) chain additionally exhibits relatively strong
fluoride-mediated ferromagnetic coupling between the Re™
and Ni" magnetic sites (J/kg = +17 K; H = —2JS,S, Hamiltonian
definition).

Notably, (PPh,),[ReFs]-2H,0 can be dehydrated without decom-
position and subsequently recrystallized to afford (PPh,),[ReFs]:
MeCN, (ESIt) which is a convenient starting material for assembly
reactions with moisture sensitive building blocks. The combination
of equimolar solutions of in situ formed [Coz(dpa)y(BF,),] and
(PPh,),[MFs] (M = Re", Zr'" and sn") immediately gave a dark
precipitate, insoluble in all common solvents. In order to obtain
crystals, a dilute solution of (PPh,),[MF,] in MeCN was layered on a
DMF solution of [Cos(dpa)y(BF,),] in a thin tube and left to slowly
diffuse over several weeks.} Green blocks of [Co(dpa),(ReFg)]-2DMF
(1), [Cos(dpa)4(ZrFe)]-2DMF (2) and [Cos(dpa),(SnFe)]-2DMF (3) were
obtained in moderate yield. Powder X-ray diffraction revealed the
presence of only one phase and thermal gravimetric analysis was
consistent with the presence of two DMF molecules (ESIt).

Compounds 1-3 are isostructural. They crystallize in the
space group P4/ncc (Table S1, ESIt) with the four-fold axis
coincident with the rigorously linear Co-F-M axis. The chains
are racemic, being made up of alternating 4 and A [Cos(dpa),]**
helicoidal moieties (Fig. 1). A small disorder is found with
respect to the wrapping of the dpa™ ligands, and each position
is occupied by ca. 80% of one enantiomer and 20% of the other.
The {Co;%} core is slightly asymmetrical with differences in
Co-Co distances of 0.008(1), 0.013(1) and 0.013(1) Ain 1,2 and 3,
respectively (at 200 K; Table 1). Surprisingly, the Co-F distances
are quite unequal, with differences of 0.066(4) A (1), 0.059(4) A (2)
and 0.069(4) A (3), with the longer distance associated with the
terminal cobalt engaged in the longer Co-Co bonding inter-
action. This asymmetry is however not reflected in the two
individual M-F,, distances, which are distinctly and equally
elongated due to their coordination to the Co centers (Table 1).

Magnetic susceptibility measurements were performed on
polycrystalline samples of 1-3 between 1.85 and 300 K. At room
temperature, the yT product of 1 amounts to 2.4 cm® K mol ™,
slightly higher than the theoretical value of 1.97 cm® K mol " for
isolated § = 1/2 ([Coz(dpa)4]**, g = 2.35, C=0.52 cm® K mol ") and
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Fig. 1 Thermal ellipsoid plot of [Cos(dpa)4(ReFg)]-2DMF (C: grey; F: green, Re:
light grey; N: light blue; Co: blue). Ellipsoids are shown at the 50% probability
level. Hydrogen atoms and solvent molecules have been omitted for clarity.
Only one of two orientations of the disordered molecule is shown.

Table 1 Selected bond distances (A)

1 2 3
Co1-Co3 2.270(1) 2.275(1) 2.275(1)
Co02-Co3 2.278(1) 2.288(1) 2.288(1)
Col-F1 2.115(4) 2.097(4) 2.104(4)
Co2-F2 2.181(4) 2.156(4) 2.173(4)
M-F1 1.962(4) 2.037(4) 2.002(4)
M-F2 1.970(4) 2.044(4) 2.009(4)
M-Feq 1.931(3) 1.973(3) 1.928(3)

S =3/2 ([ReFg]* ", g = 1.76, C = 1.45 cm® K mol ') spins (Fig. 2).
On lowering the temperature, the 7T product increases steadily,
with a more abrupt increase below ca. 30 K eventually reaching
9.6 cm® K mol " at 1.85 K, suggestive of a significant ferromagnetic
coupling between {Co;%} and Re"™ magnetic sites. The data were
fit to a Seiden model®® derived from the exchange-coupling

A~ N ~ A A
Hamiltonian H = —2J " (§; - (S; + Si+1)), where §; and S; repre-
=

sent spin-operators of {Co;°} and Re", yielding g = 2.05(5) and
Jlkg = +9.9(1) K. As expected, this average g value falls in between
the previously reported values for [Cos(dpa),Cl,] CH,Cl, (g = 2.35)"
and (PPh,),[ReFq]-2H,0 (g = 1.76)."° Compounds 2 and 3,
possessing diamagnetic [ZrFq]*~ and [SnFe]*~ linkers, show
an almost temperature independent y7 product between about
50 and 300 K. The low temperature decrease of the y7T product
is likely due to weak antiferromagnetic coupling between the
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Fig. 2 Temperature dependence of the 4T product for 1 (O), 2 (Q) and 3
(©) at 1000 Oe (y is defined as molar magnetic susceptibility equal to M/H).
The red lines are the fits discussed in the text.
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{Co;°"} centers through the diamagnetic linkers, and fitting the
data to a regular quantum s = 1/2 spin chain model®" derived

from the Hamiltonian H = —2J %ﬁf - 8i+1 yields J/kg = —1.0 K
i=1

for 2 while magnetic interactions are virtually undetectable

above 1.85 K for 3 (with g = 2.36 for both). The difference in

the magnetic coupling between 2 and 3 may be attributed to the

lack of empty d orbitals in Sn' to mediate a superexchange

interaction, in contrast with zr'V in 2.

The magnetic behaviour of these coordination polymers is
significantly different to that of their building units. For
example, the parent compound [Cos(dpa),Cl,]-CH,Cl, demon-
strates a SCO event above 200 K."* No such thermal behaviour
is observed in 1 and 3 up to 300 K, while for 2, an onset of what
may be a SCO event appears reversibly above 250 K. However,
above 300 K, a rapid and irreversible rise in the T product of
these compounds was observed in concert with DMF loss.
Therefore, the assembly of ostensibly SCO [Co,(dpa),J*" units with
[MF,*~ linkers into chains increased the SCO temperature to
inaccessible temperatures without evidence of cooperativity increase.
As previously reported, the [ReFg]*~ anion in (PPhy),[ReF]-2H,0
displays single-molecule magnet (SMM) properties, a behavior which
is retained upon assembly of [ReF¢[”~ units by diamagnetic linkers."®
In 1, slow dynamics of the magnetization were not detected by
ac susceptibility (in zero-dc or applied dc field, up 10 kHz and
down to 1.8 K). As we previously discussed,'®** an electronic
elongation of the [ReF¢]*~ octahedron, while keeping the tetra-
gonal symmetry implies the axial zero-field splitting parameter,
D, to be positive. Therefore, despite relatively strong intra-chain
ferromagnetic interactions, magnetic bistability, e.g. single-chain
magnet behavior," is not expected nor experimentally observed
in the present system.

In summary, the metal-metal bonded [Cos(dpa),]*" moiety has
been used for the first time as a building block in a structurally
characterized coordination network leading to one-dimensional
extended architectures. These unique systems pave the way toward
the synthesis of new bistable coordination networks incorporating
metal-metal bonding clusters with spin-crossover or spin-transition
properties.

This work was supported by the CNRS, the University of
Bordeaux, the Conseil Régional d’Aquitaine, the ANR and the
Erasmus Mundus European program for a PhD fellowship of
VB. ]B acknowledges support from The Danish Research Council
under grant 12-125226. KSP thanks The Danish Research Council
for a DFF | Sapere Aude: Research Talent award (grant 4090-00201).
The authors thank L. Favello for crystallographic assistance,
P. Dagault for TGA analysis, E. Lebraud for PXRD and C. Mathionére
and D. Samohvalov for technical assistance.

Notes and references

i General synthesis of [Coz(dpa)s(MFe)]-2DMF, 1-3: [Cos(dpa),Cl,]
(50 mg, 0.05 mmol) and AgBF, (20 mg, 0.10 mmol) were combined in
10 mL of DMF in a glovebox. The mixture was stirred overnight and
filtered. Anhydrous (PPh,),[MFs] (1 eq.) was dissolved in 10 mL of
MeCN. The MeCN solution was layered upon the DMF solution, separated
by a 1:1 mixture of DMF : MeCN in glass tubes (200 mm, ¢f 10 mm). Dark
green blocks were collected from the walls of the tubes after 4 weeks.
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[Cos(dpa)s(ReFq)]-2DMF, 1. Yield 30.2 mg (46%). FT-IR (v, cm™'): 657,
740, 761, 885, 1024, 1089, 1153, 1283, 1314, 1366, 1421, 1457, 1466, 1550,
1595, 1606, 1668. Elemental anal. for C,oH;z,C03FsNy,Re-2(C;H;NO), %
cale. C 42.37, H 3.56, N 15.04; % found C 42.48, H 3.52, N 15.26.
[Cos(dpa)s(ZrFe)]-2DMF, 2: yield 35.1 mg (58%). FT-IR (v, cm '): 656,
741, 763, 885, 1025, 1084, 1152, 1284, 1316, 1363, 1421, 1459, 1471, 1550,
1596, 1606, 1671. Elemental anal. for C,oH3,C03F¢N1,Zr-2(H,0) % calc. C
43.72, H 3.30, N 15.30; % found C 43.86, H 3.52, N 15.32. [Co,(dpa),(SnFy)]-
2DMF, 3. Yield 32.2 mg (53%). FT-IR (v, cm™): 656, 740, 761, 884, 1024,
1084, 1150, 1280, 1315, 1363, 1421, 1457, 1470, 1551, 1596, 1606, 1671.
Elemental anal. for C,,H3,C03F¢N;,Sn-(C3H,NO)(H,0) % calc. C 43.72,
H 3.50, N 15.41; % found C 44.30, H 3.76, N 15.15.
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