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An efficient and general copper()-catalyzed silylation of p-quinone-
methides is described. Non-symmetric dibenzylic silanes are obtained
in high yields under mild reaction conditions. These compounds can be
used as bench-stable benzylic carbanion precursors.

para-Quinone methides are reactive intermediates formed by a
cyclohexadiene moiety in para-conjugation with a carbonyl group
and an exo-methylene component. They are neutral entities with a
zwitterionic resonance structure that enhances the electrophilic
character at the 3-position.' Carbanions, aromatic rings, alcohols
and amines are typical nucleophiles that quickly react with
p-quinone methides to afford a variety of diaryl derivatives
(Scheme 1).” The use of transition metals could allow the
formation of C-C and C-X bonds complementary to those formed
by direct addition of a typical nucleophile. Surprisingly, the use of
metal-catalyzed transformations to functionalize the exocyclic double
bond of p-quinone methides remains largely unexplored.’®

We became interested in probing this approach using a silyl
copper(i) complex as a formal silicon nucleophile (Scheme 1).
To the best of our knowledge, the addition of nucleophilic silicon
species to ortho- or para-quinone methides has not been studied to
date. Silicon-containing molecules are valuable synthetic inter-
mediates which can be converted into useful compounds through a
number of transformations.® Recently, copper-catalyzed silylation
reactions have emerged as a powerful tool for C-Si bond formation.”
We envisioned that insertion of the exocyclic double bond into the
Cu-Si bond followed by aromatization would afford non-symmetric
benzylic silanes.

The most common way to synthesize benzylic silanes involves
the reaction between an in situ generated benzylic carbanion and a
silyl chloride.® Our method would offer a milder alternative to this
classic approach, avoiding the use of stoichiometric amounts of
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Scheme 1 p-Quinone methides as diaryl derivatives precursors.

strong bases. Herein, we describe a copper(1)-catalyzed protocol for
the silylation-aromatization of p-quinone-methides. The reactions
proceed in high yields using only 10% of an inexpensive copper(1)
salt and a commercially available silaborane reagent.”

We started our study with p-quinone methide 1a, containing
removable ¢-Bu groups at the a-positions (Table 1).® A series of
ligands were screened (Table 1, entries 1-6) using Cu(CH3CN),PFg
(10 mol%), Me,PhSiBpin (1.1 equiv.), NaO#Bu (0.2 equiv.) and
MeOH (4 equiv.). We found that NHC ligands (entries 5 and 6)
were superior to monodentate or bidentate phosphines (entries 1-4).
SIMes gave the best results, affording dibenzylic silane 2a with 86%
isolated yield (entry 6, >98% conversion). The use of other bases
(entries 7-9) or different copper salts (entries 10 and 11) gave poorer
results. Lowering the catalyst loading to 5 mol% also resulted in
a significantly lowered yield (entry 12). In the absence of MeOH
(entry 13) or with only two equivalents (entry 14) compound 2a
was obtained in 46% and 57% yield respectively. Finally, to
check the role of the NHC-Cu(i) catalyst we carried out the
reaction in the absence of copper salt and ligand (entry 15).
Under those conditions, a very complex mixture was observed in
the "H NMR spectrum of the crude product. From this mixture,
we could identify the product of 1,6-addition of methoxide to 1a
as the main compound, unreacted 1a, and a small amount of 2a.
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Cu(CH3CN)4PF¢ (10 mol%)

Table 1 Optimization of the reaction conditions
ligand (11 mol%)
NaOt-Bu (0.2 equiv)

Bu Bu
‘ Me,PhSiBpin (1.1 equiv)

‘ MeOH (4 equiv)

O rt, THF, 12 h O SiMe,Ph
1a 2a

Entry” Copper salt Base Ligand 2a (%)
1 Cu(CH;CN),PF;  NaOt-Bu  Ph,P 647

2 Cu(CH;CN),PFg NaOt-Bu JohnPhos 64°

3 Cu(CH;CN),PFg NaOt-Bu Xantphos 50°

4 Cu(CH;CN),PF,  NaOt-Bu  (+)-BINAP 45°

5 Cu(CH;CN),PFs  NaOt-Bu  IMes 87"
6 Cu(CH;CN),PF;  NaOt-Bu  SIMes >98" (86)°
7 Cu(CH;CN),PF,  KOt-Bu SIMes 60°

8 Cu(CH;CN),PFs  LiOt-Bu SIMes 68°

9 Cu(CH;3CN),PF, CsF SIMes 61°
10 CuCl NaOt-Bu SIMes 55¢
11 Cu,0 NaOt-Bu  SIMes 20°
124 Cu(CH;CN),PF,  NaOt-Bu  SIMes 35°
13¢ Cu(CH;CN),PF,  NaOt-Bu  SIMes 46°
147 Cu(CH;CN),PFg NaOt-Bu SIMes 57°¢
158 — NaOt-Bu — —

% Reaction conditions: 1a (0.2 mmol), Me,PhSiBpin (0.22 mmol), base
(20 mol%), Cu(CH3CN)4PF6 (10 mol%), ligand (11 mol%), MeOH (0.8 mmol),
THF (0.1 M). * Conversion determlned by 'H NMR analysis of the
crude mixture. ° Yield of isolated 2a. ¢ Reaction conditions: 1a (0.2 mmol),
Me,PhSiBpin (0.22 mmol), NaO#Bu (20 mol%), Cu(CH;CN),PF, (5 mol%),
ligand (11 mol%), MeOH (0.8 mmol), THF (0.1 M). ¢ The reaction was carried
out in the absence of MeOH.” 0.4 mmol of MeOH were used. ¢ Reaction
conditions: 1a (0.2 mmol), Me,PhSiBpin (0.22 mmol), NaO#Bu (20 mol%),
MeOH (0.8 mmol), THF (0.1 M).

The formation of 2a under these conditions could be explained by
alkoxide activation of the silaborane in the absence of the copper
catalyst.’

With these optimal conditions in hand, we proceeded to study
the scope of the silylation-aromatization process (Table 2). We first
modified the stereoelectronic properties of the exomethylene sub-
stituent (R®). Dibenzylic silanes with electron donating groups
(compounds 2b-2c¢), heterocycles (compound 2d), and a larger
naphthyl group (compound 2e) were prepared in high yields. The
conditions also worked for p-quinone methides with electron with-
drawing groups in para (compounds 2f, 2i, 2j), ortho (compound 2g)
and meta (compound 2h) positions. It should be pointed out that our
method allows for the synthesis of compounds with halogen sub-
stituents (2f, 2g) and an ester group (2i), which would be difficult to
obtain by the reaction of a dibenzylic carbanion and a silyl chloride.
Interestingly, monobenzylic silane 2k, in which R* is an alkyl group,
was also obtained using the optimized conditions.

Additionally, we modified the R' and R* substituents. Com-
pounds 21 and 2m, with two methyl groups, and compound 2n,
with two isopropyl groups, were obtained in good yields. It is also
possible to introduce two different alkyl groups in the o-position
(compound 20) starting from a non-symmetrical p-quinone
methide. Finally, the structure of compound 2g was confirmed
by single crystal X-ray crystallography (Fig. 1).

One interesting feature of benzylic silanes is their ability to
be used as bench-stable benzylic anion equivalents under mild
reaction conditions.'® However, most known examples of these

This journal is © The Royal Society of Chemistry 2015

Cu(CH3;CN)4PFg (10 mol%)
SIMes (11 mol%)

Table 2 Copper()-catalyzed silylation of p-quinone methides®?
NaOt-Bu (0.2 equiv)
Me,PhSiBpin (1.1 equiv)

MeOH (4 equiv)

rt, THF, 12 h R¥ T~SiMe,Ph
1 2

l Bu
O SiMe,Ph
MeO

SiMe,Ph SiMe,Ph
2a, 86 % 2b, 80 % 2¢,82%
OH OH OH
'Bu Bu ! Bu
SiMe,Ph OO SiMe,Ph
Br

2d, 89% 2e, 76 % 26,75 %
OH

Bu l ‘Bu

SiMe,Ph SiMe,Ph

O SiMe,Ph

2i, 70%

2h, 70 %

MeO,C
29,77 %

OH OH

O ‘Bu Bu Bu
O SiMe,Ph Me” “SiMe,Ph O SiMe,Ph
NC

j, 48 % 2k, 70% 2|,65%

OH OH OH
Me ! Me
Me
O SiMe,Ph

2m, 60 %

2n, 86 % 20, 60%

¢ Reaction conditions: 1a (0.2 mmol), Me,PhSiBpin (0.22 mmol), NaOt+Bu
(20 mol%), Cu(CH;3CN),PF; (10 mol%), SIMes (11 mol%), MeOH (0.8 mmol),
THF (0.1 M). ” Yield of isolated 2.

transformations have been performed with monobenzylic trimethyl-
silane derivatives. Therefore, our method provided an opportunity to
check if dibenzylic dimethylphenyl silanes such as 2 could be also
used as carbanion precursors. To the best of our knowledge, the
generation of dibenzylic carbanions from silanes has not previously
been reported. Gratifyingly, treatment of silane 2a with cesium
fluoride in DMF, followed by addition of p-chloro benzaldehyde,
provided the desired compound 3 as a 1: 1 mixture of diastereomers
(Scheme 2). Oxidation followed by removal of the t-butyl groups®
using AlCL; afforded o,0-diaryl ketone 4 in a good overall yield.
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Fig. 1 X-ray structure of compound 2g.
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Scheme 2 Functionalization of the C-Si bond and de-tert-butylation.

A possible mechanism for the silylation-aromatization reaction
of p-quinone methides is shown in Scheme 3. First, a silyl-Cu(1)-NHC
complex B is formed by reaction of a copper alkoxide A and the
silaborane reagent. Insertion of the exocyclic double bond of the
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Scheme 3 Plausible mechanism for the silylation—aromatization.
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p-quinone methide into the Cu-Si bond affords a n-allyl-copper
intermediate (C) that could isomerize to copper phenoxide E. At
this point two pathways are possible. Protonolysis in the presence
of MeOH would provide silane 2 with release of NHC-CuOMe to
restart the catalytic cycle. On the other hand, copper phenoxide E
could react directly with the silaborane to provide 2 and silyl-copper
complex B.

In conclusion, we have found that copper() salts can catalyze
the silylation-aromatization process of p-quinone methides. This
study represents the first silicon addition to a quinone methide and
provides new insight for the development of novel metal-catalyzed
transformations. Mono- and dibenzylic silanes can be prepared in
high yields under mild reaction conditions. We have also demon-
strated that dibenzylic silanes can be used as stable dibenzylic
carbanion equivalents. The development of asymmetric versions of
this and related transformations is underway.
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