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Two-way chromic interconversion of the 2,20-
biphenol-6,60-diyl dication with 5H,10H-dioxapyrene
or 9H,10H-4,5-dihydroxyphenanthrene†

Yuto Sakano, Ryo Katoono, Kenshu Fujiwara and Takanori Suzuki*

Two-proton or two-electron transfer of the title biphenolic dication

proceeds nearly simultaneously to induce 2,60/20,6- or 6,60-bond for-

mation to give dioxapyrene or dihydrophenanthrene derivatives, respec-

tively, with vivid changes in color (halochromism and electrochromism).

5H,10H-Dioxapyrene (diopy; 5H,10H-[1]benzopyrano[5,4,3-cde][1]-
benzopyran) is a less-studied heterocyclic skeleton1 in contrast to
its 5,10-dione analogue. We envisaged that the flattened frame-
work of diopy provides a unique opportunity for the development
of new bistable molecular response systems, in which an external
stimulus induces the cleavage of two C(sp3)–O bonds to trans-
form into the corresponding biphenyl derivatives with a twisted
conformation (Scheme 1). Upon acid treatment of diopy (A) with
cation-stabilizing substituents at 5,10-positions, the biphenolic
dication (C2+) would be generated via the monocationic inter-
mediate (B+). When B+ suffers from severe steric repulsion at the
bay-region, this amphiprotic species easily undergoes acid–base
disproportionation to A and C2+, so that double protonation/
deprotonation between A and C2+ would occur nearly simulta-
neously. Such a simplified pseudo-two-state switching is favored

for the construction of promising molecular response systems
with a sharp ON/OFF threshold.2 When the cationic part in C2+ is
endowed with a strong absorption in the visible region, inter-
conversion between A and C2+ is accompanied by halochro-
mism,3 since diopy A shows absorptions only in the UV region.

To generate and isolate the dicationic state as a stable entity
despite the presence of hydroxy groups within the molecule, the
cationic subunit should have a large pKR+ value, which
prompted us to select the 10-methylacridinium chromophore4,5

(Scheme 2). Due to the bulkiness of the chromophore, the
biphenol skeleton in 22+ would have a large torsion angle,
whereas the diopy skeleton in 1 would be nearly planar, since
the spiro(10-methylacridan) units do not induce any steric
hindrance. Such a drastic structural change would realize the
two-state halochromic interconversion between 1 and 22+.
Another interesting point is that, upon reduction, dication 22+

would be transformed into a dihydrophenanthrene (DHP)
derivative 3 accompanied by C(sp3)–C(sp3) bonding through
‘‘dynamic redox (dyrex)’’ behavior,6 and the interconversion
between 22+ and 3 would also exhibit characteristic color and
structural changes. Thus, 1, 22+ and 3 can serve as a novel motif
for multi-input molecular response systems.7

Here we report the preparation and X-ray structures of 1 and 22+

along with their chromic behavior during the interconversion between
1 and 22+ (halochromic3 pair) as well as 22+ and 3 (electrochromic8 pair).

Scheme 1 Interconversion of diopy A and biphenolic dication C2+ upon
double protonation/deprotonation via intermediate B+.

Scheme 2 Multi-input chromic behavior of diopy 1, biphenolic dication 22+,
and DHP 3.

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo,

Hokkaido 060-0810, Japan. E-mail: tak@sci.hokudai.ac.jp; Fax: +81-11-706-2714;

Tel: +81-11-706-2714

† Electronic supplementary information (ESI) available: Experimental procedure
and characterization data. Supplementary figures of X-ray single-crystal structure
analyses, halochromic titration, and cyclic voltammograms. CCDC 1061367,
1061368 and 1061369. For crystallographic data in CIF or other electronic format,
see DOI: 10.1039/c5cc06338h

Received 29th July 2015,
Accepted 10th August 2015

DOI: 10.1039/c5cc06338h

www.rsc.org/chemcomm

ChemComm

COMMUNICATION

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
A

ug
us

t 2
01

5.
 D

ow
nl

oa
de

d 
on

 2
/1

3/
20

26
 1

2:
25

:0
6 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/c5cc06338h&domain=pdf&date_stamp=2015-08-21
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5cc06338h
https://pubs.rsc.org/en/journals/journal/CC
https://pubs.rsc.org/en/journals/journal/CC?issueid=CC051076


14304 | Chem. Commun., 2015, 51, 14303--14305 This journal is©The Royal Society of Chemistry 2015

6,60-Dibromo-2,20-biphenol 49 was first reacted with meth-
oxymethyl (MOM) chloride/NaH in DMF to give MOM-protected
biphenol 510 in 77% yield. The dilithio derivative derived from
5 and 4 equiv. of tBuLi in THF was then reacted with 10-methyl-
9(10H)-acridone to give bis(hydroxy)base 610 in 70% yield. Upon
treatment of 6 with HBF4 in MeOH–CHCl3 at reflux afforded the
desired 22+(BF4

�)2
10 as yellow-orange crystals in 95% yield. The

reaction of 22+(BF4
�)2 with Et3N in MeCN gave colorless crystals

of diopy 110 in 88% yield (Scheme 3).
Based on the results of an X-ray analysis11 at 150 K, the diopy

core in 1 is nearly planar (largest deviation of an atom from the
mean plane: 0.23 Å), although the pyran rings adopt a very
shallow twist-chair form (Fig. 1 and Fig. S1, ESI†). The two
benzene rings are coplanar (dihedral angle: 01). To this core
are attached the spiro(10-methylacridan) units, which are
slightly deformed into a butterfly-shape [dihedral angle between
two benzene nuclei of acridan: 21.3(2)1], as found in other
structurally-related molecules.12 In contrast, the two molecular
halves in dication 22+ are largely twisted in the crystal of (BF4

�)2

salt11 (Fig. 2 and Fig. S2, ESI†). The dihedral angle of the
biphenyl unit is 68.8(1)1 (syn-form), and there are no signs to
indicate coordination of the hydroxy groups to the acridinium
chromophores. If we consider that the two oxygen atoms at the
2,20-positions are separated by a distance of 3.050(2) Å, inter-
molecular H-bonding is not effective in 22+ (typical distance for

the H-bonded O� � �O: 2.75 � 0.2 Å). The p–p interaction between
two acridinium units must be the major directing force to give
the observed syn-form (Fig. S2 and S3, ESI†),13 and thus the
chromophores are stacked nearly in parallel [dihedral angle:
3.92(3)1] with the shortest C� � �C contact of 3.284(3) Å (sum of van
der Waals radii: 3.40 Å).

Diopy 1 is colorless, with absorptions only in the UV region
[lmax/nm: 339 (4.30) in CH2Cl2], whereas 22+ exhibits a yellow-
orange color [358(3.92) in MeCN] due to the characteristic absorp-
tions of acridinium (Fig. 3a). Although 10-methylacridinium itself
is highly fluorescent, 22+ is non-fluorescent due to the charge-
shift-type quenching of the excited state by the electron-donating
biphenol unit. Upon the aliquot addition of TfOH to a DMSO-d6

solution of 1, a clean conversion to 22+ was observed (Fig. S4,
ESI†). The resulting spectra showed the presence of only two
species (1 and 22+), which demonstrated that the steady-state
concentration of the intermediary monocationic derivatives is
negligible. The halochromic response was examined by the
repeated addition of TfOH (100 microL) to a DMSO solution of
1 (1.2 � 10�5 M), followed by the addition of Et3N (200 microL) to
the solution of as-generated 22+. By monitoring the color change
using UV-vis spectroscopy, we could confirm the reversibility of
the present halochromism (Fig. 3b and Fig. S5, ESI†).

According to the results of a voltammetric analysis,14 3 under-
goes irreversible two-electron oxidation at an anodic peak potential
(Epa) of +0.32 V in CH2Cl2/MeCN (4 : 1) vs. SCE (Fig. S6a, ESI†). The
return peak was observed in the far cathodic region (Epc =�0.23 V),
which corresponds to the reduction process of dication 22+

(Fig. S6b, ESI†). In fact, Zn-reduction of 22+(BF4
�)2 induced C(sp3)–

C(sp3) bonding at the C6 and C60 positions to give DHP 3.
Colorless crystals of 3 [lmax/nm: 285 (4.37) in CH2Cl2] were isolated
in 91% yield, and regenerated 22+(BF4

�)2 in 87% yield upon
treatment with 2 equiv. of ferrocenium tetrafluoroborate in
CH2Cl2/MeCN. In this way, reversible redox interconversion
between 22+ and 3 accompanied by C–C bond formation/cleavage
(‘‘dyrex’’ behavior) was confirmed. Due to the dynamic geometrical
changes,15 two-electron transfer occurs nearly simultaneously,

Scheme 3 Preparation scheme for 1, 22+(BF4
�)2 salt, and 3.

Fig. 1 ORTEP drawing of diopy 1 determined by X-ray analysis at 150 K.

Fig. 2 ORTEP drawing of 22+ in 22+(BF4
�)2 salt determined by X-ray

analysis at 150 K.
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which was confirmed by the negligible steady-state concentration
of the intermediary cation radical upon the electrochemical con-
version of 3 to 22+ (Fig. 4).

In this work, we have demonstrated the reversible halochro-
mic and electrochromic interconversion of 2,20-biphenyl-6,60-diyl
dication with two kinds of neutral molecules (diopy and DHP).

This is the first example of concomitant but independent two-
proton or two-electron transfer with a negligible concentration of
the intermediates. A drastic structural change is the key to this
novel feature, which may represent a new molecular design
concept for multi-input response systems with advanced features.
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Fig. 3 (a) UV-vis spectra of 1 (solid line) in CH2Cl2 and 22+(BF4
�)2 (dashed line)
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DMSO. The reverse conversion was accomplished upon addition of Et3N
(200 microL). The halochromic cycles could be repeated without significant
loss of response.

Fig. 4 A continuous change in the UV-vis spectra of 3 [2.1 � 10�5 M; 3 mL]
to 22+ in CH2Cl2/MeCN (4 : 1) containing 0.05 M Bu4NBF4 upon constant-
current electrochemical oxidation on a Pt electrode (30 microA, every 1 min).
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