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A p-electron deficient diaminotriazine
functionalized MOF for selective sorption
of benzene over cyclohexane†

Biplab Manna,‡a Soumya Mukherjee,‡a Aamod V. Desai,a Shivani Sharma,a

Rajamani Krishnab and Sujit K. Ghosh*a

A diaminotriazine functionalized novel MOF (DAT-MOF-1) has been

synthesized stemming out of a p-electron-deficient pore-surface

functionalization based linker-design principle, which results in

efficient selectivity of benzene sorption over its aliphatic analogue

cyclohexane, crucial from the industrial standpoint.

Metal–organic frameworks (MOFs), formed by the coordination
chemistry-assisted self-assembly process of organic linkers and
metal ions, have evolved as one of the most preferred new-
generation materials, owing to their superlative potential in
multifarious fields, such as gas storage, chemical separation,
sensing, drug delivery, and catalysis.1 These crystalline materials
score over the other classes of functional materials because of a
few unique advantages, such as their unique periodical struc-
tures with long-range order, excellent porosity, framework flex-
ibility, and tunable pore surface functionalization, which endow
them with promising storage and separation applications.2

Among the diverse porous adsorbent materials utilized for
serving efficient separation of flue gas and hydrocarbons, MOFs
have established themselves as a uniquely promising class of
functional adsorbents owing to the unmatched unison of their
aforementioned characteristics.3

From the application perspective, the separation of liquid
phase hydrocarbons, especially those having similar physical
properties and comparable molecular sizes, is highly challeng-
ing for industrial applications. In this context, the industrially
crucial separation of benzene (Bz) and cyclohexane (Cy) poses a
challenge. The recognized difficulty behind this C6 hydro-
carbon stream separation originates as a consequence of the

unavoidable production of cyclohexane during the catalytic
hydrogenation of benzene in the benzene/cyclohexane miscible
system and also due to their considerably close boiling points
(benzene, 353.25 K; cyclohexane, 353.85 K: Table S1, ESI†),
similar molecular volumes, comparable Lennard-Jones collision
diameters along with low relative volatilities.4 While close proximity
in their boiling points (difference: 0.6 K) rules out conventional
fractional distillation methods, specialized distillation protocols
such as azeotropic and extractive distillation methods employed
with entrainer species such as sulpholane, dimethylsulfoxide,
N-methylpyrrolidone, and N-formylmorpholine involve high
energy-intensive requirements. On the contrary, adsorptive
separation offers an energy-efficient alternative to extractive
distillation, especially for Bz/Cy mixtures containing small
percentages of benzene, as is commonly encountered.

Interesting enough, these two analogue species have distinct
spatial configurational orientations; benzene is a planar p-cloud
entity, while aliphatic cyclohexane exists in either chair or boat
configuration (Fig. S1, ESI†). This inherent dissimilarity might
seem to be the imperative key factor behind efficiently separat-
ing the duo (Scheme 1). The favourable role of p-complexation
with benzene behind the selective sorption-mediated Bz/Cy
separation was explored in cation-exchange Faujasite-type zeo-
lites Na-Y, Pd-Y, Ag-Y, and FAU-type zeolite membranes;5 while

Scheme 1 Schematic representation of the strategic employment of
p-electron deficient diaminotriazine (DAT)-functionalized pore surface
for exhibiting a selective interplay with benzene over cyclohexane.
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recent years have witnessed some porous MOF materials being
used for the targeted selective sorption based separation of
Bz/Cy.4b,c,6 However, the ligand design-strategy derived achieve-
ment of such separation performance is indeed scarce.4b,6g

Ligand functionalization based attainment of excellent
separation performance by MOFs has witnessed remarkable
upsurge in recent times, markedly motivated by the pioneering
work of Chen et al.7 Over the years, the triazine core has been
quite well-harnessed chiefly by Zhou et al., as constituent
linkers in the MOF domain for presenting excellent adsorption
features with concomitant thermal robustness of the materials.8

Under this backdrop, we intended to achieve Bz/Cy separation by
the favourable p–p stacking driven interplay of the p-electron
deficient triazine core of the employed rigid carboxylate linker
(Fig. 1) functionalized MOF pore surface and p-rich guest species
benzene.9 Herein, for the first time, the electron deficient
diaminotriazine (DAT) core of a new-fangled rigid mono-
carboxylic acid linker has been proficiently exploited for
imparting essential p-electron deficiency to the ensuing new
MOF (DAT-MOF-1) for achieving the targeted selective sorption-
based separation of benzene over cyclohexane at ambient
temperature (298 K) and pressure (1 atm). The electrostatic
surface potential (ESP) plot (Fig. S2, ESI†) for the conceived
linker was verified to have significant p-electron deficiency,
which makes its choice strategically triggered. Upon reaction of
ligand (LH) (Fig. S3, ESI†) and Cu(NO3)2�3H2O under solvothermal
conditions in the binary solvent system DMF/MeOH (1 : 1), block
shaped green shiny single crystals of compound DAT-MOF-1a
[{Cu(L)2}�xG]n (G refers to disordered guest molecules) are
obtained (Fig. S7, ESI†). A single-crystal X-ray diffraction (SC-XRD)
study of the compound showed the formation of a two-dimensional
(2D) network, which upon further hydrogen bond formation
with similar 2D networks in proximity gave rise to intermolecular
hydrogen bonded three-dimensional (3D) supramolecular net-
works (DAT-MOF-1a) (Fig. 2), crystallized in the orthorhombic
space group Pbnb. The Adsym subroutine of PLATON was applied
to confirm that no additional symmetry could be applied to the
model. The asymmetric unit contains one Cu(II) center and two
monocarboxylate DAT (deprotonated form of LH) linkers. Nearly
five guest DMF molecules detected by the combined inputs of
elemental analysis (ESI†), IR spectral investigation and thermo-
gravimetric analysis (Fig. S8 and S17, ESI†) could not be located

in the asymmetric unit from Fourier maps in the refinement
cycles, because of a high extent of disorder for these moieties in
the crystal. The phase purity for the as-synthesized phase was
confirmed by the PXRD analyses (Fig. S18, ESI†) coupled with
the SC-XRD-based unit cell analysis of arbitrarily chosen crystals
from the bulk phase.

As observed from the perspective view of the supramolecular
H-bonded 3D-framework, the pores along the a-axis (Fig. S11–S14,
ESI†) of dimensions B6.71 � 7.08 Å2 are well-decorated with
Lewis basic pyridyl and primary amine functionalities, which
should ideally facilitate strong interactions with polar guest
species CO2 owing to the latter’s high quadruple moment
(�13.4 � 10�40 C m2)10 over its congener flue gases.1a,11 The
anticipated CO2-selective adsorption feature was indeed verified
for the activated form of DAT-MOF-1a, namely DAT-MOF-1, as
evident from the single component gas adsorption isotherms
recorded at low temperatures (77 K and 195 K). Exclusively for
CO2, there was a distinct two step-mediated adsorption uptake
observed with noteworthy hysteresis (typical signature of dynamic
frameworks) (Fig. S20, ESI†), owing to the concomitant host–guest
interaction-driven dynamic structural transformations or breath-
ing phenomena, accompanying the CO2 vapour sorption process.12

A prominent two-step sorption profile and the observed hysteretic
desorption can be attributed to structural transitions between
relatively open and closed framework structures as CO2 adsorptive
gets adsorbed with substantial hysteresis consequential from the
metastability of the more open structure, similar to the previous
reports on breathing phenomena exhibited by soft porous crystal-
line frameworks.12a,13 On the flipside, no such steps were observed
for the CO2 sorption isotherm at 298 K over a similar pressure
range (Fig. S21, ESI†), validating the dependency factor of the
structural transitions accompanying the sorption process on the
low temperature-mediated specific interactions of the host
framework with guest CO2 molecules. The guest-free nature and
excellent crystalline features of the activated phase DAT-MOF-1
were once confirmed from the thermogravimetric analyses
(TGA) and Powder X-ray Diffraction (PXRD) profiles respectively

Fig. 1 Structure of the p–e� deficient triazine (DAT) core based linker (LH),
with Lewis basic primary amino groups, imparting framework functionalization.

Fig. 2 (a) Perspective view of the overall packing of DAT-MOF-1a (guest
molecules and H atoms are omitted for clarity); (b) Lewis basic N-rich
p-electron deficient coordination environment constructing DAT-MOF-1a,
rendering channel functionalization.
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(Fig. S17 and S18, ESI†), and the same was harnessed for the
targeted selective vapor sorption based separation studies of
benzene/cyclohexane.

Substantiating the anticipated selective interplay of Bz with
DAT-MOF-1, the single component vapor sorption experiments
for both the solvents Bz and Cy when measured at 298 K, the
striking difference between their respective uptake amounts
(1.5 mol kg�1 for Bz, while only B0.2 mol kg�1 for CY) was
revealed (Fig. 3 and Fig. S22, ESI†). 13C NMR studies performed
using the DCl/DMSO-d6 digested samples after vapor exposure to
the Bz and Cy solvent vapors and their 1 : 1 equimolar mixtures
indubitably revealed exclusive Bz-selectivity (Fig. S23, ESI†).

We evaluate Bz/Cy separation by utilizing the Ideal Adsorbed
Solution Theory (IAST) calculations. Fig. 4a shows the experi-
mental data for pure component isotherms of Bz and Cy in
DAT-MOF-1; the continuous solid lines are Langmuir–Freundlich
fits (the fit parameters being specified in Table S2, ESI†). For
fitting purposes, the sorption branches of the isotherms were
solely considered. Fig. 4b shows IAST calculations of Bz uptake
capacity for equimolar Bz/Cy mixtures in DAT-MOF-1. Notably, for
pressures exceeding about 1 kPa, the adsorbed phase contains
predominantly Bz. Fig. 4c presents IAST calculations for adsorp-
tion selectivity, Sads, for equimolar Bz/Cy mixtures with values in
excess of about 200, suggesting the viability of the present MOF
material for vapor phase selective sorption based Bz/Cy separation
at 298 K. Transient breakthrough simulations, using the estab-
lished methodology described in earlier work,14 confirm that
sharp separations are obtained in a fixed bed adsorber; see
Fig. 4d. The video animation-illustration (accompanied as ESI†)
evidently demonstrates that DAT-MOF-1 has both significantly
higher selectivity and uptake for Bz over Cy.

In a nutshell, as a first-of-its kind convergent approach, the
triazine core’s p-electron-deficiency coupled with the mutual
attendance of amino moieties for the reported DAT-MOF-1 has

been strategically exploited for the achievement of selective
benzene sorption over its aliphatic analogue cyclohexane.
Further investigations to consolidate its practical applications
in terms of realistic industrial separation scenario are currently
underway. This might indeed help to develop functional porous
materials by virtue of their tunable functionalities; immensely
important for exhibiting industrially crucial hydrocarbon separa-
tion features.
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Notes and references
1 (a) Z. Zhang, Y. Zhao, Q. Gong, Z. Li and J. Li, Chem. Commun., 2013,

49, 653; (b) Z. Zhang, Z.-Z. Yao, S. Xiang and B. Chen, Energy Environ.
Sci., 2014, 7, 2868; (c) J.-R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu,
H.-K. Jeong, P. B. Balbuena and H.-C. Zhou, Coord. Chem. Rev., 2011,
255, 1791; (d) J.-R. Li, J. Sculley and H.-C. Zhou, Chem. Rev., 2012,
112, 869; (e) Z. Hu, B. J. Deibert and J. Li, Chem. Soc. Rev., 2014,
43, 5815; ( f ) S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee
and S. K. Ghosh, Angew. Chem., Int. Ed., 2013, 52, 2881; (g) R. C.
Huxford, J. Della Rocca and W. Lin, Curr. Opin. Chem. Biol., 2010,
14, 262; (h) P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin,
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F. Kapteijn, J. Am. Chem. Soc., 2009, 131, 6326; (c) A. Demessence,
D. M. D’Alessandro, M. L. Foo and J. R. Long, J. Am. Chem. Soc., 2009,
131, 8784; (d) T. M. McDonald, D. M. D’Alessandro, R. Krishna and
J. R. Long, Chem. Sci., 2011, 2, 2022; (e) P. Pachfule, Y. Chen, J. Jiang and
R. Banerjee, J. Mater. Chem., 2011, 21, 17737.

12 (a) S. Horike, S. Shimomura and S. Kitagawa, Nat. Chem., 2009, 1, 695;
(b) C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër
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