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DFT investigations of the redox transmetallation reaction of the
diorganomercurial (Hg(CgFs),) with Yb metal, yielding Yb(CgFs),,
allowed us to define a very low energy reaction mechanism. This
involves formation of a metal-metal bonded, formally Yb'-Hg',
intermediate valence complex, (C¢Fs)Yb—Hg(CgFs). The subsequent
reactivity of the divalent ytterbium complex with pyrazole was also
computationally investigated, indicating that s-bond metathesis
occurs at divalent ytterbium.

The synthesis of compounds with unsupported lanthanoid-metal
bonds (main group (MGM) or transition metal (TM)) has been a
challenge, perhaps partly because the 4f orbitals are embedded
and are shielded by the 5s°5p°® orbitals,’ and partly owing to
the intrinsic difficulty of binding together two electropositive
elements. Nevertheless recent synthetic ingenuity has enabled
a flowering of initially Ln-MGM"? and then Ln-TM® bonded
compounds with no supporting donor/bridging atoms. An
unsupported Ln-M bond was initially proposed® in inter-
mediates, namely Yb'-Hg ™ (C¢F5), and C¢F5Yb-HgC,Fs, in the first
redox-transmetallation synthesis of an organolanthanoid*” (1, and
see structure® of isolated complex [Yb(CgFs),(thf),]).

Yb + Hg(CeFs), — [Yb(CsFs),(THF),] +Hg (1)

However, no experimental evidence for the Yb-Hg species could be
obtained. Structurally uncharacterized bimetallics proposed to be
R(HgYb)I were later obtained from reaction of RHgl with Yb metal.”
Reactions analogous to (1) with a variety of mercurials, eg.
Hg(CCPh),, HgPh,, HgCp,, have made redox transmetallation a
fruitful general synthetic route to organolanthanoids, though in
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some cases activation of Ln® by HgCl,, [YbI,(thf),] or Lnl, is
needed.® Reaction (1) and analogues are lanthanoid examples of
a long known synthesis® (2) mainly used to give donor-solvent free
main group

2M + nHgR, - nHg + 2MR, @)

organometallics. We now report a study of reaction (1) utilizing
DFT calculations, which provide evidence for the formation of an
intermediate valence, Yb-Hg bonded species C¢FsYb-HgC¢Fs5 in the
reaction.

Also studied is the mechanism of the cleavage of Yb(CeFs),
with pyrazole (pzH) (3). Besides being a general model for the
protolysis of Yb(CeF;), with phenols,'® cyclopentadienes,"" and
substituted pyrazoles,'” reactions (1) and (3) or analogues are consi-
dered steps in the synthetically valuable redox transmetallation/
protolysis (RTP) reaction (4),"* which is an excellent route to both
divalent and trivalent cyclopentadienyls,'® aryloxides,'*'** pyrazo-
lates,"> formamidinates™ etc. Reaction (1) is considered the first
step and reaction (3) the final step for n = 2, whilst reaction (1) is
the first step and reaction (3) an intermediate step for n = 3. Thus,
the calculations shed light not just specifically on the mechanism
of (1) and (3) but also on the general RTP synthesis (4).">™"°

Yb(CgFs), + 2pzH — Yb(pz), + 2CcFsH (3)

Ln+ gHng +nLH — LnL, + gHg +nRH(n=20r3) (4)

Since the last decade, computational methods have proven
their ability to describe redox reactions involving f-element
complexes as well as the “classical’” bond activation.'®'” There-
fore, DFT calculations (B3PW91/SDD(Yb,Hg)/6-31G(d,p) other
atoms) were conducted in order to determine a plausible
reaction mechanism for the redox transmetallation reaction
Yb + Hg(CeFs), — Hg + Yb(CeFs), (Scheme 1).

In a first step, the coordination of the ytterbium metal to the
mercury center is observed through TS1 with a marginal activa-
tion barrier (0.9 kcal mol™"). This coordination compound (Int2)
is slightly stabilized (1.8 keal mol ") with respect to the separated
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Scheme 1 Computed reaction profile (kcal mol™) for the redox trans-
metallation reaction. The F atoms are omitted for clarity in the scheme.

reactants. It is noteworthy that in Int2, a donor-acceptor inter-
action between Yb and Hg (donation from the 6s orbital of Yb into
the 7p orbital of Hg and a Wiberg bond index of 0.35) is found.
Analysis of the NPA charges indicates that the oxidation states of
Hg and Yb are both intermediate between 0 and +II (Hg: decrease
of the charge from 0.96 to 0.75 and Yb: increase of the charge
from 0.0 to 0.24). From Int2, the compound undergoes a
migratory insertion of Yb into a Ce¢Fs-Hg bond via TS2. The
barrier to this migration is small (4.0 kcal mol '), indicating a
facile process. Interestingly, at the TS, NBO analysis indicates
the formation of a covalent bond between Hg and Yb (Wiberg
bond index of 0.82) that concomitantly induces a drastic
change of the charges (and therefore of the oxidation states)
of the two metals (Hg: decrease of the charge from 0.75 to
0.22 and Yb: increase of the charge from 0.24 to 0.96). TS2
yields intermediate Int3 exhibiting an unsupported Yb-Hg
interaction (bond found at the second order donor-acceptor
NBO and Wiberg bond index of 0.58) with one C¢Fs ligand
having been fully transferred to Yb. Interestingly, in this inter-
mediate, the Hg-Yb bond is strongly polarized toward Hg as
reflected by the NBO analysis (donation from the 7s of Hg to an
hybrid d/p of Yb) and the NPA charges (Hg: decrease from
0.22 to 0.1 and Yb: increase from 0.96 to 1.25). By comparison,
with the other NPA charges, this complex is of intermediate
spin.'® Finally, the second ligand transfer occurs through TS3
with a low activation barrier (6.9 kcal mol ') yielding an highly
thermodynamically stable Hg adduct to Yb(CeFs),. NBO analy-
sis of the latter reveals at the second order a donor-acceptor
interaction between Hg and Yb (donation from 7s of Hg to a d/p
hybrid of Yb) with strength computed to be 7.6 kcal mol .
Other reaction pathways involving for instance Single Electron
Transfer, direct double migration of the CgFs ligand were
investigated but either failed to converge (double transfer),
were leading to the same profile as the one reported here
(Single Electron Transfer) or leads to other energy profiles (ionic
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Scheme 2 Computed reaction profile of the reactivity of the divalent
ytterbium complex with pyrazole (kcal mol™). L stands for pyrazolate. The
F atoms and pyrazole/pyrazolate double bonds are omitted for clarity in
the scheme.

dissociation). There might be other plausible pathways but the one
reported here is the lowest energy one that was found.

The subsequent reactivity of the divalent ytterbium complex
with a nitrogen acid (pyrazole in this case) has then been
investigated using the same theoretical approach (Scheme 2).

The “ligand exchange” between Yb(C¢Fs), and the pyrazole
is predicted to be thermodynamically favorable (exothermic by
27.9 kecal mol™') and can occur via a dissociative pathway
(energetic cost of only 7.6 kecal mol™"). From the pyrazolate
adduct to the divalent ytterbium complex, two consecutive N-H
activations can easily occur with moderate activation barriers
(7.0 and 13.0 kcal mol™'). These two N-H activations are
classical o-bond metatheses, where N, H and Cjs, are almost
aligned,"” and can be viewed as proton transfer between the
two ligands. In line with the Hard and Soft Acid-Base (HSAB)
principle, the formation of a Yb-N bond is favored over the Yb-C
one, explaining the exothermicity of the reaction.

In this study, the redox transmetallation reaction of Hg(C4Fs5),
with metallic Yb has been computed at the DFT level. The reaction
is found to be kinetically and thermodynamically favourable. The
formation of a transient complex bearing a Hg-Yb bond is also
predicted, that rapidly evolves to the final divalent ytterbium
complex. The latter can then react with a proton donor (pyrazole
in this study) through o-bond metathesis. This reaction is also
kinetically and thermodynamically favourable and indicates the
propensity of divalent ytterbium to react without change of
oxidation state. The challenge now arises for us to isolate an
intermediate involving a Yb-Hg bonded species.

We thank the Alexander von Humboldt Foundation for a
fellowship to L.M. and the Australian Research Council for
Grant DP130100152.
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