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A heterocyclic, sp>-rich chemical scaffold was synthesised in just 6
steps via a highly regio- and diastereo-selective tandem nitrone
formation/intramolecular nitrone—alkene [3+2] cycloaddition reaction.
A library of 543 lead-like compounds based on the scaffold core has
been produced.

Libraries of small molecules capable of exploring novel, three-
dimensional chemical space are highly desired in early-stage
probe- and drug-discovery screening programmes.’ Multiple
authors have suggested that molecules containing a high fraction
of sp*hybridised carbon atoms (Fsp®) and numerous stereo-
centres have a lower rate of attrition during each stage of the
drug discovery and development process once a hit has been
established, thus potentially providing higher-quality lead com-
pounds.** However, the development of facile synthetic routes to
libraries of stereochemically-rich molecules with a high Fsp®
remains a formidable challenge for the chemical community.*

Over the past decade our group has been interested in the rapid
synthesis of architecturally complex molecules from simple, symme-
trical starting materials, through de-symmetrising tandem reactions.’
This has led to the efficient synthesis of a number of natural products
including xenovenine (4 steps),® alkaloid cis-223B (3 steps),”” histrio-
nicotoxin (9 steps),’ anatoxin-a (10 steps),” hippodamine (8 steps) and
epi-hippodamine (11 steps)."® We have recently demonstrated that
through tandem reactions involving key complexity-generating, ring-
forming operations, such as [3+2] dipolar cycloadditions, densely-
functionalised tricyclic cores containing a spirocyclic centre can be
generated in a diastereoselective manner.>*

A current focus within our research group is the exploitation
of the knowledge gained throughout these investigations, in the
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efficient synthesis of sp>rich chemical scaffolds for drug discovery.'®
Polycyclic scaffolds containing a central spiro-ring fusion are desir-
able in drug discovery due to their structural rigidity resulting in
a reduced conformational entropy penalty upon ligand-protein
binding."* In addition, incorporation of a spiro-centre often provides
greater structural novelty and enhanced physical properties over that
of flat, (hetero)aromatic compounds.”* To maximise its potential a
quality chemical scaffold should: (i) contain multiple points of
diversity, (ii) be ‘lead-like’,"® with a sufficiently low molecular weight
(<300 Da) and cLogP (<3) to allow derivatisation of the scaffold
core into a library of compounds that largely adheres to Lipinski’s
Rule of Five,'® and (iii) not contain any metabolically labile moieties
or toxicophores. From a practical standpoint, the synthetic route to a
scaffold should be concise, reliable, safe, and scalable to provide
rapid access to large quantities of material.

Following these guiding principles, we report the facile and
diastereoselective synthesis of a novel, heterocyclic chemical scaffold
1 (Fig. 1). The rigid, tricyclic core of scaffold 1 contains four
contiguous stereocentres with one spirocyclic centre, and has a high
degree of bond saturation,” with an Fsp® value of 0.9. The scaffold 1
has three points of diversity (R, R* and R?) to allow exploration of
chemical space along three distinct vectors. The low molecular weight
(196 Da) and cLogP (—1.2) of the unsubstituted scaffold 1 (R', R?,
R’ = H) provides an excellent platform for diversification into a library
of drug-like molecules, for screening against various biological targets.

On the basis of previous work, we envisioned that the
3-hydroxy lactam unit of scaffold 1 could be derived from key
intermediate isoxazolidine 2, by N-O bond reduction followed
by cyclisation (Fig. 1).>'> It was proposed that spirocyclic
isoxazolidine 2 could be obtained diastereoselectively through
a tandem nitrone formation/intramolecular nitrone-alkene [3+2]
cycloaddition from piperidinone 3, in a single complexity-
generating step. Mono-alkylated piperidinone 3 should be readily
accessible from a suitable N-protected piperidinone 4.

N-Benzyl piperidinone 4a was selected as the starting point in
the synthesis of scaffold 1 due to its commercial availability and
low cost. Piperidinone 4a was alkylated via hydrazone 5a to avoid
the well-documented issues associated with the direct alkylation of
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Fig. 1 Retrosynthetic analysis of scaffold 1.

ketones (Scheme 1)."” Treatment of piperidinone 4a with a small
excess of N,N-dimethylhydrazine (1.2 equiv.) under Dean-Stark
conditions gave hydrazone 5a in quantitative yield after 2 hours,
with no need for purification.'® o-Deprotonation of hydrazone 5a
with nBuLi (1.1 equiv.) then C-alkylation with 4-bromo-1-butene
(1.5 equiv.) and in situ hydrolysis of the hydrazone moiety (2 M HCI),
gave previously unreported homoallylated piperidinone 6 in excel-
lent overall yield (81%). This one-pot procedure was typically
performed on large scale, yielding up to 24 g of piperidinone 6
in a single batch. Unexpectedly, attempted alkylation of the
carbamate-protected piperidinone analogues 4b (N-Boc) and 4c
(N-Cbz) resulted in recovered starting material. Further investigation
revealed that hydrazones 5b and 5c had formed without incident.
However, o-deprotonation of hydrazones 5b and 5c¢ using either
LDA or nBuLi had not occurred, as quenching the reaction with D,O
revealed no deuterium incorporation by mass spectrometry or
'"H NMR spectroscopy. Common additives (LiCl, TMEDA and
DMPU) for use with lithium bases were employed,'® but failed to
have any effect. The reason for the apparent lack of reactivity of
N,N-dimethylhydrazones 5b and 5c¢ to deprotonation is currently
unknown, but was not explored further.*
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Scheme 1 Synthesis of key intermediate isoxazolidine 2.
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The trans-o,p-unsaturated ester moiety was incorporated into
N-benzyl piperidinone 3a by cross-metathesis between ethyl acrylate
7 and the terminal olefin of 6. Typical Grubbs cross-metathesis
conditions (Grubbs II [10 mol%], ethyl acrylate 7 [8 equiv.], CH,Cl,,
20 °C)** gave a,B-unsaturated ester 3a in a disappointing 32% yield
(E:Z 9:1) after 4 days, which could not be improved by varying the
catalyst, reagent stoichiometry, solvent or temperature. In an effort
to improve both the yield and reaction rate, the ‘Copper Iodide Effect’
was utilised, as described by Lipshutz and co-workers.*” Addition of
copper iodide (3 mol%) as co-catalyst gave o,B-unsaturated ester
3a (E:Z 11:1) in 89% isolated yield in only 3 hours on large scale
(>10 g), representing a dramatic increase in conversion and reaction
rate. Beneficially, the procedure also required considerably less
Grubbs II catalyst (1.5 mol%) and ethyl acrylate 7 (3 equiv.) and
was performed in ethereal solvent, rather than chlorinated media,
deeming it more attractive from a financial, safety and environmental
perspective.” The two geometric isomers of o,f-unsaturated ester 3a
were separated by silica gel column chromatography and the major
(E)-isomer taken forward in the synthesis.

Treatment of piperidinone 3a with N-benzylhydroxylamine hydro-
chloride (1.5 equiv.) in the presence of NaOAc (3.0 equiv.) in refluxing
toluene afforded key intermediate tricyclic isoxazolidine 2a in 66%
isolated yield (Scheme 1). In a single complexity-generating opera-
tion, three new stereogenic centres and two new rings were formed,
to generate a fused, tricyclic, spiro-isoxazolidine. Subjecting N-methyl-
hydroxylamine hydrochloride to the same reaction conditions
resulted in the analogous isoxazolidine 2b in 61% isolated yield,
showing that one point of diversity can be incorporated into the
scaffold at this stage. Significantly, only a single regio- and diastereo-
isomer was observed by "H NMR spectroscopy in both cases.

The tandem reaction of piperidinone 3a to isoxazolidine 2b
initially proceeds through condensation of 3a with the mono
N-substituted hydroxylamine to give nitrone 8 (Fig. 2). Subsequent
intramolecular nitrone-alkene [3+2] cycloaddition gives two possible
regioisomeric isoxazolidine products, 2b or 9. Computational ana-
lysis of isoxazolidines 2b and 9 (Hartree-Fock 6-31G*) revealed
a small energy difference between the two isomers, with the
unobserved 6,6,5 ring system 9 being 4.62 k] mol ™" lower in energy
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Fig. 2 Formation of regioisomeric isoxazolidines 2b and 9.
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than the observed 6,5,5 ring system 2b. However, the transition state
8-TS2 during formation of the lower energy 6,6,5 ring system 9
would experience substantial unfavourable steric interactions aris-
ing from the close proximity of the ester function to the developing
congested spirocentre. Conversely, the transition state 8-TS1 in the
formation of the 6,5,5 ring system 2b has the ester moiety located
away from the developing spirocentre, resulting in minimal steric
interactions and therefore a more favourable reaction pathway.
Attempted isomerisation of 2b to the energetically favoured isoxa-
zolidine 9 (W, PhCl, 200 °C, 2 hours) resulted in a complex mixture
of starting material 2b and decomposition products.

Treatment of isoxazolidines 2a and 2b with activated zinc in
aqueous acetic acid prompted smooth transformation to the corres-
ponding 3-hydroxy lactams 11a and 11b in excellent yield (93% and
88% respectively) with no need for purification (Scheme 2). Mechan-
istically, reduction of the N-O bond in isoxazolidine 2, followed by
C-C bond rotation to 10, allowed ring-closure to lactam 11.

X-Ray crystallographic analysis of lactams 11a and 11b con-
firmed the atom connectivity and relative stereochemistry (Fig. 3).
The X-ray images clearly show that the three points of diversification
on scaffolds 11a (atoms N1, N7 and 021, Fig. 3) and 11b (atoms N1,
N7 and 022, Fig. 3) will allow library synthesis in three defined and
divergent trajectories, providing substantial exploration of three-
dimensional chemical space.

With the scaffold core structure 11 in hand, it was important
to demonstrate that the remaining two points of diversity on 1
(R* and R’ Fig. 1) were capable of being functionalised without
complication, prior to full library synthesis being undertaken.
O-Alkylation of 11 was exemplified by deprotonation of the hydroxy
function with sodium hydride, then treatment with stoichiometric
iodomethane to give methyl ethers 12a and 12b in 65% and 61%
isolated yield respectively (Scheme 3).

Deprotection of the piperidyl N-benzyl moiety of scaffolds 11a,
11b, 12a and 12b occurred cleanly using Pearlman’s catalyst under
an atmospheric pressure of hydrogen gas to give the secondary
amines 13a-13d in excellent yield (88-93%, Scheme 3). Interestingly,
the lactam N-benzyl group of 11a and 12a was not cleaved under
these conditions, presumably due to steric hindrance around the
N-Bn bond imposed by the adjacent spirocentre. Remarkably,
increasing the hydrogen pressure (50 atm, 4 days), addition of acid
(AcOH or HCI) or employing typical transfer hydrogenation condi-
tions (Pd/C, ammonium formate, MeOH, reflux, 24 h) also proved
ineffective at lactam N-debenzylation in 11a (R', Scheme 2).

The deprotected piperidyl nitrogen atom (N1, 11, Fig. 3) repre-
sented the main library diversification point on scaffold 1. Second-
ary amines can undergo an array of useful transformations for
library synthesis, including (i) coupling with carboxylic acids to

CO,Et OH (;)H
zinc dust N . : o
(15 eq.) “ &
2 © OFt
ACOHH,0 (1:1) N
BnN L 70°C,15h BN L BnN N
1
2 11a (R! = Bn) 93% 1 10

11b (R" = Me) 88%

Scheme 2 Reductive cyclisation of isoxazolidine 2 to 3-hydroxy lactam 11.
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Scheme 3 O-Alkylation and N-debenzylation.

make amides,® (ii) reaction with isocyanates to form ureas,
(iii) reductive amination with aldehydes or ketones to give tertiary
amines,” and (iv) treatment with sulfonyl chlorides to make
sulfonamides. A small, exemplary library of compounds was pro-
duced in good yield (30-72%) using typical reductive amination
(conditions A), sulfonylation (conditions B) and amidation (condi-
tions C) protocols (11b, 1a-e, Fig. 4), proving that the final func-
tional handle of scaffold 1 (R?, Fig. 1) could be subjected to a variety
of standard reactions without issue.

The synthetic route was scaled up to provide a total of 130 mmol
of the scaffold core 11. Derivatisation of R', R”> and R® produced a
library of 543 novel compounds (~0.1 mmol each) to be incorpo-
rated into the European Lead Factory’s screening programme.
Computational assessment of the library indicates that it is largely
Lipinski’s Rule of Five compliant, with an average molecular weight
of 429 and cLog P of 1.6 (Fig. 5). The library also has a high degree
of three-dimensionality and bond-saturation, with an average Fsp’
of 0.54 (Fig. 5).

The development of efficient synthetic routes to libraries of small,
sp’-rich molecules for use in drug discovery remains a challenging
but important goal. We have reported the facile synthesis and
diversification of a novel, heterocyclic chemical scaffold 1. The
spirocyclic scaffold core 13 (R' = Bn or Me, R* = R® = H) was
accessed in only six operationally simple synthetic steps from
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18 h; conditions B (sulfonylation) — 13 (1.0 equiv.), ArSO,Cl (1.3 equiv.),
pyridine, 18 °C, 18 h; conditions C (amidation) — 13 (1.5 equiv.), ArCO,H
(1.0 equiv.), HATU (2.0 equiv.), HUnig's base (3.0 equiv.), DMF, 18 °C, 18 h.
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Fig. 5 Plot of cLog P versus MW (left) and Fsp® analysis (right) of the 543-
compound library based on scaffold 1.

commercially available N-benzyl piperidinone 4a, in an overall yield
of 41% (13a) or 36% (13b) (averaging 87% or 85% yield per step,
respectively). The synthetic route to scaffold 13 required just one
protecting group manipulation (N-debenzylation), and can be com-
pleted in less than five working days on a multi-gram scale. A highly
regio- and diastereo-selective tandem condensation/intramolecular
nitrone-alkene [3+2] cycloaddition reaction provided key intermedi-
ate isoxazolidine 2 in a single, complexity-generating operation, from
a-functionalised piperidinone 3a. Subsequent one-pot isoxazolidine
N-O bond reduction and cyclisation gave the scaffold core structure
11, which was confirmed by X-ray crystallographic analysis. Diversi-
fication of the scaffold core has provided a library of 543 drug-like
molecules, which will be screened against various biological targets
as part of the European Lead Factory. Work is ongoing within our
laboratory to develop efficient routes to novel sp>rich chemical
scaffolds for drug discovery.

This research was done within the European Lead Factory
and has received support from the Innovative Medicines
Initiative Joint Undertaking (grant no. 115489), with financial
contribution from the European Union’s Seventh Framework

12870 | Chem. Commun., 2015, 51, 12867-12870

View Article Online

ChemComm

Programme (FP7/2007-2013) and EFPIA companies’ in-kind con-
tribution. The authors would like to thank Professor Christopher
Moody and Tom MclInally (University of Nottingham), in addition
to Dr Iain Miller and Dr Geraint Jones (Sygnature Discovery
Limited) for useful insight and discussion.

Notes and references

1 J.-L. Reymond and M. Awale, ACS Chem. Neurosci., 2012, 3, 649;
A. W. Hung, A. Ramek, Y. Wang, T. Kaya, J. A. Wilson, P. A. Clemons
and D. W. Young, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 6799;
J.-L. Reymond, R. van Deursen, L. C. Blum and L. Ruddigkeit,
MedChemComm, 2010, 1, 30.

2 F. Lovering, J. Bikker and C. Humblet, J. Med. Chem., 2009, 52, 6752.

3 M. Aldeghi, S. Malhotra, D. L. Selwood and A. W. E. Chan, Chem.
Biol. Drug Des., 2014, 83, 450; F. Lovering, MedChemComm, 2013,
4, 515; P. A. Clemons, J. A. Wilson, V. Dancik, S. Muller, H. A.
Carrinski, B. K. Wagner, A. N. Koehler and S. L. Schreiber, Proc. Natl.
Acad. Sci. U. S. A., 2011, 108, 6817; T. ]J. Ritchie and S. J. F.
MacDonald, Drug Discovery Today, 2009, 14, 1011; Y.-k. Kim, M. A.
Arai, T. Arai, J. O. Lamenzo, E. F. Dean, III, N. Patterson, P. A.
Clemons and S. L. Schreiber, J. Am. Chem. Soc., 2004, 126, 14740.

4 ]J. D. Sunderhaus and S. F. Martin, Chem. — Eur. J., 2009, 15, 1300;

D. S. Tan, Nat. Chem. Biol., 2005, 1, 74; S. L. Schreiber, Science, 2000,

287, 1964.

D. Robbins, A. F. Newton, C. Gignoux, J.-C. Legeay, A. Sinclair,

M. Rejzek, C. A. Laxon, S. K. Yalamanchili, W. Lewis, M. A. O’Connell

and R. A. Stockman, Chem. Sci., 2011, 2, 2232.

6 A. Barthelme, D. Richards, I. R. Mellor and R. A. Stockman, Chem.
Commun., 2013, 49, 10507.

7 ].-C. Legeay, W. Lewis and R. A. Stockman, Chem. Commun., 2009, 2207.

8 M. S. Karatholuvhu, A. Sinclair, A. F. Newton, M.-L. Alcaraz, R. A.
Stockman and P. L. Fuchs, J. Am. Chem. Soc., 2006, 128, 12656;
R. A. Stockman, Tetrahedron Lett., 2000, 41, 9163.

9 S.J. Roe, D. L. Hughes, P. Aggarwal and R. A. Stockman, Synthesis,
2009, 3775; S. J. Roe and R. A. Stockman, Chem. Commun., 2008, 3432.

10 A. F. Newton, M. Rejzek, M.-L. Alcaraz and R. A. Stockman, Beilstein
J. Org. Chem., 2008, 4, 4; M. Rejzek, R. A. Stockman and D. L.
Hughes, Org. Biomol. Chem., 2005, 3, 73.

11 C. Gignoux, A. F. Newton, A. Barthelme, W. Lewis, M.-L. Alcaraz and
R. A. Stockman, Org. Biomol. Chem., 2012, 10, 67; L. G. Arini, P. Szeto,
D. L. Hughes and R. A. Stockman, Tetrahedron Lett., 2004, 45, 8371.

12 A. Sinclair, L. G. Arini, M. Rejzek, P. Szeto and R. A. Stockman,
Synlett, 2006, 2321.

13 T. E. Storr, S. J. Cully, M. J. Rawling, W. Lewis, D. Hamza, G. Jones and
R. A. Stockman, Bioorg. Med. Chem., 2015, 23, 2621-2628; M. C. McLeod,
G. Singh, J. N. Plampin, III, D. Rane, J. L. Wang, V. W. Day and ]. Aube,
Nat. Chem., 2014, 6, 133; M. E. Welsch, S. A. Snyder and B. R. Stockwell,
Curr. Opin. Chem. Biol., 2010, 14, 347.

14 Y. Zheng, C. M. Tice and S. B. Singh, Bioorg. Med. Chem. Lett., 2014,
24, 3673; C. M. Marson, Chem. Soc. Rev., 2011, 40, 5514; J. H. Meyer
and P. A. Bartlett, /. Am. Chem. Soc., 1998, 120, 4600; J. Ding,
M. E. Fraser, J. H. Meyer, P. A. Bartlett and M. N. G. James, J. Am.
Chem. Soc., 1998, 120, 4610; W. W. Smith and P. A. Bartlett, J. Am.
Chem. Soc., 1998, 120, 4622.

15 H. Jhoti, G. Williams, D. C. Rees and C. W. Murray, Nat. Rev. Drug
Discovery, 2013, 12, 644; M. Congreve, R. Carr, C. Murray and
H. Jhoti, Drug Discovery Today, 2003, 8, 876.

16 C. A. Lipinski, F. Lombardo, B. W. Dominy and P. ]. Feeney,
Adv. Drug Delivery Rev., 1997, 23, 3.

17 R. Lazny and A. Nodzewska, Chem. Rev., 2010, 110, 1386.

18 M. G. Banwell, M. J. Coster, N. L. Hungerford, M. ]J. Garson, S. Su,
A. C. Kotze and M. H. G. Munro, Org. Biomol. Chem., 2012, 10, 154.

19 D. B. Collum, Acc. Chem. Res., 1992, 25, 448.

20 H. Sun, K. M. Millar, J. Yang, K. Abboud and B. A. Horenstein,
Tetrahedron Lett., 2000, 41, 2801.

21 S.]. Connon and S. Blechert, Angew. Chem., Int. Ed., 2003, 42, 1900.

22 K. Voigtritter, S. Ghorai and B. H. Lipshutz, J. Org. Chem., 2011, 76, 4697.

23 P. Anastas and N. Eghbali, Chem. Soc. Rev., 2010, 39, 301.

24 L. A. Carpino, J. Am. Chem. Soc., 1993, 115, 4397.

25 A. F. Abdel-Magid, K. G. Carson, B. D. Harris, C. A. Maryanoff and
R. D. Shah, J. Org. Chem., 1996, 61, 3849.

[92]

This journal is © The Royal Society of Chemistry 2015


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5cc05070g



