ChemComm

COMMUNICATION

View Article Online

Cite this: Chem. Commun., 2015 **51** 15145

Received 19th June 2015, Accepted 21st August 2015

DOI: 10.1039/c5cc05064b

www.rsc.org/chemcomm

Mechanism of a one-photon two-electron process in photocatalytic hydrogen evolution from ascorbic acid with a cobalt chlorin complex†

Shoko Aoi,^a Kentaro Mase,^a Kei Ohkubo^{ab} and Shunichi Fukuzumi*^{abc}

A one-photon two-electron process was made possible in photocatalytic H2 evolution from ascorbic acid with a cobalt(II) chlorin complex [Co^{II}(Ch)] via electron transfer from ascorbate to the excited state of [Ru(bpy)3]2+ followed by electron transfer from [Ru(bpy)₃]⁺ to Co^{II}(Ch) with proton to give the hydride complex, which reacts with proton to produce H₂. [Co^{III}(Ch)]⁺ was reduced by ascorbate to reproduce Co^{II}(Ch).

Photocatalytic production of hydrogen (H2) has attracted increasing attention as a clean energy source because of the ever-increasing demand for energy and climate change on our planet.¹ A number of highly efficient hydrogen evolving systems have been developed including homogeneous and heterogeneous photocatalytic systems.²⁻¹³ Two electrons are required to produce H₂ from protons, although one photon generates normally only one electron. A mechanism of photocatalytic production of H₂ was reported to clarify how photoinduced electron transfer of a photosensitiser (a one-electron process) leads to H₂ production (a two-electron process). 14-16 Disproportionation of one-electron reduced species of metal complexes resulted in formation of the two-electron reduced species from which H₂ is formed.¹⁷ Bimolecular reactions of metal(III)-hydride complexes also generate H₂ accompanied by regeneration of metal(II) complexes. ¹⁸ In each case, the maximum quantum yield of H₂ production per photon is 50%, because two photons are required to produce two electrons. Thus there has so far been no example for one photon to generate one H2 molecule.

We report herein photocatalytic H₂ evolution from ascorbic acid (AscH₂) with a cobalt(II) chlorin complex [Co^{II}(Ch)] (a chemical structure shown in Scheme 1)¹⁹ in an aqueous acetonitrile solution (H2O/MeCN), which proceeds via a one-photon two-electron process. The photocatalytic mechanism is clarified by nanosecond laser transient absorption spectra and by examining each step in the catalytic cycle independently.

Visible light irradiation of a deaerated (Ar-saturated) H₂O/ MeCN solution (1:1 v/v) of $[\text{Ru}(\text{bpy})_3]^{2+}$ (bpy = 2,2'-bipyridine) containing ascorbic acid (AscH₂) and ascorbate (AscH⁻) (E_{ox} = 0.43 V vs. SCE) as an electron donor and $Co^{II}(Ch)$ ($E_{red} = -0.96$ V vs. SCE) (Fig. S1 in the ESI†) as a catalyst resulted in H₂ evolution (Fig. 1, black line). When the ratio of AscH⁻ to AscH₂ was changed as fixed total concentrations of AscH2 and AscH ([AscH2] + [AscH $^{-}$] = 1.1 M), the largest H₂ evolution activity was attained with AscH⁻ (0.30 M) and AscH₂ (0.80 M) (Fig. S2 in ESI[†]). The smaller concentration of AscH⁻ results in less efficient reductive quenching of the [Ru(bpy)₃]^{2+*} emission (* denotes the excited state).

Fig. 1 Time courses of H2 evolution in the photocatalytic reduction of proton in an Ar-saturated H₂O/MeCN (black) and D₂O/MeCN (red) mixed solution (1:1 v/v) containing [Rull(bpy)₃]²⁺ (2.0 mM), AscH₂ (0.80 M), AscHNa (0.30 M) and Co^{II}(Ch) (25 μ M) under irradiation of visible light ($\lambda > 420$ nm) at 298 K.

^a Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan. E-mail: fukuzumi@chem.eng.osaka-u.ac.jp; Fax: +81-6-6879-7370

^b Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea

^c Faculty of Science and Technology, Meijo University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-8502, Japan

[†] Electronic supplementary information (ESI) available: Experimental details and cyclic voltammograms (Fig. S1), time courses of H2 evolution (Fig. S2), emission spectra (Fig. S3 and S5), UV-vis absorption spectra (Fig. S4 and S7) and kinetic data (Fig. S6-S11). See DOI: 10.1039/c5cc05064b

Communication ChemComm

The quenching efficiency of $[Ru(bpy)_3]^{2+*}$ ($E_{red} = 0.77 \text{ V} \text{ vs. SCE in}$ MeCN)²⁰ by AscH⁻ (0.30 M) with AscH₂ (0.80 M) was determined to be 95% (Fig. S3 in ESI†). On the other hand, the smaller concentration of AscH₂ may retard H₂ production due to decreasing the acidity. When H₂O was replaced by D₂O, D₂ and HD were produced without formation of H₂. Thus, hydrogen was produced from water and ascorbic acid as electron and proton sources. The observed deuterium kinetic isotope effect (KIE) in Fig. 1 ($k_{\rm H}/k_{\rm D}$ = 1.8 in the initial stage) suggests that the Co-H bond cleavage of a cobalt hydride intermediate ([CoIII(H)(Ch)]) by proton may be the ratedetermining step for the photocatalytic H₂ evolution (vide infra).

The concentration of Co^{II}(Ch) was optimised to be 50 μM for the efficient photocatalytic H2 evolution. The absorption of [Ru(bpy)₃]²⁺ is blocked by the larger concentration of Co^{II}(Ch) (Fig. S4 in ESI†). 21 The quantum yield of the photocatalytic H₂ evolution was determined to be 12% using a ferric oxalate actinometer (see the Experimental section in ESI†). This value is similar to the highest value reported for photocatalytic H₂ evolution using a cobalt terpyridine complex ($\Phi = 0.13$).²²

Nanosecond transient absorption spectra of an H₂O/MeCN solution of [Ru(bpy)₃]²⁺ with AscH₂ and AscH⁻ are shown in Fig. 2, where appearance of the absorption band at 500 nm due to [Ru(bpy)₃]⁺ is observed upon the nanosecond laser excitation. Thus, electron transfer from AscH⁻ to [Ru(bpy)₃]^{2+*} occurred to produce AscH[•] and [Ru(bpy)₃]⁺. The rate constant of electron transfer from AscH⁻ to $[\text{Ru(bpy)}_3]^{2+*}$ (k_{et}) was determined to be $8.0 \times 10^8 \,\text{M}^{-1} \,\text{s}^{-1}$ from a slope of Stern-Volmer plot ($K_{SV} = 3.5 \times 10^2 \text{ M}^{-1}$) and the lifetime of $[Ru(bpy)_3]^{2+*}$ (0.44 µs in water/MeCN 1:1 v/v) (Fig. S5 in ESI†).²³ The decay rate of absorbance at 500 nm due to [Ru(bpy)₃]⁺ obeyed the second-order kinetics of bimolecular back electron transfer from [Ru(bpy)₃]⁺ to AscH[•]. In the presence of Co^{II}(Ch), the decay of absorbance became much faster because of electron transfer from [Ru(bpy)₃]⁺ to Co^{II}(Ch) as shown in Fig. 2b. The decay rate constant linearly increased with increasing the concentration of [Co^{II}(Ch)] (Fig. S6 in ESI†). The rate constant of electron transfer from $[Ru(bpy)_3]^+$ to $Co^{II}(Ch)$ was determined to be $2.5 \times 10^9 \, M^{-1} \, s^{-1}$ from the slope of dependence of the first-order decay rate constant on concentration of Co^{II}(Ch) (Fig. S6b in ESI†).

Fig. 2 (a) Transient absorption spectra after laser excitation (λ = 450 nm) of $[Ru^{II}(bpy)_3]^{2+}$ (80 μ M) in the presence of AscH₂ (0.80 M) and AscHNa (0.30 M) in a deaerated $H_2O/MeCN$ mixed solution (1:1 v/v) at 298 K. (b) Time profiles of absorbance at 500 nm due to decay of [Ru(bpy)₃]⁺ in the presence of various concentrations of $Co^{II}(Ch)$ (0-20 μ M) in deaerated $H_2O/MeCN$ mixed solutions (1:1 v/v) containing $[Ru^{II}(bpy)_3]^{2+}$ (80 μ M), AscH₂ (0.80 M), AscHNa (0.30 M).

Fig. 3 (a) UV-vis absorption spectral changes of $[Co^{I}(Ch)]^{-}$ (30 μ M) upon addition of CH₃COOH (0.30 M) in dearated MeCN at 298 K. The black and blue lines show the spectra taken at 66 ms and 1 s after mixing, respectively. The red line shows UV-vis absorption spectrum of $[Co^{-1}(Ch)]^{-1}$ (15 μ M) formed by the electron-transfer reduction of $Co^{II}(Ch)$ (15 μ M) with $CoCp_2^*$ (300 μ M) in dearated MeCN at 298 K. (b) Plot of $k_{\rm obs}$ for the rate of formation of [Co^{III}(Ch)]⁺ vs. [CH₃COOH].

To examine the reaction of [Co^I(Ch)]⁻ that is produced by electron transfer from [Ru(bpy)₃]⁺ to Co^{II}(Ch), [Co^I(Ch)]⁻ was prepared by the one-electron reduction of Co^{II}(Ch) by decamethylcobaltocene $[Co(Cp^*)_2]$ in MeCN (Fig. S7 in ESI†). The UV-vis absorption band of $[Co^{I}(Ch)]^{-}$ (red line in Fig. 3a; $\lambda_{max} =$ 510 nm) decreased with increasing absorption band at 660 nm (black line) at 66 ms after addition of acetic acid (CH₃COOH) (0.30 M). Then, this absorption band was finally blue shifted to λ_{max} = 652 nm, which is due to $[\text{Co}^{\text{III}}(\text{Ch})]^+$. ^{24,25} Thus, $[\text{Co}^{\text{I}}(\text{Ch})]^$ may react with CH₃COOH to form the hydride complex $([Co^{III}(H)(Ch)(CH_3COO)]^-: \lambda_{max} = 660 \text{ nm}), \text{ from which } H_2 \text{ was}$ evolved by the reaction with CH₃COOH to produce [Co^{III}(Ch)]⁺. The reaction of [Co^I(Ch)]⁻ with CH₃COOH was monitored by the absorption change at 652 nm due to [Co^{III}(Ch)]⁺ as shown in Fig. 3, where the rate of the formation of $[Co^{III}(Ch)]^+$ obeyed first-order kinetics (Fig. S8 in ESI†). The first-order rate constant increased with increasing concentration of CH3COOH to approach a constant value (Fig. 3b). Such a saturation behaviour indicates that CH₃COOH is not involved in the rate-determining step and that the reaction of [Co^I(Ch)] with CH₃COOH proceeds via formation of the hydride complex ([Co^{III}(H)(Ch)(CH₃COO)]⁻), followed by the rate-determining heterolytic cleavage of the Co^{III}-H bond. The subsequent reaction of the released hydride ion with CH₃COOH to produce H₂ and [Co^{III}(Ch)]⁺ may be fast as compared with the back reaction of the Co^{III}-H bond cleavage (Scheme 1). The kinetic equation for the formation of [Co^{III}(Ch)]⁺ is given by eqn (1),

Scheme 1 Mechanism of hydrogen formation by the reaction of [Co^I(Ch)] with CH₃COOH.

ChemComm

$$d[[Co^{III}(Ch)]^+]/dt = k[[Co^{III}(H)(Ch)(CH_3COO)]^-]$$
 (1)

where k is the rate constant of the hydrogen evolution. From the equilibrium constant (K), the concentration of a complex between $[Co^{I}(Ch)]^{-}$ and $CH_{3}COOH$ is given by eqn (2), where

$$[[Co^{II}(H)(Ch)(CH_3COO)]^-] = K[CH_3COOH]([[Co^I(Ch)]^-]_0$$

$$- [[Co^{II}(Ch)]^+])/(1 + K[CH_3COOH])$$
(2)

 $[[Co^{I}(Ch)]^{-}]_{0}$ is the initial concentration. Eqn (1) is rewritten by eqn (3).

$$d[[Co^{III}(Ch)]^{+}]/dt = kK[CH_{3}COOH]([[Co^{I}(Ch)]^{-}]_{0}$$

$$- [[Co^{III}(Ch)]^{+}])/(1 + K[CH_{3}COOH])$$
(3)

Under the conditions, the concentration of CH₃COOH is much higher than that of $[Co^{I}(Ch)]^{-}$, the $k_{\rm obs}$ value is given by eqn (4). To determine the k value, eqn (4) is rewritten by eqn (5), which predicts

$$k_{\text{obs}} = kK[\text{CH}_3\text{COOH}]/(1 + K[\text{CH}_3\text{COOH}])$$
 (4)

$$k_{\text{obs}}^{-1} = 1/kK \cdot [\text{CH}_3\text{COOH}]^{-1} + 1/k$$
 (5)

a linear correlation between $k_{\rm obs}^{-1}$ and $[{\rm CH_3COOH}]^{-1}$ (Fig. S9 in ESI†). The k and K values were determined from the intercept and slope of the linear plot of $k_{\rm obs}^{-1}$ νs . $[{\rm CH_3COOH}]^{-1}$ to be 5.9 s⁻¹ and 7.1 M⁻¹.

When CH_3COOH was replaced by CH_3COOD , the deuterium kinetic isotope effect (KIE) was observed (Fig. S10 in ESI†), 26 indicating that the cleavage of the Co–H bond of $[Co^{III}(H)-(Ch)(CH_3COO)]^-$ or O–H bond of CH_3COOH is involved in the rate-determining step of the reaction of $[Co^{I}(Ch)]^-$ with CH_3COOH . Because CH_3COOH is not involved in the rate-determining step (*vide infra*), the cleavage of the Co–H bond of $[Co^{III}(H)(Ch)-(CH_3COO)]^-$ is the rate-determining step of the reaction of $[Co^{I}(Ch)]^-$ with CH_3COOH . The KIE value was 1.7 which is virtually the same as observed for the photocatalytic H_2 evolution (KIE = 1.8, Fig. 1), indicating that the heterolytic Co–H bond cleavage of $[Co^{III}(H)(Ch)(CH_3COO)]^-$ is also the rate-determining step in the photocatalytic H_2 evolution.

Fig. 4 (a) UV-vis absorption spectral changes in the electron-transfer reduction of $[Co^{III}(Ch)]^+$ (15 μ M) with AscHNa (50 mM) in air-saturated H₂O/MeCN mixed solutions (1:1 v/v) at 298 K taken at 70 ms and 118 ms after mixing. (b) Decay time profiles of absorbance at 652 nm due to $[Co^{III}(Ch)]^+$ in the presence of various concentrations of AscHNa in air-saturated H₂O/MeCN mixed solutions (1:1 v/v) at 298 K.

Scheme 2 Mechanism of photocatalytic hydrogen evolution from $AscH^-$ and $AscH_2$ with $[Ru(bpy)_3]^{2+}$ and $Co^{II}(Ch)$.

[Co^{III}(Ch)]⁺ produced by the reaction of [Co^{III}(H)(Ch)–(CH₃COO)]⁻ with CH₃COOH is reduced by AscH⁻ to form Co^{II}(Ch) as shown by stopped-flow measurements in Fig. 4.²⁷ The rate constant of electron transfer from AscH⁻ to [Co^{III}(Ch)]⁺ that was prepared by the one-electron oxidation of Co^{II}(Ch) with $(p\text{-BrC}_6\text{H}_4)_3\text{N}^{\bullet +}\text{SbCl}_6^-$ in H₂O/MeCN was determined to be 1.5 × 10^3 M⁻¹ s⁻¹ from the linear dependence of the first-order rate constant on concentration of AscH⁻ (Fig. S11 in ESI⁺).

The photocatalytic cycle is summarized in Scheme 2. Photo-excitation of [Ru(bpy)₃]²⁺ resulted in electron transfer from AscH⁻ to [Ru(bpy)₃]^{2+*} to produce [Ru(bpy)₃]⁺, followed by electron transfer from [Ru(bpy)₃]⁺ to Co^{II}(Ch) to produce [Co^I(Ch)]⁻, which reacts with AscH₂ to produce [Co^{III}(H)(Ch)(AscH)]⁻. Hydrogen is generated by the reaction of [Co^{III}(H)(Ch)(AscH)]⁻ with AscH₂ *via* the Co-H bond heterolysis to produce [Co^{III}(Ch)]⁺, ^{28,29} which is reduced by AscH⁻ to regenerate Co^{II}(Ch). In such a case, a one-photon two-electron process is made possible, because one photon is required to produce [Co^I(Ch)]⁻ for H₂ evolution and another electron is provided thermally by AscH⁻.

In conclusion, $Co^{II}(Ch)$ acts as an efficient catalyst for photocatalytic H_2 evolution from ascorbic acid with $[Ru(bpy)_3]^{2^+}$ as a photocatalyst to attain the high quantum yield *via* a one-photon two-electron process in which the second electron is provided thermally from ascorbic acid.

This work was supported by Grants-in-Aid (no. 26620154 and 26288037 to K.O.) and JSPS fellowship (No. 25-727 to K.M.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT); ALCA and SENTAN projects from JST, Japan (to S.F.).

Notes and references

- 1 R. A. Kerr and R. F. Service, Science, 2005, 309, 101.
- 2 X. Song, H. Wen, C. Ma, H. Chen and C. Chen, New J. Chem., 2015, 39, 1734.
- 3 K. Kawano, K. Yamauchi and K. Sakai, *Chem. Commun.*, 2014, 50, 9872.
- 4 X. Wang, S. Goeb, Z. Ji, N. A. Pogulaichenko and F. N. Castellano, *Inorg. Chem.*, 2011, 50, 705.
- 5 L.-Z. Fu, L.-L. Zhou, L.-Z. Tang, Y.-X. Xhang and S.-Z. Zhan, J. Power Sources, 2015, 280, 453.
- 6 S. Fukuzumi, Curr. Opin. Chem. Biol., 2015, 25, 18.
- 7 D. Basu, S. Mazumder, X. Shi, H. Baydoun, J. Niklas, O. Poluektov, H. B. Schlegel and C. N. Verani, *Angew. Chem., Int. Ed.*, 2015, **54**, 2105.
- 8 A. Call, Z. Codola, F. Acuna-Pares and J. Lloret-Fillol, *Chem. Eur. J.*, 2014. **20**. 6171.
- 9 H. Lv, W. Guo, K. Wu, Z. Chen, J. Bacsa, D. G. Musaev, Y. V. Geletii, S. M. Lauinger, T. Lian and C. L. Hill, J. Am. Chem. Soc., 2014, 136, 14015.

Communication ChemComm

- 10 L. Chen, G. Chen, C.-F. Leung, S.-M. Yiu, C.-C. Ko, E. Anxolabéhère-Mallart, M. Robert and T.-C. Lau, ACS Catal., 2015, 5, 356.
- 11 A. Zarkadoulas, E. Koutsouri, C. Kefalidi and C. A. Mitsopoulou, Coord. Chem. Rev., 2014, 11, 6.
- 12 K. Maeda, M. Eguchi and T. Oshima, Angew. Chem., Int. Ed., 2014, 53, 13164.
- 13 J. Zhao, Y. Ding, J. Wei, X. Du, Y. Yu and R. Han, *Int. J. Hydrogen Energy*, 2014, 39, 18908.
- 14 E. Deponti, A. Luisa, M. Natali, E. lengo and F. Scandola, *Dalton Trans.*, 2014, 43, 16345.
- 15 H. Ozawa and K. Sakai, Chem. Commun., 2011, 47, 2227.
- 16 A. Rodenberg, M. Orazietti, B. Probst, C. Bachmann, R. Alberto, K. K. Baldridge and P. Hamm, *Inorg. Chem.*, 2015, 54, 646.
- 17 S. Fukuzumi, T. Kobayashi and T. Suenobu, *Angew. Chem.*, *Int. Ed.*, 2011, 50, 728.
- 18 J. L. Dempsey, B. S. Brunschwig, J. R. Winkler and H. B. Gray, Acc. Chem. Res., 2009, 42, 1995.
- 19 K. Mase, K. Ohkubo and S. Fukuzumi, *J. Am. Chem. Soc.*, 2013, **135**, 2800.
- 20 J. Yuasa and S. Fukuzumi, J. Am. Chem. Soc., 2006, 128, 14281.
- 21 The photocatalytic H_2 evolution in our optimized conditions, the absorption at $\lambda=450$ nm of $[Ru(bpy)_3]^{2+}$ (2.0 mM, $\varepsilon_{450\text{nm}}=1.4\times10^4\,\text{M}^{-1}\,\text{cm}^{-1})$ is not significantly blocked by that of $\text{Co}^{\text{II}}(\text{Ch})$ (Abs_{450nm} = 0.38; $\varepsilon_{450\text{nm}}=1.8\times10^4\,\text{M}^{-1}\,\text{cm}^{-1}$) under this experimental conditions.

- 22 C. V. Krishnan and N. Sutin, J. Am. Chem. Soc., 1981, 103, 2141.
- 23 The emission lifetime of $[Ru(bpy)_3]^{2+*}$ in water at 298 K was reported to be 0.58 μ s; see: J. V. Houten and R. J. Watts, *J. Am. Chem. Soc.*, 1976, **98**, 4853.
- 24 The spectrum of [Co^{III}(Ch)]⁺ obtained by the reaction [Co^I(Ch)]⁻ with CH₃COOH was identical to that of [Co^{III}(Ch)]⁺ prepared by the electron-transfer oxidation of Co^{II}(Ch) by a one-electron oxidizing reagent of (*p*-BrC₆H₄)₃N•⁺SbCl₆⁻ (*E*_{red} = 1.05 V vs. SCE).¹⁹.

 25 [Co^{III}(Ch)]⁺ or Co^{III}(H)(Ch) species is not re-reduced by large excess
- 25 [Co^{III}(Ch)]⁺ or Co^{III}(H)(Ch) species is not re-reduced by large excess of Co(Cp*)₂, under the present reaction conditions because Co^{II}(Ch) with 20 molar equiv. of Co(Cp*)₂ is necessary to quantitatively produce [Co^I(Ch)]⁻ as shown in ESI,† Fig. S7. Co(Cp*)₂ (E_{1/2}^{+/0} = -1.47 V νs. SCE) is unstable even in carefully degassed and dehydrated MeCN.
- 26 The KIE value was determined from the $k_{\rm obs}$ values at [CH₃COOH] = [CH₃COOD] = 1.0 M.
- 27 Neither oxidation of [Co^{III}(Ch)]⁺ nor O₂ reduction was observed under the basic reaction conditions.
- 28 S. Mandal, S. Shikano, Y. Yamada, Y.-M. Lee, W. Nam, A. Llobet and S. Fukuzumi, *J. Am. Chem. Soc.*, 2013, 135, 15294.
- 29 No Co(π)–H complex is involved in the heterolysis of the Co–H bond as reported in ref. 28.