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The direct a-arylation of cyclic and acyclic ethers with azoles has been
achieved, which features a novel iron-catalyzed cross-dehydrogenative
coupling (CDC) process. This practical oxidative method allowed
the efficient C2-alkylation of a variety of (benzo)azoles constituting
straightforward access to heterocycles of utmost medicinal signifi-
cance and highlighting the convenient use of feedstock substrates
and iron catalysts. A preliminary mechanism supported by DFT
calculations is discussed as well.

Since the end of the last century sustainable development has
constituted a matter of genuine concern for our society and
scientific community. As a result, “green chemistry” represents
one of the key factors for scientists when designing new chemical
processes.” In this respect, the use of ethers such as tetrahydro-
furan (THF) and related derivatives as important raw chemicals for
the construction of more complex molecules of pharmaceutical
interest has recently received a great deal of attention.> Indeed,
direct functionalization of molecules containing C(sp®)-H bonds
stands out today as one of the most challenging and relevant
areas in modern organic chemistry offering numerous attractive
advantages such as the reduction of the reliance on existing
functional groups while improving atom economy and energy
efficiency.® The last few years have witnessed a burgeoning of
cross-dehydrogenative couplings (CDCs) involving the use of
catalytic amounts of first-row transition metals.” Based on their
low-price, ready availability, and environmentally friendly char-
acter, iron salts® constitute potentially ideal catalysts which offer
attractive advantages in this particular area of expertise. Despite
the impressive achievements, the assembly of new C-C linkages
based upon iron-catalyzed C(sp®)-H functionalization events are
still rare in the literature.®
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Azoles are prevalent key motifs in a myriad of biologically active
compounds, agrochemicals and organic functional materials such
as liquid crystals and fluorescent dyes.” Accordingly, C-H function-
alization of azoles is an active area of research which provides
simple and rapid access to a plethora of valuable functionalized
heterocyclic cores. Whereas arylation, alkenylation, alkynylation
and amination processes of azole derivatives have been widely
explored,® direct alkylation still represents a challenge.® N-Tosyl-
hydrazones'® and carboxylic acids'" are among the most common
coupling partners to perform C2-alkylation reactions of azoles.
Nevertheless, the most straightforward and convenient approach
involves the use of non-functionalized ethers via the addition
of in situ generated a-oxyalkyl radical species to heteroarenes
generally referred to as the Minisci reaction.'” Such processes
are of prime importance within medicinal chemistry and have
been accomplished using both copper'** and photoredox iridium
catalysts’®” and even under metal-free conditions.'>* While these
are efficient and elegant procedures, they still suffer from certain
limitations such as the restricted use of (benzo)thiazoles (route a),
isoquinolines and pyridines (route c) or requiring harsh reaction
conditions like using 4.0 equiv. of the oxidant at high temperatures
(route b). In this context, we envisioned whether the use of
iron salts would facilitate the development of a complementary
and advantageous strategy for the C2-alkylation of azoles with a
relatively broad scope and operational simplicity. In fact, iron
complexes are known to react with alkyl peroxides to generate
organic radical species which can further act as powerful oxidizing
agents."” Herein we describe a novel CDC of (benzo)azoles and
ethers featuring the efficient use of a combination of FeF, and
organic peroxides as the oxidant (Scheme 1).

We initially selected the direct coupling of benzothiazole (1a)
and tetrahydrofuran (THF, 2a) as the model system to evaluate the
feasibility of our approach. We anticipated that the nature of the
metal source and the oxidant would have a profound impact on
reactivity and accordingly the effect of such variables was system-
atically examined."”® To our delight, the target CDC event took
place in a remarkable 51% yield when utilizing a combination
of FeF, and tert-butyl peroxybenzoate at 90 °C (Table 1, entry 6).
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Scheme 1 Direct a-arylation of cyclic and acyclic ethers with azoles.

Further screening of the oxidants clearly revealed that TBHP was
the best choice while other common oxidants were much less
effective (Table 1, entries 1-8). It is worth noting that the process
was found to be compatible with the use of an aqueous solution of
TBHP, albeit the product was obtained in a comparatively low yield
(entry 8). Importantly, the catalytic activity was highly dependent
on the counteranion and the use of other fluoride salts seemed to
have a crucial effect on the reaction outcome. FeF; was found to be
as efficient as FeF, (entry 12), but other iron sources (entries 9-11)
as well as other fluoride metal salts (entries 13 and 14) provided
lower yields."> Remarkably, the yield was dramatically improved
upon reducing the amount of THF and adding 1,2-dichloroethane
as the co-solvent. Under those conditions the amount of oxidant

Table 1 Optimization of reaction conditions for the iron-catalyzed CDC

of 1a with THF?®

Metal salt (10 mol%)

N
o o
@2_ Yo, OX|dant (2.0 equiv)

90°C, 24 h

1a 2a
Entry Metal salt Oxidant 3ab (%)
1 FeF, K,S,04 0
2 FeF, DDQ 0
3 FeF, Cumene hydroperoxide 0
4 FeF, Dicumyl peroxide 0
5 FeF, tBuOO¢Bu Traces
6 FeF, tBuOOBz 51
7 FeF, TBHP 62
8 FeF, TBHP aq 41
9 FeCl, TBHP Traces
10 Fe(OAc), TBHP 43
11 Fe(acac); TBHP 38
12 FeF; TBHP 61
13 COF, TBHP 47
14 CuF, TBHP 29
15 None TBHP 9
16 FeF, None 0
17 FeF, TBHP 80 (62)
18 FeF, TBHP 60%°

¢ Reaction conditions: 1a (0.5 mmol), 2a (1.0 mL), metal salt (10 mol%),
oxidant (2.0 equiv.) at 90 °C for 24 h under argon. ? Yield of the isolated
product after column chromatography TBHP (1 0 equlv) using 2a
(0.5 mL) in 1,2-dichloroethane (0.5 mL). ¢ Under air. ¢ at 80 °C. TBHP =
tert-butyl hydroperoxide (5.0-6.0 M in decane); TBHP aq = 70 wt%
{BuOOH in H,0.
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could be significantly reduced to 1.0 equivalent and 3a was
obtained in 80% yield (entry 17). The performance of the process
under an air atmosphere was detrimental to the reaction, although
3a was obtained in 62% yield. The addition of other additives
or variation of the temperature were found to be ineffective in
improving the catalyst performance."> ™ Additionally, several control
experiments evidenced that both the iron catalyst and the peroxide
were critical for success (Table 1, entries 15 and 16).

Having identified the optimal reaction conditions, we next
focused on examining the preparative scope and generality of our
iron-catalyzed direct arylation event. As shown for 3a-f, moderate
to good yields were obtained when differently substituted benzo-
thiazoles were utilized. It is noteworthy that electron-deficient
derivatives provided lower yields since full conversion was not
achieved. Importantly, several functional groups were accommo-
dated such as esters (3c), amides (3d), halides (3b and 3e), and
ethers (3f). Strikingly, the strongly coordinating nitrogen motif in
3d did not interfere with the coupling, which reveals a low Lewis
acidity, if any, of our catalyst system. Of particular importance
is the compatibility with the presence of halides, which provides
additional functionalization opportunities via cross-coupling
techniques. Notably, the method was found applicable for the
preparation of non-benzofused thiazoles (3g-h) and benzimida-
zoles (3i), albeit the products were obtained in moderate yields.
When benzoxazole derivatives were subjected to the optimized
conditions, the desired products were not detected. Gratifyingly,
minor modifications on the reaction conditions such as replacing
the use of TBHP by tert-butyl peroxybenzoate allowed for the
efficient coupling of several benzoxazoles (3j-1)."” In these cases,
the less basic benzoate species are generated by homolytic cleavage
of the oxidant and hence the corresponding coupling product can
be satisfactorily obtained,'® a significant improvement compared
to the parent Cu-catalyzed process (Table 2).'**

Aside from THF, other related cyclic and acyclic ethers are
commonly used as solvents in chemical processes and are pre-
valent key structures in a wide range of valuable compounds.

Table 2 Iron-catalyzed CDC of azoles 1a—l with THF®?

Rtf [ St 4 H—(j FeF, (10 mol%) RL [ >_<j
TBHP (1.0 equiv) SN
DCE, 90 °C
24 h 3a-l

-0 00 00

80% (R =H, 3a) 63%C (R = CO,Bu, 3c)
54% (R = Br, 3b) 78%C (R = NHBz, 3d)
51%C (R = F, 3e)
65%° (R = OMe, 3f)

0 O U

1a-l 2a

53%C (3g)

COEt 72%¢(R = H, 3j)
55% (3h) 51% (3i) 65%¢ (R = Me, 3k)
60%¢ (R = C, 3I)

“ Reaction conditions: 1 (0.5 mmol), FeF, (10 mol%), TBHP (1.0 equiv.,
5.0-6.0 M in decane) in a mixture 2a: DCE (1:1, 1.0 mL) at 90 °C for 24 h
under argon. ” Yield of the isolated product after column chromato-
graphy, average of at least two 1ndependent runs.  TBHP (2.0 equiv.)
using 2a (1.0 mL). ¢ fBuOOBz (2.0 equiv.) using 2a (1.0 mL).
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Table 3 Iron-catalyzed CDC of azoles with other ethers®®

= N
NH 4 H FeF, (10 mol%) ol \> <
(I >_ _< OR2 TBHP (1.0 equiv) X X OR?
1 2 DCE, 90 °C
24 h

=0 Ty o

3m-x

82% (9:1)° (R=H, 3m) 729 (85:15)°¢(R=H,3q) 77%°(3t)
72% (R = NHBz, 3n) 63% (85:15 Ce(R Me, 3r)
64% (R = CO,tBU 30) 2% (5:4)°¢ (R = Cl, 3s)
76% (9:1)°9 (R =F, 3p)
N 0 OMe
@ y J Ar_<7 * AI-\/O\/\()Me
: i OMe
R s [o]

59%? (R =H, 3u)
51% (R = OMe, 3v)

74% (7:3)° (Ar = benzothiazole, 3w:3w')
63% (8:2)° (Ar = 6-fluorobenzothiazole, 3x:3x")

¢ Reaction conditions: 1 (0.5 mmol), FeF, (10 mol%), TBHP (1.0 equiv.,
5.0-6.0 M in decane) in a mixture 2a:DCE (1:1, 1.0 mL) at 90 °C for
24 h under argon. ” Yield of the isolated product after column chro-
matography, average of at least two independent runs. ¢ Ratio of C2 vs.
C4 isomer. ¢ TBHP (2.0 equiv.) using 2 (1.0 mL). ¢ {BuOOBz (2.0 equiv.)
using 2 (1.0 mL).

Of particular interest is 1,3-dioxolane given that its coupling would
provide a masked formyl derivative through a practical and
aldehyde-free synthetic protocol. Accordingly, we next explored
the scope of our iron-catalyzed heteroarylation process regarding
the ether coupling partner. As shown in Table 3, a wide variety of
differently substituted benzothiazoles and benzoxazoles smoothly
underwent the coupling with 1,3-dioxolane to afford the corres-
ponding acetal derivatives in good yields (3m-s). Remarkably,
1,3-dioxolane reacted selectively at the C2 position versus the
less reactive C4 atom providing 3n and 30 as single isomers.
However, in most cases both isomers were detected with high
regioselectivity (up to 9:1); whereas the products 3m and 3p
bearing the benzothiazole core were easily separated by column
chromatography, the benzoxazole derivatives 3q-3s were isolated as
inseparable mixtures of both isomers (regioselectivity up to 85:15
determined by '"H NMR spectroscopy). Interestingly, 1,4-dioxane
could also be utilized to furnish the corresponding coupling
products in moderate to good yields (3t-v). It is noteworthy
that the acyclic ether 1,2-dimethoxyethane also underwent the
target reaction at both methylene and methyl sites with good
combined yields and high regioselectivities (up to 8:2; 3w: 3w’
and 3x:3x’). Unfortunately, other coupling partners such as
dibutyl ether and ethanol or less acidic heterocycles such
as 1,2,3-triazoles and indoles were found unreactive under
our optimized conditions.

Although the detailed mechanistic picture clearly requires further
studies, several control experiments as well as DFT studies'>'® were
performed to gain some insights into the reaction mechanism.
The CDC event was entirely suppressed upon addition of radical
scavengers such as BHT and 1,1-diphenylethylene; interestingly,
in the latter case the coupling product 4 was isolated instead,
in 10% yield.*® Besides, the addition of TEMPO results in very
low conversion of the azole and just traces of the product
were detected. These experimental pieces of evidence tentatively
support a radical pathway. Notably, subsequent competition
experiments with benzoxazole 1j utilizing an equimolecular
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FeF, (10 mol%)
TBHP (1.0 equiv)

Sape

1,1-diphenylethylene Ph
1a 2a (1.0 equiv) 4(10%)
DCE, 90 °C
24 h
Me N o ) ;
\©[ \ FeF, (10 mol%) 3j + [D]-3]
o tBuOOBz (2.0 equiv) o
i THF/THF-dg (1:1) 61%

) 90°C, 24 h Ku/Kp = 3.18

Scheme 2 Control experiments.

mixture of THF/THF-dg showed a significant kinetic isotopic
effect (ku/kp = 3.18), thus suggesting that the C(sp®)-H bond
cleavage with concomitant formation of an a-oxyalkyl radical is
likely the rate-determining step (Scheme 2). In order to clarify
the role of the iron catalyst, Sc(OTf);, Bi(OTf); and AICl; were
used instead and the coupling product 3a was obtained in much
lower yields; hence it is unlikely that FeF, is acting as a simple
Lewis acid.">*" Based on the above results, a plausible mecha-
nism supported by DFT studies is outlined in Scheme 3. Initially,
FeF, facilitates the homolytic cleavage of the starting oxidant to
form the hydroxide and tert-butoxy radical species under heating
conditions.®”**> Computational data confirm that the homolytic
cleavage of tBuOOH is a highly endergonic process, with an uphill
Gibbs Free energy of 5.1 keal mol™" and the Fe catalyst helps
stabilize the arising radical species by the formation of a very stable
Fe(m) complex, which lies ca. 80 kcal mol™" lower in energy than
the starting reactants. Next, the C(sp®)-H adjacent to the oxygen
atom of THF can be abstracted by tert-butoxy radical species to
furnish I, with an activation energy of only 12.5 keal mol *,** and
further oxidized through a SET event to the corresponding oxonium
cation I by FeF,(OH), lying ca. 5 kcal mol " lower in energy than
the sum of the starting Fe(ur) complex and radical species.> Finally,
the hydroxide anion is basic enough to easily deprotonate the azole
1a, with a low activation energy of only 2.6 kcal mol ', which
eventually reacts with oxonium ion I through an extremely favor-
able process (AGg = —82.1 Kcal mol ").>> On balance then, we
assume that FeF, plays a key redox role in assisting both the
heterolytic cleavage of the oxidant and the oxidation of the carbon
radical I to the oxonium ion IL

In summary, we have developed a novel catalytic approach to
the direct a-heteroarylation of cyclic and acyclic ethers with azoles.
This practical and environmentally friendly protocol highlights
the advantageous use of iron salts and cheap feedstock substrates

tBuOOH [BuO AGg=-82.9
O
H
Fer FeF,(OH)
i i tBuOH
AGg=-82.1 ‘ C - C AGg=-11.5
AGR=-4.8

Scheme 3 Proposed mechanism.
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while featuring a dual C-H bond oxidative cross-coupling.
Furthermore, the method was found to be applicable to the
assembly of a wide variety of functionalized heterocycles
of paramount medicinal importance and represents an attractive,
yet complementary, strategy for the C-H alkylation of azoles. We
anticipate that our experimental and computational studies could
lead to acquiring new knowledge in catalyst design, thus opening
up new vistas in iron-catalyzed C-H functionalization events.
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