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The reaction of distannadiazane bearing bulky ®Ar*-groups (RAr* =
CgHo{C(H)Ph,},R-2,6,4; R = iPr, tBu) with ECl; (E = Sb, Bi) was
studied resulting in the isolation of previously unknown N,N-bis-
(dichloropnictino)amines (3) and a novel heterocyclic carbenoid
bismuth species (4) bearing a Bi"" and a Sn"" center. The structure
and bonding was investigated by means of X-ray structure elucida-
tions and DFT calculations.

Pnictogen-nitrogen heterocycles of the type [XE(u-NR)], (E = P,
As, Sb, Bi; species I in Fig. 1) are valuable starting materials for
preparative E-N chemistry." Usually, [CIE(u-NR)], (E = P, As) is
prepared from RN(ECL,)H in a base-assisted (e.g. NEt;) cyclization,’
however, for the heavier analogs this strategy works poorly.
For example, [CIBi(u-NTer)], (Ter = terphenyl = 2,6-bis-(2,4,6-
trimethylphenyl)phenyl) was initially obtained in moderate yields
of 45% besides large amounts of CIBi(N(H)Ter),.*> In analogy to
Veith’s synthesis of [Me,SiE(u-N¢Bu),]" (Il in Fig. 1), our group
succeeded in establishing a straightforward route towards the
synthesis of [CIE(u-NTer)], (E = Sb, Bi), based on the trans-
metalation of the respective tin precursor.’” Now highly reactive
cyclo-1,3-dipnicta-2,4-diazenium salts of the type [E(CIE)(u-NTer),]"
(E = P, As,®° Sb, Bi;> Il in Fig. 1) can be obtained by chloride
abstraction from [CIE(u-NTer)], by means of Lewis acids such as
GaCl;. A new area of research opened up with the isolation of
thermally stable biradicaloids of the type [E(u-NTer)], (E = P, As;
IV in Fig. 1) which can easily be accessed by reduction of
[CIE(u-NTer)], with activated magnesium chips.’

Just recently, we described the synthesis of stable acyclic chloro-
pnictenium ion salts, with an exceedingly bulky *Ar*-group (Ar* =
CeH,{C(H)Ph,},R-2,6,4; R = Me, Bu) attached to the nitrogen atom.®
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A neutral low-coordinate heterocyclic bismuth-tin

C. Hering-Junghans,® A. Schulz*®® and A. Villinger®

This sterically demanding moiety offers two flanking phenyl groups
for arene-interactions with the low-coordinate reactive site of the
molecules. Jones and co-workers realized new bonding situations
with the aid of the *Ar*-moiety,” such as mono-coordinate Ge or Sn
cations," singly bonded distannyene and Ge and Sn hydride
complexes,""* that showed magnificent activity as a catalyst in
hydroboration reactions.'® Just recently, the first example of an
amido-distibene in [*"Ar*N(SiiPr;)Sb], was reported.'* Herein
we describe the synthesis of an unprecedented distannadiazane
[Sn(u-N®Ar*)], with a planar N,Sn,-core and its trans-metalation
with ECl; (E = Sb, Bi), resulting in the isolation of the first
N,N-bis(dichlorostibino)amine and an elusive four-membered
ring system with a N,Bi"™sn™ unit.

In analogy to a procedure described by Power et al., leading
to the first isolable distannadiazane [Sn(u-NTer)],,"* the exceed-
ingly bulky amine “*"Ar*NH, and Sn{N(SiMe;),}, were combined
in a Schlenk flask without solvent and heated to 160 °C over a
period of 45 min, affording a deep red solid. HN(SiMe;), and
excess Sn{N(SiMe;),}, were removed in vacuo and the crude
product was recrystallized from C¢HsF to obtain red crystals of
[Sn(u-N"Ar¥)], (1R, R = tBu) in moderate yields (64%). The
synthesis of 1Me and 1iPr suffered from low solubility of the
products in common organic solvents, however, minimal
amounts of X-ray quality crystals of 1iPr were obtained from
CeHg. In the *C and '"H NMR spectrum 1iPr and 1¢Bu can be
easily identified by the signals of the para-substituent of
the inner phenyl group and their diagnostic ***Sn NMR shifts
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Fig. 1 Selected known four-membered E-N heterocycles.*~”
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(1iPr 783.1 ppm, 1¢Bu 789.2 ppmy; ¢f. [Sn(u-NTer)], 738.9 ppm).
1iPr and 1¢Bu crystallize as solvates of C¢Hg or C¢H;F (see Fig. S1
and S4 in the ESIt), respectively, in the triclinic space group P1
with one molecule in the asymmetric unit, which lies on a
crystallographically imposed centre of inversion. In contrast to
[Sn(pu-NTer)],, in which the Sn,N, ring is characterized by a folding
about the Sn---Sn axis of 148°, the Sn,N,-core is planar with
slightly different N1-Sn1 and N1’-Sn1’ distances (1iPr 2.076(2),
2.086(2); 1¢Bu 2.075(2), 2.090(2) A; ¢f [Sn(u-NTer)], 2.09, 2.11 A),
a transannular Sni---Sn1’ separation of 3.2304(4) (1iPr) and
3.2318(3) A (1tBu) and rather acute angles at the tin center
(1iPr 78.27(7), 1tBu 78.22(6)°, ¢f [Sn(u-NTer)], 77.6°)."> The
nitrogen atoms are in a planar environment as expected for a
formal sp>hybridized center with a p-type lone pair (LP) of
electrons. Hence, the planarity of the core is imposed by the
increasing bulkiness of the tBuAr*-moieties, as a bend core
would result in pyramidalization about the N atoms to fit both
RAr*-groups in. Just recently, the bonding in [E(u-NTer)], (E = Ge,
Sn, Pb) was studied in detail by Ziegler et al., who analysed the
interaction of the monomeric units E(u-NTer) in the dimeric
structure, with the result that the dimer is kept together by two
o- and n-bonds."®

Combining red 1¢Bu with two equivalents of SbCl; in CH,Cl,
resulted in an immediate decolourisation, accompanied by
a colourless precipitate (Scheme 1, reaction (ii)), which was
removed by filtration and from the filtrate X-ray quality crystals
of trans{CISb(u-NTer)], (2) were grown overnight at room tem-
perature. This metathesis route gives 2 reproducibly in good
yields, while using the elimination of SnCl, as the driving force,
which dates back to the seminal work of Veith,'” who established
this route to prepare [Me,SiECl(u-NtBu),] ring systems (vide supra,
Fig. 1 species II).'®

Pale yellow crystals of 2 are moisture-sensitive, but indefi-
nitely stable in an inert gas atmosphere and can be heated
above 270 °C without decomposition. 2 crystallizes solvent-free
in the triclinic space group P1 with one molecule in the unit cell
and displays a trans-substituted centrosymmetric dimer with a
planar Sb,N, core protected by two bulky ®"Ar* groups similar
to the molecular structures of [XSb(u-NMes*)], X = F, Cl, Br, [;
trans-[CISb(u-NtBu)],.">?° As expected the Sb atoms are trigonal
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Scheme 1 Preparation of 1R-4: (i) 2 "Ar*NH,, —2 HN(SiMes),, (i) 2 SbCls,
—2 SnCly, (iii) 4 SbClz, =2 SnCl,, (iv) 2 SbCls, and (v) BiCls, —Sn.

This journal is © The Royal Society of Chemistry 2015

View Article Online

ChemComm

Fig. 2 Molecular structures of 1tBu (left), 2 (middle) and 3 (right). Thermal
ellipsoids drawn at 50% probability and —100 °C. ®BYAr* substituents
rendered as wire-frame and H atoms omitted for clarity. Selected bond

lengths (A) and angles (°) of 1tBu: Sn1-N12.0752(16), 2.0897(16); N1-Sn1-
N1’ 78.22(6); 2: Sb1-N1 2.033(2), Sb1-N1" 2.034(2), Sb1-Cll 2.4327(7),
SbiSbl 3.1749(3), N1-C1 1.430(3) A, Y2(<Sb) 273.05; Y.(<N) 359.83,
C1-C2-N1-Sbl 77.6(2); 3: Sb1-N1 2.030(2), Sb1-Cll 2.3709(7), Sbl-
Cl2 2.4338(7), Sb2—N1 2.039(2), Sb2-Cl3 2.3731(7), Sb2-Cl4 2.4199(7), N1-
C11.434(3), >~(<Sb1) 280.08, >~ (<Sb2) 281.47, Sb1-N1-C1-C6 80.0(2).

pyramidally coordinated, with an s-type LP located on Sb and a
trigonal planar coordination environment about the N atom.
Additionally, one rather weak dipolar interaction between Sb
and a flanking phenyl group (Sb- - -C; = 3.29 A, C, = centroid)
is detected (Fig. 2, left).”" The formation of 2 can be repro-
duced, however, if an excess of SbCl; is used, a new product
BUAr*N(SbCl,), (3) was isolated. Consequently, we reasoned
that 3 was accessible directly from 1¢Bu (reaction (iii) in
Scheme 1) when combined with four equiv. of SbCl;, which
yielded pure 3. Moreover, treatment of 2 with two additional
equiv. of SbCl; also afforded (reaction (iv) in Scheme 1) 3 in
good yields (78%). 3 is thermally stable and melts without
decomposition at 236 °C and also shows distinct 'H NMR shifts
for the p-tBu, the CHPh, and the inner phenyl H atoms.
Furthermore, 3 belongs to the family of N,N-bis(dichloro-
pnictino)amines, which are well documented for phosphorus
(RN(PCL,),, R = Dipp, Trip, Ph).”> Compound 3 was found to be
monoclinic (P2,/n) with one molecule of 3 and two disordered
C¢HsF solvents molecules in the asymmetric unit. The Sb-N
distances of 2.030(2) and 2.039(2) A are shorter than the sum
of the covalent radii for Sb and N (¢f 3 reo(N-Sb) = 2.11 A)*
representing highly polarized Sb-N single bonds. The trigonal
planar N atom lies between both pyramidal SbCl, units, which
adopt a trans configuration with respect to the SbCl, moieties (Fig. 2
right). Interestingly, two intramolecular Sb- - -Cl contacts (Sb1- - -Cl4,
Sb2---Cl2 ca. 3.35 A; ¢f S ruaw(N-Sb) = 3.81 A),* stabilizing this
trans configuration, but no intermolecular contacts are observed.

In addition, the reaction of 1¢Bu with two equiv. of BiCl;
was studied in CH,Cl,, resulting in a black reaction mixture
(reaction (v) in Scheme 1). After multiple filtrations a clear
orange solution was obtained. Recrystallization yielded small
amounts of orange crystals that were identified as the hitherto
unknown [BiSnCl;(u-N""Ar*),] (4). The black residue could not
be conclusively identified and we assume that elemental tin is
formed in a complex redox process that might also involve the
formation of elemental bismuth (vide infra). It has been shown
before that the Sn(u) center in [Me,SiSn(p-NtBu),] acts as a
chloride acceptor in the coupling of phosphaalkenes® and in
the reaction with chlorophosphanes.*

Revision of the reaction conditions prompted us to
repeat the experiment in C¢HsF with one equivalent of BiCly
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(with respect to 1tBu), to exclude a chloride-shift from CH,Cl,.
This again resulted after filtration over a celite-padded frit and
concentration of the filtrate in the deposition of orange crystals
of 4 as a C¢H;F solvate. Only small amounts of pure 4 could be
isolated, therefore we cannot provide a comprehensive character-
ization. Nevertheless, the '°Sn NMR spectrum of these isolated
crystals revealed a signal at 115.5 ppm (Fig. S13, ESI{), which is in
the expected range for a hypercoordinate N,Sn™)Cl; moiety
(¢f Me;SnCl, " 47.7, Me,SnCl,: 128 ppm, MeSnCl,: 274 ppm).>°
It should be noted that ''°Sn NMR data strongly depend on
substitution, coordination number and solvent giving rise to large
chemical shift differences (¢f [SnCly{k>-DippN(H)C,H,N(Dipp)}]
—303 ppm).*” According to MO and NBO analyses of the
truncated model [BiSnCl;(pu-NPh),], 4 can either be described
as zwitterionic bismaallyl species (Lewis representation A/C in
Fig. 4), as a bismuthenium species (E) or as an iminobismutane
(B and D), and therefore represents the first neutral compound
with a 4e-3c double bond delocalized along N-Bi-N (Fig. 4). In
addition, an s-type lone pair (93%, see Fig. S14 and S15, ESIY) is
located at the Bi center. Lewis representations A/C represent the
best Lewis structures according to NBO analysis. Along with
structures of type E/F, which also possess a rather large weight,
since the m bonds are dominantly located at the N atoms (81%),
this situation resembles that of N-heterocyclic carbenes (NHC),*®
which are stabilized by intramolecular n-donor-n-acceptor inter-
actions (population of the p,(Bi) = 0.47e) to stabilize the dicoordi-
nate carbene C atom. It should be noted that also Bi-N ¢ bonds
(78%) are highly polar, as well as the Sn—Cl or Sn-N bonds (N, Cl:
ca. 80%). The computed large positive charges at the Bi and Sn
centers are very similar with values of +1.67 and 1.77e supporting
the picture of highly polarized Bi-N and Sn-Y (Y = Cl, N) bonds.
4 crystallizes as CH,Cl, solvate (4-(CH,Cl,),) in the triclinic
space group P1 with two molecules of 4 and four CH,CI,
molecules (disordered on their positions) in the cell. Moreover,
from CcH,F species 4 crystallizes as a solvate of fluorobenzene
solvate (4-C¢H5F) in the orthorhombic space group Pna2, (the
discussion is led for 4-CH,Cl,). The most prominent structural
feature is the planar 4-membered Sn-N-Bi-N heterocycle fea-
turing two different heavy main group metals (deviation from
planarity < 2.3°, Fig. 3). Both Bi-N bond lengths are rather
short with 2.106(3) and 2.108(3) A (¢f Y reo(N-Bi) = 2.22,
(N==Bi) = 2.01 A;** [Me,SiBi(u-NtBu),]" 2.08 A, [Bi(IBi)(u-NTer),]"
2.13 A, and [Me,SiBi(u-NDipp),] 2.12 A, where Dipp = 2,6-
iPrC¢H;)*>*° clearly displaying some Bi-N double bond character
in accord with our computation (Fig. 4). Interestingly, both Sn-N
bond lengths (2.094(3) and 2.107(3) A, ¢f S 7e(N-Sn) = 2.11,
(N==Sn) = 1.90 A) are in the similar range like the Bi-N distances,
however, describing typical highly polarized Sn™)-N single bonds.
Both the N-Bi-N angle and N-Sn-N angles are rather acute with
ca. 78° (¢f. [Me,SiBi(u-NtBu),]" 72.9, [Bi(IBi)(u-NTer),]" 77.4°, and
[Me,SiBi(u-NDipp),]” 73.7),%**° while the two Bi-N-Sn angles are
much larger with 101-102°. A closer look at the secondary
interactions revealed that the Sn-N-Bi-N heterocycle is well
protected inside the pocket formed by the two ““Ar*-phenyl
substituents. However, the dicoordinate bismuth is stabilized by
strong secondary interactions (Menshutkin type © complexes)®*
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Fig. 3 Molecular structures of 4. Thermal ellipsoids drawn at 50% prob-
ability and —100 °C. ®YAr* substituents rendered as wire-frame and H
atoms omitted for clarity. Selected bond lengths (A) and angles (°) of 4:
Sn1-N1 2.094(3), Sn1-N2 2.107(3), Sn1-Cl1 2.353(1), Sn1-CI3 2.387(1),
Sn1-Cl2 2.403(1), Snl.--Bil 3.2631(4), Bil-N1 2.106(3), Bi1-N2 2.108(3),
N1-C37 1.425(5), N2-C1 1.426(5), N1-Sn1-N2 78.41(12), N1-Bil-N2
78.10(12), >~(<N1) 358.0, > (< N2) 353.4, Bil-Ccy, 2.891, Bil-Cc, 2.978 A

| cl
. C|\I4FC| . C|\]4C| ] C|\£4FC|
R N\ /_r\{ R R N\ /N R R _}j\ /:NL R
Bi Bi Bl
I | .

. CI\Sn cl . Cl\jn/CI ] cl S|n/0|
R—N \N—R R—N/ N—R R N/ \N R
\\\Bi/" "\Bi/ "\Bi/"

o 3 T

Fig. 4 Selected Lewis representations of 4.

with two phenyl groups as indicated by very short Bi- - -centroid
distances (2.891/2.978 A; ¢f [M°Ar*N(SiMe;)BiCIJJAI(OR"),]" 2.86/
2.94 A)® which are well within the range of van-der-Waals radii
(> rvaw(C- - -Bi) = 3.77 A).>

In conclusion, we succeeded in the preparation of the first
N,N’-bis(dichlorostibinino)amine and an unusual heterocycle
containing Sn™¥) and a dicoordinate Bi-center, which is protected
by arene-interactions to flanking phenyl groups of the bulky Ar*
moiety. These species might be useful starting materials for the
preparation of pnictadiazonium salts of Sb and Bi. In compar-
ison to stable N-heterocyclic carbenes,”® the dicoordinated Bi
species 4 can be regarded as a heavy atom analog of NHCs.
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