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A catalytic meta-selective C—H functionalization of 2-phenylpyridines
using a range of tertiary halides is described. The protocol is simple
to perform and uses commercially available reagents to construct
challenging quaternary carbon centres in a regioselective manner.
Preliminary studies suggest the C—H functionalization proceeds
through a radical process directed via a remote s-activation.

The transition-metal catalyzed cleavage and functionalization
of inert C-H bonds is evolving into a fundamental methodology
for the design of atom economical approaches to useful organic
molecules.! While the direct functionalization at the ortho position
of aromatic compounds by chelation assisted C-H bond cleavage
has become well established in recent years, developing reactions
with complementary regioselectivity continues to challenge
contemporary catalytic methodology.? In this context, examples
of meta selective catalytic C-H functionalization have been reported
offering diversity in molecular design through alternative reaction
strategies (Scheme 1a). These include substrate controlled systems,’
transient mediators such as a carboxylic acid* or norbornene® and
covalent template strategies for remote activation.® We first reported
a novel catalytic c-activation protocol for C-H functionalization that
allows the meta sulfonation of 2-phenylpyridines via cyclometalated
ruthenium intermediates.” Interestingly, the catalytic c-activation
strategy proved effective for meta-alkylations with secondary alkyl
halides® whilst acyl halides and primary alkyl halides afford only
the ortho-functionalized products consistent with a mechanism
involving oxidative addition of the organohalide.’

Here we report a new catalytic meta-selective C-H function-
alization of 2-phenylpyridines to construct quaternary carbon
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centres (Scheme 1b). The transition-metal catalyzed coupling of
tertiary alkyl halides and aromatic C-H bonds is an especially
challenging reaction due to the difficult oxidative addition of a
metal complex into a bulky C-X bond."® We hypothesized that a
catalytic c-activation strategy would therefore be amenable to
establishing quaternary carbon centres by avoiding a general
oxidative addition pathway.

In preliminary experiments, 2-phenylpyridine 1a was treated
under conditions analogous to those developed in our meta-
sulfonation reaction: [RuCl,(p-cymene)], (5 mol%) K,CO; (2 equiv.),
#BuBr 2a (3 equiv.) using MeCN as the solvent.” Unfortunately no
coupled products were formed under these conditions however the
desired meta-substituted product was observed in 12% conversion
when the reaction solvent was changed to 1,4-dioxane (Table 1,
entries 1 and 2). By simply changing the base from K,CO; to
various acetate salts, a significant increase in conversion was
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Br

: Br2a
H A =Cl2b
I ~
N
[RuCl,(p-cymene)], (5 mol %)
H Base (2 equiv)
Solvent, 120 °C, 15h.
1a meta-3a ortho-not observed
Conversion®
Entry  #Bu-X  Base Solvent (%)
1 2a K,CO; MeCN 0
2 2a K,CO; 1,4-Dioxane 12
3 2a KOAc Neat 69
4 2a KOAc 2-Me-THF 68
5 2a KOAc 2-Butanone 61
6 2a KOAc 1,4-Dioxane 74
7° 2a K,CO; 1,4-Dioxane 60
8 2a NaOAc 1,4-Dioxane 31
9 2a CsOAc 1,4-Dioxane 64
10 2a BuyNOAc 1,4-Dioxane 13
11°¢ 2a KOAc 1,4-Dioxane 0
124 2a KOAc 1,4-Dioxane 25
13°¢ 2a KOAc 1,4-Dioxane 50
14 2a KOAc 1,4-Dioxane 72
15 2b KOAc 1,4-Dioxane 20
16 2b K,CO; 1,4-Dioxane 27
17 2b KOAc (0.5 equiv.) 1,4-Dioxane 63
K,CO; (1.5 equiv.)
18° 2b K,CO; 1,4-Dioxane 62

“ Conversion of 1a to 3a by "H NMR. Wlth 30 mol% MesCOOH. © With-
out [RuCl,( p-cymene)],. ¢ Reaction in air. ¢ [RuCl,(p-cymene)], (1 mol%).

/ Reaction time 4 h.

observed with KOAc proving the most effective (entry 6). In the
absence of ruthenium complex, no product was observed (entry 11).
This catalytic system was found to perform well in a range of
solvents as well as under solvent free conditions and was completed
in as little as 4 hours (entry 14). When #-BuCl 2b was used as the
coupling reagent, a significant drop in conversion was observed,
however by using a combination of K,CO; and KOAc, the reaction
performed competitively (entry 17).

With optimized catalytic systems in hand, we then investigated
how reaction conversions were affected when substituents at the
4-position of the aryl ring were varied (Scheme 2). It was found that
electron donating substituents favoured the reaction whereas
strongly electron withdrawing groups shut the reaction down
entirely. The reaction was tolerant of halogen and ester substituents
which is useful for further synthetic transformations. The reactions
led to the sole formation of the mono substituted meta products
with no decomposition or by-products observed although quanti-
tative separation by conventional methods was not always possible
(see ESIT for full analysis). Intriguingly, 1-bromoadamantane was
found to be an effective coupling partner and product 4c¢ was
characterised by X-ray analysis confirming the regioselective meta
substitution (Fig. 1)."* Our procedure also effectively coupled a
range of tertiary alkyl chlorides, reagents which are readily available
and generally considered to be less reactive (Scheme 3). In these
examples, it was found that the incorporation of longer alkyl chain
lengths maintained high conversions and enabled better separa-
tion of the products by normal phase flash chromatography.

In addition to the alkyl halide reagents outlined in Schemes 2
and 3, tertiary o-bromo ester 2¢ was effectively coupled, generating
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Scheme 2 Catalytic meta functionalization using tertiary alkyl bromides.
Numbers quoted are direct conversions to product by *H NMR. ¢ Using
KOAc (0.5 equiv.) and K,COs (1.5 equiv.).

Fig. 1 The asymmetric unit in the crystal structure of 4c. Ellipsoids are
illustrated at 30% probability.

meta-substituted products 8a, 8¢ and 8d, compounds with a useful
functional handle, in reasonable isolated yields (Scheme 4). This
result provided key insight into the reaction mechanism and
strongly suggested a radical type pathway, rather an SgAr type
mechanism previously proposed in our meta-sulfonation reaction.”

Heterolytic cleavage of the C-X bond of 2c in an Sy1-type
manner would result in a strongly disfavoured carbocation
residing alpha to an electron withdrawing ester. It is therefore
unlikely that reaction with the aromatic substrate would occur
in this fashion. The possibility of Sx2 type reactivity can also be
effectively ruled out given the steric effects of the tertiary alkyl

This journal is © The Royal Society of Chemistry 2015
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Scheme 3 Catalytic meta functionalization using alkyl chloride reagents.
Numbers quoted are direct conversions to product by *H NMR. 2 Numbers
in brackets indicate isolated yields.
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Scheme 4 Catalytic meta functionalization with a-bromo ester 2c. Numbers
quoted are isolated yields.

halides used. The generation of tertiary alkyl radicals has however
been widely reported with a range of transition metal catalysts and
shown to be effective in the substitution of aromatics, hetero-
aromatics and olefins."?

In contrast to the reactions with simple alkyl-halides out-
lined in Schemes 2 and 3 which led to the sole formation of one
product, reaction with 2c¢ generated additional by-products.
Compounds 9a, 9c and 9d were isolated along with spectro-
scopic evidence of trace higher oligomers which is consistent
with a radical conjugate polymerisation pathway. We hypothesise
that a tertiary carbon-centered radical species can add onto elimina-
tion products formed under the reaction conditions, which can in
turn propagate onto a cyclometalated (c-activated) substrate mole-
cule to afford the observed by-products. Furthermore, the addition of

This journal is © The Royal Society of Chemistry 2015
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Scheme 5 Mechanistic investigation. Numbers quoted are isolated yields.

radical scavenger TEMPO proved detrimental to the reaction with no
desired product observed when stoichiometric quantities were
used (see ESIY).

Further mechanistic work was conducted to provide additional
insight into the interesting meta selectivity displayed by this reaction
(Scheme 5). It has previously been proposed that initial ruthenium
insertion into an ortho C-H bond to generate a cyclometalated
complex is key to this type of reactivity.”® In support of this, reaction
of the ortho, ortho dimethyl substrate 1i resulted in no conversion to
the desired meta substituted product. The importance of ruthenium
c-activation is also highlighted with the successful meta-selective
reaction using pre-formed complex A. No meta-substituted product
was observed when substrate 1j bearing a methyl group at the
3-position of the aromatic ring was used. Instead, the only product
isolated was dimer 10 suggesting a competing reductive elimination
of two coordinated substrate molecules when the site para to the
C-Ru bond is blocked."® Conformationally locked benzoquino-
line 1j was however effectively alkylated generating 10 as the only
isolated product.

Together these results suggest that substitution occurs pre-
ferentially at a position para to the C-Ru bond formed follow-
ing cyclometalation. Interestingly, analogous reactivity has also
recently been reported in a stoichiometric process on iridium
complexes.'” In light of this work we now propose the following
mechanism (Scheme 6). Initial ortho C-H insertion generates a
cyclometalated complex, a process shown to be reversible and
aided by carboxylate ligands.'® Substitution at the position para
to the newly installed C-Ru bond then most likely occurs via a
radical process whereby single-electron transfer (SET) from a

Chem. Commun., 2015, 51, 12807-12810 | 12809
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Scheme 6 Proposed catalytic cycle.

ruthenium(u) species can generate a tertiary alkyl radical and the
corresponding ruthenium(m)X species. The carbon-centered radical
then adds to the aromatic ring to generate a cyclohexadienyl radical
intermediate. Rearomatisation could occur via single-electron oxida-
tion and deprotonation to regenerate a ruthenium(n) complex and
furnish the meta alkylated product after proto-demetalation.

In summary, we have developed a novel meta selective
catalytic C-H functionalisation of 2-phenylpyridine substrates
for the installation of quaternary carbon centres. The procedure
is operationally simple and was found to couple a useful range
of tertiary alkyl bromides and more challenging tertiary alkyl
chlorides. Mechanistic studies indicate that site selective radical
addition occurs at the position para to the C-Ru bond formed
following cyclometalation to afford products with net meta
substitution. More detailed mechanistic studies are underway
to determine the precise nature of the organometallic species
and redox processes involved.
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