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The structure of the Cgo and p-Bu'-calix[8]larene complex has been
reinvestigated, showing an unprecedented continuous layered
tetragonal array of fullerenes encapsulated by calixarenes. Electron
diffraction data revealed the tetragonal symmetry, with a stepped
structure observed by AFM and SEM, and the thickness of the basal
plane was measured by XRD, as 2 nm. The molecular simulated
arrangement of fullerenes accounts for the ability to take up to
ca. 11% of fullerenes Cq in place of the smaller fullerene.

Supramolecular complexation of pristine fullerene Cg, involving
inherently weak intermolecular forces offers scope for developing
functional fullerene-based materials with controlled structures and
tailored properties."* Macrocycles with electron-rich aromatic rings
such as calix[n]arenes,>® cyclotriveratrylenes”'® and related mole-
cules™ ™ can bind fullerenes, and have featured in gaining access
to novel architectures. One of the earliest complexes of calixarenes
with fullerenes is based on the readily available p-Bu*calix[8Jarene
(Fig. 1a) which binds fullerene Cg, in toluene, forming a discrete
1:1 complex with some selectivity over other fullerenes.'*"> Indeed
this complexation is effective in separating and purifying fullerene
Cgo from carbon soot.

Within the Cgo-p-Bu*~calix{8Jarene complex the phenolic hydroxyl
groups of the calixarene are expected to retain at least part of the
cyclic hydrogen bonded array on binding fullerene Cg, with some
reorganisation of the aromatic groups in providing hydrophobic
pockets with complementarity of curvature with that of the surface
of Cgo, in optimizing n-r interactions.>*® The complex is only
sparingly soluble in toluene, but spontaneously decomposes
in the presence of chlorinated solvents. While it is crystalline,
the micaceous thin sheets have defied collecting suitable X-ray
diffraction data for a single crystal structure determination.
Based on the data available from over two decades, which included
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Fig. 1 (a) Chemdraw structure of p-Bu'-calix[8larene. (b) The colour change
in a toluene solution of Cgp induced by the addition of p-Bu'-calix[8larene.
(1: before the addition of p-Bu'-calix[8larene; 2: mixing for 5 min; 3: mixing
for 30 min; 4: mixing for 1 day) (c—f). SEM images of the Cgo—p-Bu'-
calix[8larene complex, showing square crystals ~5-30 pum in size.

solid state NMR, UV-visible and FTIR spectroscopic data, analytical
data (1:1 ratio of the two components) and molecular simulations,
we proposed a triangular array of three fullerenes, with each of the
three calixarenes in the double cone conformation spanning two
fullerenes, positioned along the edges of the triangle.'® With
advances in transmission electron microscopy (TEM) and associated
electron diffraction, scanning electron microscopy (SEM), Raman
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spectroscopy and atomic force microscopy (AFM), advanced mole-
cular simulation coupled with the availability of greater computer
power, we have reinvestigated this complex in an attempt to gain
further insight into the nature of interplay of the components,
with the results from the integrated approach consistent with
an unprecedented layered tetragonal array of fullerenes.

The complex was prepared as a brown precipitate, following an
adaption of the literature procedure,t'* where by p-Bu’calix[8]arene
(176 mg) was added to a solution of Cg, (80 mg) dissolved in toluene
(80 mL), with the colour of the solution changing gradually from
magenta, to rose red (5 min), then brown (30 min), and ultimately
dark brown (1 day), Fig. 1b. SEM images, Fig. 1c, established the
precipitate present as square plates ~5-30 pm in cross section.
An angular observation reveals the difference in thickness of the
plates (Fig. 1d), generally <1 pm, and a few extremely thin layers can
be seen, Fig. le, with the presence of wrinkles indicating an
approximate thickness of the film, ~70 nm (inset). Fig. 1f reveals
a typical spiral pattern on the surface of a plate, which is directed by
screw dislocations that create steps from solute molecules for the
nucleation and growth of layered crystals. The attachment of C¢, and
p-Bu’-calix{8]arene molecules at the steps generates layers of terraces
extending to the edge, forming layered square crystals.

In exploring the detailed growth mechanism of the complex,
and in gaining further insight into its structure, AFM images were
recorded on the precipitates that formed after five minutes and one
day, Fig. 2a and b, respectively. The crystals formed after 5 minutes
are square with round edges whereas after one day they are well
defined, as thicker square plates. This reflects the different stages
of nucleation and growth, with a layered structure initially formed.
A similar layered growth feature is observed using SEM, Fig. 1f, as
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Fig. 2 AFM images of (a) a plate formed after 5 min (15 um x 15 um), and
(b) a square plate formed after 1 day (7 pm x 7 um). (c) Magnified image on
the surface of the plate in (a), revealing the presence of islands for a layer
growth (0.6 um x 0.9 um). (d) Magnified image on the surface of the plate
in (@) (1 pm x 1 um). (e) Height profiles following the lines indicated in (d),
establishing a thickness of ~2 nm for each layer.
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also evident using AFM, Fig. 2b. As the early stage of nucleation
and growth is critical for investigating the molecular events,
topographical studies on the surface of the crystal in Fig. 2a
were undertaken, Fig. 2c and d, with the assumption that the
nanoscale features at the surface may be ‘frozen’ upon a
transfer to the substrate. The surface is relatively rough with
many islands that are generated by the formation of 2D nuclei
via a multinucleation multilayer growth, which occurs at high
driving force conditions (high supersaturation). This is expected at
the early stage of crystal growth where nucleation is more energe-
tically favourable than the growth of steps to cover the whole
surface. The spread and coalescence of these islands form layers,
as in the indicated area (1) in Fig. 2c. A grid of fibres implies
preferential direction that is intrinsically controlled by the tetra-
gonal molecular structure of this complex (see below for details).
The centre of the grid is expected to be the 2D nucleus, which
grows rapidly towards four vertical crossing directions, and the
solute molecules further attach to the grid at the corners or along
the grid lines where a lower nucleation energy is required, as
indicated in area (2), Fig. 2c. The height profiles for five ascending
steps or islands on the surface in Fig. 2d are shown in Fig. 2e,
establishing a consistent height of ~2 nm for each layer.
Raman spectra of the complex were acquired using a laser
excitation wavelength of 785 nm and 50x objective. The pre-
cipitates were deposited onto a gold substrate, and an optical
image of the square crystals is shown in Fig. 3. Raman spectra
were selectively obtained on the crystal (blue cross), as well
as on the gold substrate and the background (red cross). The
corresponding Raman line for the complex shows typical
prominent peaks for pristine Cgqo, with the active fivefold
degenerate Hy and non-degenerate A, modes observed.'” Com-
pared with the spectrum for pristine Cgo, there is strong
fluorescence background arising from the presence of Cg, in
the complex. p-Bu’-calix[8]arene also has a well-defined Raman
spectrum, which accounts for the appearance of a few low-
frequency modes at 75.5 cm™ ', 134.4 cm ™', and 166.2 cm ™', as
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Fig. 3 Raman spectra for the square plate (blue line), Au/Ti/Si substrate
(red line), and pristine Cgq (green line) and p-Bu‘-calix[8larene (magenta
line), with the inset optical image showing the positions of the signals for
the square plate and substrate.
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Fig. 4 The X-ray powder diffraction of the Cgo—p-Bu'-calix[8larene complex.

well as the peaks appearing at 236.7 cm™ ' and 536.9 cm ™' in

the spectrum for the complex.

X-ray powder diffraction (XRD) data for the complex was recorded,
Fig. 4, along with that for pristine Ce, and p-Bu‘calix[8Jarene powders.
A direct comparison reveals that the structure of the complex is
entirely different from both of the Cgo and p-Bu‘-calix{8]arene. The
diffraction for pristine Cg, shows a typical fcc crystal structure
with eight feature reflections, as indexed. The XRD data indicates
the basal plane d-spacing, ~1.95 nm, which is consistent with
the thickness of the stepped structure in the AFM studies.
Transmission electron microscopy (TEM) also showed the
presence of square prismatic crystals, Fig. 5, although they were
sensitive to the electron beam with cracks appearing during the
characterisation and the disappearance of the electron diffraction
pattern after a few seconds of exposure. A careful and rapid
operation managed to preserve a selected area electron diffraction
pattern, Fig. 5b, which revealed a unique pattern consistent with a
tetragonal structure. This pattern suggests an x-y dimension of
~2.8 nm which is an important consideration in developing a
model using molecular simulations (see below).

Molecular simulations were carried out to develop a model
for the structure of the complex between fullerene Cg, and
p-Bu'-calix[8]arene which incorporates tetragonal symmetry,

kS

Fig. 5 TEM image of the as-prepared Cgo/p-Bu'-calix[8]arene crystals,
and a selected area electron diffraction pattern from a crystal, showing a
unique pattern for tetragonal symmetry.

This journal is © The Royal Society of Chemistry 2015

View Article Online

Communication

Fig. 6 Molecular simulations of the structure of the Cgo—p-Bu'-
calix[8]arene complex (see text for details).

the spacing in the basal plane, and earlier data, with the results
shown in Fig. 6. The minimised model has a pair of Cg,
molecules at the van der Waals limit (~1 nm), shrouded by
two p-Bu’-calix[8]arenes in a double cone conformation, above
and below the basal plane, Fig. 6a and b. These calixarenes
effectively block any association with other fullerenes at right
angles to the vector between the pair of fullerenes, but with the
terminal surface area of these fullerenes available for inter-
action with other fullerenes. Contact of each fullerene in this
pair of fullerenes with two other pairs of fullerenes builds up a
tight tetragonal packing of pairs of fullerenes, as a unit cell
indicated in the dashed square in Fig. 6¢. This arrangement of
fullerenes is without compromising on maximising the contact
surface area of each calixarene with a pair of fullerenes. The
model is consistent with the established 1:1 ratio of the two
components, and that two p-tert-butylphenol groups for each
calixarene are distinct from the other six in lying astride two Cgo
molecules. The thickness of each layer, comprised of a layer
of Ceo molecules capped either side by a layer of calixarenes,
is ~2 nm (Fig. 6d), which is in accord with the above results
from the AFM and XRD. The model is also consistent with the
electron diffraction pattern, with the x-y dimension of the unit
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cell in this model ~2.8 nm. Thus while the calixarenes make a
number of fullerene contacts, as is common in such host-guest
complexes with fullerenes, the expected hexagonal closed packed
array of fullerenes in a single sheet is disrupted. Indeed the
arrangement of the fullerenes in the basal plane effectively creates
‘holes’ which are occupied by geometrically opposed substituted
phenyl rings within each calixarene, with each hole occupied by four
such rings from four different calixarenes, in a tetragonal array. This
more open arrangement of fullerenes relative to hexagonal close
packing in 2D sheets is also consistent with the fullerenes being less
confined rotationally, which is in turn consistent with the solid state
NMR results, where free rotation of the fullerene in the complex
occurs at room temperature. Such cavities may offer spatial flexibility
in the structure for the replacement of some of the Cg, molecules by
Cyo (up to 11% established experimentally)."* If the principle axis of
C,o is in the plane of the fullerenes, then there would be no
perturbations to the thickness of the composite layers.

We have established a unique tetragonal structure of the complex
between Cgo and p-Bu‘calix[8]arene using a repertoire of contempor-
ary characterization techniques (SEM, TEM, AFM, XRD and Raman
spectroscopy), coupled with advanced molecular simulations. Impor-
tantly the electron diffraction data revealed tetragonal symmetry,
which along with the stepped structure (AFM) and the thickness of
the basal plane (XRD), provides crucial data in unravelling the nature
of the structure. In addition, this less restricted arrangement of
fullerenes accounts for the ability to take up to ca. 11% of fullerenes
Cy in place of fullerene Cq, while still retaining the same structure.'*
The earlier proposed structure based on a triangular array of full-
erenes was modelled for including a C;, molecule with two Cg
molecules, but this significantly distorts the structure.

We gratefully acknowledge the support of this work by the
Australian Research Council and The Government of South Australia.
The authors acknowledge the facilities, and the scientific and
technical assistance on the AFM and Raman spectrometry studies,
supported by the Australian Microscopy & Microanalysis Research
Facility (AMMREF) and Australian National Fabrication Facility
(ANFF) at Flinders University. TEM analysis was carried out using
the facilities in Adelaide Microscopy at The University of Adelaide.
X-ray diffraction was performed using the facility in The Bragg
Crystallography Facility at The University of Adelaide. The authors
also would like to thank Peter G. Self for valuable discussions.

Notes and references

+ Methods summary: pristine fullerene Cg, (99685-96-8, 99+%, BuckyUSA)
and toluene (1.08327.4000, 99.9%, Merck Millipore) were used as
purchased. p-But-calix[8Jarene was synthesised following the estab-
lished protocol in the previous report."* SEM imaging was performed
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on the FEI Quanta 450 High Resolution Field Emission SEM, with a
voltage of 10 kV, and working distance of 10 mm. For TEM, toluene
solutions with precipitates were drop-cast onto 200 mesh holey carbon
copper grids (#2450-AB, SPI Supplies), and dried in air. FEI Tecnai G2
Spirit TEM equipped with a FEG LaB6 emitter operating at a voltage of
120 kV was used for acquiring the TEM and SAED data. The imaging
was done via an in-column Olympus-SIS Veleta CCD camera. Image ]
software was used for processing all the TEM images. AFM images
were acquired in air using a Bruker Dimension FastScan AFM with
Nanoscope V controller, operating in PeakForce Tapping mode. The
solutions were drop-cast onto freshly cleaved mica substrates and dried
in air prior to AFM analysis. Bruker ScanAsyst Air probes with a nominal
tip radius of 2 nm and nominal spring constant of 0.4 N m~" were used.
Imaging parameters including set-point, scan rate (1-2 Hz) and feed-
back gains were adjusted to optimize image quality and minimize
imaging force. The AFM scanner was calibrated in the x, y and z
directions using silicon calibration grids (Bruker model numbers PG:
1 um pitch, 110 nm depth and VGRP: 10 pm pitch, 180 nm depth).
Images were analysed using the Gwyddion free SPM software (version
2.38). Raman spectra were recorded using a Horiba Xplora Raman
system with 785 nm excitation wavelength. The substrate was prepared
by sputter coating 20 nm Ti and then 100 nm Au layers onto a silicon
substrate to completely block the silicon background signal. XRD
spectra were acquired using a Bruker D4 Endeavour 66 sample powder
X-ray diffractometer (Co source). The Discover Module in Materials
studio V5.5.3 was used for the energy minimisations of the complex.
A tetragonal geometry of calixarene and Cq, was generated using the
visualiser module of Materials Studio. The Steepest descent algorithm was
used for minimisation with a convergence tolerance of 0.001 kcal mol ™"
for energy and 0.5 kecal mol " A™? for force with 500 000 iterations. The cell
parameters were unfixed allowing optimisation to dictate the size of the
system. The Drieding forcefield was used to incorporate hydrogen bonding
on the lower rim of the calixarenes.
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