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Herein we report the use of next generation maleimides (NGMs) for
the construction of a potent antibody—drug conjugate (ADC) via
functional disulfide bridging. The linker has excellent stability in
blood serum and the ADC, armed with monomethyl auristatin E
(MMAE), shows excellent potency and cancer cell selectivity in vitro.

Antibody-drug conjugates (ADCs) are comprised of antibodies that
are armed with warheads using appropriate linker technologies."?
They combine the exquisite targeting ability of antibodies (i.e.
allowing for discrimination between healthy and diseased tissue)
with the cell-killing ability of cytotoxic drugs. This class of targeted
therapy has shown considerable promise in the treatment of
various cancers in recent years with two FDA-approved ADCs
coming onto the market recently (ie. Adcetris™ and Kadcyla™)
and with over 30 ADCs in the clinic.> However, in order for ADCs to
deliver their full potential, sophisticated conjugation technologies
to connect the warhead to the antibody are vital.* Conjugation to
antibodies is typically achieved through either multiple lysine
modification or by functionalisation of thiols generated by
reduction of interchain disulfide bonds; neither of these is ideal
(Fig. 1).* Lysine modification is sub-optimal as it generates
heterogeneous ADCs, which have been shown to have a narrow
therapeutic window relative to homogeneous ADCs.”> Cysteine
modification, following interchain disulfide reduction, results in
the permanent loss of structural disulfide bonds, which may
reduce the stability of the ADC in vivo.* It also generates hetero-
geneous mixtures when targeting typical drug-to-antibody ratios
(DARs) of 2-4. Other approaches using cysteine-based site-
directed mutagenesis and unnatural amino acids should also be
highlighted.>® However they also have limitations, e.g. disulfide
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Fig. 1 Classical approaches to ADC construction.

scrambling post-reduction and high cost combined with relatively
low expression yields, respectively.

Recently, we have described methods for the insertion of
next generation maleimides (NGMs) into disulfide bonds in
various proteins, engineered antibody single-chain variable
fragments (ScFv), a fragment antigen-binding (Fab) construct
and a full antibody to yield site-selectively modified NGM
conjugates (Scheme 1).” The NGM conjugate may be hydrolysed to
a maleamic acid.”” Having optimised the chemistry to modify
proteins with NGMs, herein we describe the construction of an
industry relevant ADC (i.e. an antibody functionalised with a highly
potent drug) and evaluate its biological relevance in terms of stability
in blood serum, and efficacy plus cancer cell selectivity in vitro.

Initially, we had to select a suitable full antibody platform
to appraise the application of our technology. Trastuzumab
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Scheme 1 Exemplification of NGM technology for insertion into a disulfide
bond and optional hydrolysis.
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(Herceptin™) is a monoclonal IgG1 antibody that targets the
internalising HER2 receptor and has been used successfully in
the treatment of HER2+ breast cancer.® Furthermore, it is the
antibody component of trastuzumab emtansine (Kadcyla™), a
recently FDA-approved ADC therapy for the same indication.’
We therefore chose trastuzumab as the full antibody targeting
system on which to evaluate this research. We also needed to
select a suitable warhead for this study and decided to use anti-
cancer drug monomethyl auristatin E (MMAE) as its suitability
as the drug component of ADCs is well-established.>'° Finally,
we needed to select a suitable fluorophore to appraise the blood
serum stability of the NGM linkage. To this end, we selected
Alexa Fluor®™ 488 owing to its established use in this context.'®”

Our study began by testing the blood serum stability of NGM-
trastuzumab antibody conjugates against a classical maleimide
analogue. It has been reported that classical maleimide conjugates
are unstable in serum, due to their propensity to undergo retro-
conjugate additions, leading to transfer of the attached cargo onto
blood thiols; particularly albumin.™ It is vital in the next generation
of ADCs that this vulnerability is avoided, ie. to limit off-target
toxicity associated with premature drug release or drug transfer.
Whilst spontaneous retro-conjugate additions are not mechanistically
possible in NGM conjugates, cleavage by a thiol addition-elimination
mechanism is.” However, this mode of reactivity can be precluded by
hydrolysis to maleamic acids, which are unreactive to thiols.”” To test
whether NGM conjugates (non-hydrolysed and hydrolysed) offer
more suitable platforms for serum stability than classical maleimides
we constructed fluorescent trastuzumab antibody conjugates 1-3.
This was achieved by conjugation of reagents 4 and 5 to reduced
trastuzumab and cartying out CuAAC click attachments of Alexa
Fluor 488" azide. This afforded conjugates 1 and 2. It was notable
that conjugate 2 was obtained with a fluorophore-to-antibody ratio of
3.91, consistent with conjugation of an NGM reagent to each of the
four accessible interchain disulfide bonds. Conjugate 3 was obtained
by hydrolysis of conjugate 2, and retained a fluorophore loading of
ca. 4 (see ESIt for further details).

We appraised the blood serum stability of conjugates 1-3 by
analysing fluorescence (post-HPLC separation) of antibody, albumin
and ‘“free” fluorophore as a function of days of incubation
(Fig. 2, see ESIt for further details). As expected, the study with
classical maleimide conjugate 1 revealed substantial transfer of the
fluorophore to albumin after 4 days. Interestingly, dithiomaleimide-
derived conjugate 2 gave a similar profile, suggesting that, albeit via
a different mechanism, thiol exchange was occurring with albumin’s
cysteine 34 at a similar rate. In sharp contrast, maleamic acid
conjugate 3 was completely stable, even over a prolonged period of
7 days. From this data it can be concluded that the optimum NGM-
ADC platform would incorporate a maleamic acid linker to ensure
robust serum stability.

Following on from the successful blood serum stability
experiments with a maleamic acid linker, we synthesised
NGM-MMAE construct 6 for direct conjugation onto trastuzumab
(Fig. 3). To do this, dithiomaleimide acid 7 was coupled to amine-
PEG12-tert-butylester, followed by TFA deprotection to afford
dithiomaleimide-PEG12-acid 8. This was then coupled to MMAE
to form NGM-MMAE 6.
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Fig. 2 Blood serum stability of conjugates 1-3 and structure of thiol
reactive reagents 4 and 5.

With NGM-MMAE 6 in-hand, we applied our optimised
conditions for the insertion of NGMs into the full antibody
system of trastuzumab with the aim of functionally re-bridging
its native interchain disulfide bonds. To do this, we only used a
small excess of reducing agent (i.e. TCEP, 6 eq.) and NGM-MMAE
(5 eq.) to ensure complete reaction and to target a drug-to-antibody
ratio (DAR) of ca. 4. This was followed by hydrolysis at pH 8.4 at
20 °C for 72 h to form thiol-stable NGM-MMAE-ADC 9. This gave
an excellent average DAR of 3.89 by HIC analysis (Fig. 4, see ESI} for
details on analysis), which is consistent with our Alexa Fluor™ 488
loading. The ADC therapeutic was formed in good yield and in an
efficient manner with retention of binding confirmed by ELISA
analysis (see ESIT for details).
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Fig. 3 Synthesis of MMAE-NGM construct 6.
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Fig. 4 NGM-MMAE-ADC 9 with HIC analysis.

With an industry relevant ADC in-hand, we appraised its
effectiveness in vitro. To appraise the selectivity and potency of the
constructs we used breast cancer cell lines SKBR-3 (HER2-positive)
and MCF-7 (HER2-negative). As a comparable reduction in cell
viability is observed for both cell lines at the same concentration of
MMAE (ICs, = 0.23 nM and 0.50 nM for SKBR-3 and MCF-7
respectively),'”” the cell lines are appropriate for the study, thus
paving the way for cytotoxicity studies with NGM-MMAE-ADC 9
(Fig. 5). Gratifyingly, SKBR-3 cell viability was reduced significantly
when incubated with the conjugate (ICs, = 0.33 nM), especially
when compared to the control of native Herceptin where the
reduction in cell survival was minimal at relatively high concentra-
tions. Additionally, highlighting the targeted delivery aspect of the
work, no toxicity was observed in analogous studies with MCF-7
cells incubated with NGM-MMAE-ADC 9. These results clearly
highlight the selectivity of our conjugate over MMAE alone, and
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Fig. 5 Inhibition of cell proliferation in cancer cell lines SKBR-3 (HER2-
positive) and MCF-7 (HER2-negative) for NGM-MMAE-ADC 9 with tras-
tuzumab control. The error bars are the standard error of the mean.
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indicate that the toxic drug in our conjugates is delivered by an
HER2-dependent internalisation mechanism.

In conclusion, NGM linkages have been shown to functionally
re-bridge the native disulfide bonds of a full antibody, to be
stable in blood serum post-hydrolysis and successfully used for
the preparation of an industry relevant NGM-MMAE-ADC. The
NGM-MMAE-ADC was shown to selectively target and kill
HER2+ cells, thus highlighting the potential of our chemistry
for the production of efficacious ADCs. We will next seek to
evaluate NGM-ADCs in an in vivo setting, alongside our antibody
fragment and antibody bispecific platforms.
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