Open Access Article. Published on 14 April 2015. Downloaded on 10/31/2025 3:55:36 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

ChemComm

COMMUNICATION

CrossMark
& click for updates

ROYAL SOCIETY

OF CHEMISTRY

View Article Online
View Journal | View Issue

Efficient room temperature aqueous Sb,S3

synthesis for inorganic—organic sensitized solar

Cite this: Chem. Commun., 2015,
51, 8640

Received 8th March 2015,
Accepted 14th April 2015

cells with 5.1% efficienciest

Karl C. Gédel,? Yong Chan Choi,” Bart Roose,® Aditya Sadhanala,® Henry J. Snaith,®

Sang Il Seok,”® Ullrich Steiner* and Sandeep K. Pathak®®

DOI: 10.1039/c5cc01966d

www.rsc.org/chemcomm

Sb,Sz sensitized solar cells are a promising alternative to devices
employing organic dyes. The manufacture of Sb,Sz absorber layers
is however slow and cumbersome. Here, we report the modified
aqueous chemical bath synthesis of Sb,S3 absorber layers for sensitized
solar cells. Our method is based on the hydrolysis of SbCl; to complex
antimony ions decelerating the reaction at ambient conditions,
in contrast to the usual low temperature deposition protocol. This
simplified deposition route allows the manufacture of sensitized
mesoporous-TiO, solar cells with power conversion efficiencies up
to = 5.1%. Photothermal deflection spectroscopy shows that the
sub-bandgap trap-state density is lower in Sb,Sz films deposited
with this method, compared to standard deposition protocols.

Antimony sulfide (Sb,S;) is a promising material for several
optoelectronic applications. Due to its high absorption coefficient
(x ~ 1.8 x 10° ecm™ " at / = 450 nm) and a suitable direct band-
gap of E, & 1.7 eV, crystalline Sb,S; (stibnite) is interesting as
light absorber for solid-state sensitized solar cells (Fig. 1)."* In
particular, Sb,S;-based solar cells excel in their stability of
operation when compared to other organic-inorganic hybrid
devices. Recently, power-conversion efficiencies of n = 6.2%
(ref. 3) and n = 7.5% (ref. 4) were achieved using Sb,S; as the
absorber material obtained from chemical bath deposition.
Further, the material has been used to improve the stability
of methyl-ammonium lead iodide perovskite solar cells.”
Antimony sulfide synthesis typically involves deposition in
aqueous and non-aqueous chemical baths at low temperatures
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Fig. 1 (a) Schematic of the solar cell cross section. (b) Simplified band-

diagram of the Sb,Ss sensitised photovoltaic cells. The band edge values
were taken from ref. 10.

(low-T deposition).®® The standard method is the aqueous
chemical bath deposition (CBD) using antimony chloride and
sodium thiosulfate. This technique is however problematic
since it requires a precise temperature control of the solution
when cooling below 10 °C and maintaining the sample at
low temperatures. For large-scale applications such a cooling
protocol is cumbersome, costly and energy-intensive.

Here, we present an aqueous room temperature (RT) deposi-
tion route of Sb,S; using the same precursor materials as the
standard CBD method. We have fabricated Sb,S;-sensitized
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solar cells using this RT deposition method and demonstrate

excellent device performance with efficiencies of up to # = 5.1%.
The low-temperature synthesis of Sb,S; for photovoltaic

applications involves the chemical reaction equations’

2SbCl, + 3Na,S,0; — Sby(S,03); + 6NaCl

Sb,(S,05); + 6H,0 — Sb,S; + 3HSO, ™ + 3H;0".

These reactions have to be slowed down by cooling below
10 °C to avoid immediate precipitation” and to enable strong
adhesion of Sb,S; to the substrate. Thus, the standard CBD method,
termed low-T deposition, requires cooling of the reaction
solution, whereas our modified method, RT deposition, can
be performed at room temperature. By changing the order of
reactant addition at RT, Sb,S; formation is slowed down and
well-adhering films are obtained.

For the RT deposition, a 1.4 M SbCl; solution in acetone was
prepared. Note that the optimal concentration of SbCl; for the
RT method is slightly higher compared to low-T deposition
(Fig. S7, ESIt). SbCl; can be used without dissolution in acetone,
changing the reaction behaviour very little (Fig. S8, ESIt). The
addition of acetone facilitates however the handling of the highly
hygroscopic SbCl;. Deionised water is added under vigorous
stirring to reduce the total concentration of SbCl; to 46 mM.
The addition of water hydrolyses SbCl;, which leads to a solid
white precipitate. The product of the hydrolysis reaction of SbCl;
is not very well defined. It depends on many parameters such as
the dilution of the reaction medium, the pH value of the solution
and solvent composition.’*** The aqueous solution containing
the hydrolysed SbCl; has a pH of 1.4.

The precipitate was filtered and dried and X-ray diffraction
(XRD), Fourier transform infrared spectroscopy (FTIR) and
energy-dispersive X-ray (EDX) spectroscopy were performed
on the white powder (Fig. S10-S12, ESIf). The XRD pattern
shows crystalline phases of Sb,OsCl,, Sbg(OH)sO5Cl,(H,0),
Sbg0;:Cl,(H,0)s and Sb;O¢(OH). This is in contrast to the
reports by Li et al. and Yu et al. describing similar reactions."*"*
They also reporting the formation of a white precipitate, which
they identify as antimony oxychloride SbOCI. The XRD pattern
of Fig. S10 (ESIf) however shows no evidence of crystalline
SbOCI formation. According to Chen et al. hydrolysis at pH 1-2
leads to the formation of Sb,0O5Cl, for mixed solvents such as
water and ethanol or water and ethylene glycol."””> We also do
not observe an immediate colour change of the precipitate to
orange upon the addition of the sulphur source, as reported by
Li et al.™ and Yu et al.*

Subsequently, a 1 M aqueous Na,S,0; solution was added at
a final concentration of 0.25 M in the chemical bath. This
causes the solution to turn clear as most of the precipitate
dissolves, suggesting the formation of a water-soluble complex.
After 5-10 min at 20 °C, the solution starts to turn orange,
indicating the formation of amorphous Sb,S;. This is accompanied
by a pH change of the solution from pH = 3.3 upon sodium
thiosulfate (pH = 7.3) addition to pH = 4.3 when antimony
sulfide deposition is complete after two hours.
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Fig. S2 (ESIt) shows the UV-vis spectra of RT-deposited Sb,S;
films on mesoporous-TiO,, annealed at 300 °C for 5 min.

The annealed antimony sulfide was characterised by powder
X-ray diffraction (XRD). Fig. 3a compares the XRD pattern of the
low-T and RT deposition methods. Both pattern are very similar
and match the stibnite reference pattern.'> Sb,S; films deposited
by the RT method onto mesoporous TiO, substrates also show
the characteristic XRD peaks of crystalline Sb,S; (Fig. S3, ESIY).
A Rietveld analysis of the two patterns using the powder diffrac-
tion software ReX'® yields an average Sb,S; crystallite size of
40 nm and 35 nm for RT and low-T deposition, respectively. The
structure of the solar cell studied in this work and a schematic
band diagram are shown in Fig. 1.

Fig. 2 shows (a) the current-voltage-characteristic and (b)
the external quantum efficiency EQE of the best performing
solar cell employing RT deposited Sb,S;. Its photovoltaic para-
meters are summarised in Fig. 2. The shunt and series resis-
tances were obtained by a least square fit of the diode function.
The RT method enables the fabrication of solar cells with high
reproducibility. The deviations from batch to batch and from
device to device were small (Fig. S13, ESIt). The hole transport
layer consists of a PCPDTBT-PCBM blend. Charge carriers
which are generated by photon absorption in the hole transport
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Fig. 2 (a) Current—voltage curve of the best performing solar cell device

employing Sb,Ss synthesised using the RT method. The inset table shows

the photovoltaic parameters of the device. (b) External quantum efficiency

of the device.
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Fig. 3

(a) XRD pattern of crystalline Sb,Ss, synthesised via the low temperature deposition method (upper trace) and the RT technique (center trace). The

lower trace shows the difference of the two patterns. The stibnite reference pattern was taken from ref. 15. (b) XPS Sb3ds,, peak of films from both
deposition methods. The solid lines show a least squares fit of a superposition of two Gaussian curves. (c) PDS measurements showing the sub band-gap
energy levels for both deposition methods. The inset shows the corresponding Urbach energies.

layer can also be harvested due to the formation of PCBM electron
conducting channels. The PCBM-PCPDTBT blend thus contributes
to the current and causes the near-infrared shoulder in the EQE
spectrum.’” Earlier cells using P3HT as hole conductor showed
lower efficiencies compared to the PCPDTBT:PCBM blend. We
therefore concentrated on the donor-acceptor PCPDTBT-PCBM
blend. A comparison of a RT solar cell and a solar cell with the
same device architecture using the low-temperature deposition
method is shown in the ESIt (Fig. S4). The reference cells were
prepared in the same laboratory using the identical procedures as
the better performing earlier published devices.* The lower perfor-
mance may reflect the variation in this system that possibly arises
from minor variations in device fabrication. It is however important
to point out that the reference devices and devices made with our
new methodology were created in parallel and therefore are much
less likely to be subject to this type of variation.

X-ray photoelectron spectroscopy (XPS) measurements were
carried out on Sb,S; films formed by both deposition techni-
ques, shown in Fig. 3b.

To compare the oxide content of the samples, the antimony
Sb3d;,, peak was examined, because the oxygen O1s peak directly
overlaps with the antimony Sb3ds, peak. The Sb3d;/, peak can be
modelled using a superposition of two Gaussians, one at ~538.5 eV
representing Sb,S; and one at x539.5 €V for SbO,, most likely
Sb,0;."® The RT sample has a marginally higher oxide content
compared to the low-T material. This probably causes the lower
conductivity seen in these films (Fig. S6, ESIT).

One of the biggest challenges of using antimony sulfide as
absorber in sensitized solar cells is the high density of electronic
traps in this material, i.e. the number of energy states which lie in
the band-gap of Sb,S;.%'° These trap-states lead to a significant
loss in potential and to charge carrier recombination in the solar
cell. To explore this, we employed photo-thermal deflection
spectroscopy (PDS) to determine the trap-state density and the
energetic disorder of Sb,S;. PDS is a highly sensitive absorption
measurement technique, which can detect absorbance values
down to 10> AU. Thus, PDS is able to accurately measure weak
absorption in the bandgap. Fig. 3c shows the PDS spectra of Sb,S;
samples on mesoporous TiO, for both deposition methods.
The corresponding Urbach energies are given in the inset.
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The absorption in the RT-deposited sample was significantly
lower at energies below the band-gap of Sb,S; compared to the
low-T sample, by nearly one order of magnitude at energies below
1.5 eV. This indicates a clear reduction in the density of deep-trap
states for the RT deposited Sb,S;. The difference in the open-
circuit voltage for low-T and RT deposited Sb,S; in optimized solar
cells are however similar (Fig. S4, ESIf). As the band-gap of
antimony oxide is higher than that of Sb,S;,>° the PDS spectrum
cannot show a potential increase of deep traps caused by the
higher content of antimony oxide in the RT-deposited sample.

We have demonstrated an aqueous deposition technique of
antimony sulfide for sensitized solar cells, which can be carried
out at room temperature. The chemical bath deposition
method is based on the same precursor materials but uses
the hydrolysis of SbCl; to complex antimony ions. The resulting
Sb,S; films were investigated using UV-vis spectroscopy, XRD,
PDS and XPS. PDS shows a reduction in sub-band gap trap
states in RT-deposited Sb,S;. Manufactured devices achieved a
maximum power conversion efficiency n = 5.1% for Sb,S;
sensitized solar cells using the RT deposition method. A more
detailed optimization of the deposition step, interfacial surface
treatments>"*> or doping of the Sb,S;>* could lead to a further
improvement in solar cell performance. This work is therefore
an important step in the development of low-cost, stable and
highly efficient solar cells.

We acknowledge Adam Brown'’s help with the XPS measure-
ments. K.C.G. would like to thank the Cambridge Trust, the Mott
Fund for Physics of the Environment and Corpus Christi College
Cambridge for funding. A.S. acknowledges funding from the
Engineering and Physical Sciences Research Council (EPSRC).
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