Open Access Article. Published on 01 April 2015. Downloaded on 7/31/2025 11:10:21 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

ChemComm

CrossMark
&click for updates

' ROYAL SOCIETY
OF CHEMISTRY

Mechanochemical reactions studied by in situ

Raman spectroscopy: base catalysis in

Cite this: Chem. Commun., 2015,
51, 8058

Received 6th March 2015,
Accepted 1st April 2015

DOI: 10.1039/c5cc01915j Krunoslav Uzarevic*@

www.rsc.org/chemcomm

In situ Raman spectroscopy was employed to study the course of
a mechanochemical nucleophilic substitution on a carbonyl group.
We describe evidence of base catalysis, akin to catalysis in solution,
achieved by liquid-assisted grinding.

Organic synthesis is traditionally devoted to solution techniques
for performing chemical reactions. However, solid-state reactions
achieved by milling have emerged as an alternative to solution
reactions.'™ Various organic reactions have been reported to
occur under mechanochemical or solvent-free reaction conditions
such as Suzuki* and Sonogashira‘”7 reactions, Michael addition,>
Diels-Alder reaction,*” including solid-state functionalization of
graphene nanoplatelets,> and Wittig reactions,’ as well as multi-
step and one-pot reactions.® The scope of mechanochemical
reactivity is significantly broadened by techniques such as liquid-
assisted grinding (LAG)’ where additives in sub-stoichiometric
amounts have been found to improve the reactivity.® While the
mechanism of their action is generally unknown, additives were
found to act as catalysts” and may steer the reaction towards a
specific product.'® Also, it was recently indicated that a one-pot
mechanochemical Gewald reaction can be catalysed by base."
Contrary to well understood mechanisms of organic reactions
in solution, mechanistic understanding of mechanochemical
organic reactions has thus far remained elusive. This limits
the use and applicability of these solid-state processes and
their possible development for industrial purposes. Thus far,
mechanisms of organic mechanochemical reactions were
mainly deduced from stepwise ex situ analysis which provides
only limited information due to an inherent time delay between
sampling and analysis but also due to the fact that sampling
may irreproducibly disturb the mechanochemical process.
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Recently however, two techniques based on powder X-ray
diffraction (PXRD)'? or Raman spectroscopy'® were intro-
duced to study mechanochemical reactions in situ and in real
time without the need to interrupt the milling process. The
two techniques are complementary and are ideally employed
simultaneously.'* While PXRD is suitable for monitoring the
evolution of bulk crystalline phases, Raman spectroscopy may
be more appropriate for monitoring of amorphous or liquid
phases which are particularly common in organic solid-state
reactions.”

Here, we have employed in situ Raman spectroscopy to study
the effect of additives on a mechanochemical organic reaction.
Using the reaction between 4-nitrobenzoyl azide (1) and 1,4-
diaminobenzene (2) yielding N-(4-aminophenyl)-4-nitrobenzamide
(3) (Scheme 1) as a model nucleophilic substitution reaction on the
carbonyl group, we have examined various additives differing in
proticity, polarity and acid/base properties. Performed experi-
ments aimed to establish whether the effect of additives is
merely physical, through dissolution or enhanced molecular
mobility,"® or if the additives actively participate through
chemical interactions.

Acyl azides are usually exploited in Curtius rearrangement
where the acyl azide group rearranges to the isocyanate group
upon exposure to mild external stimuli such as heat or irradia-
tion. Curtius rearrangement during milling could be expected,
based on the latest studies of energetics of mechanochemical

treatment,'” but the urea product that would result from the
2
&' : HN*( JNH

1 2 isocyanate urea

Scheme 1 Nucleophilic substitution on the carbonyl group of an acyl azide
and potential Curtius rearrangement yielding an isocyanate intermediate
which reacts with the amine to yield the urea derivative.
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reaction of the amine with the isocyanate intermediate was not
observed.'® Instead, the azide here reacted with the amine
to quantitatively yield the corresponding amide (Scheme 1).
However, focus of this work is not mechanochemical formation
of the amide group, for which other synthetic procedures under
mechanochemical treatment were recently described," but
rather the mechanistic aspect of nucleophilic attack on the
carbonyl group.

Time-resolved Raman spectra recorded in situ during milling
(Fig. 1) were evaluated using two-dimensional (2D) correlation
analysis according to the procedure described by Noda and
0zaki.?® Both the synchronous and asynchronous spectra of all
investigated systems exhibited stark similarities (Fig. S6-S9 in
ESIt). Namely, both the diagonal and cross bands behave in the
same way, which allows direct comparison of reactions under
different reaction conditions. Assignment of the most relevant
spectral features was done according to calculated Raman
spectra®' (Fig. 2) and previously published spectra of 2** and
compounds similar to 1** (Table S1 in the ESI{). Formation of 3
in Fig. 1 is characterised by changes in the region between
ca. 1600 and 1700 cm™ ' where it has three partially overlapping
bands (Fig. 2). The amide I band at 1525 cm™ " and the amide III
band at 1268 cm™ " emerge while the azide carbonyl stretching
band at 1694 cm ™" diminishes during milling. The band belong-
ing to symmetric nitro group vibration at 1352 cm™" remains
unaltered during the reaction. Curtius rearrangement would
here result in 4-nitrophenyl isocyanate as an intermediate which
would subsequently yield a derivative of urea (Scheme 1). The
characteristic (CN) band of isocyanate expected at 2320 cm™*
was, however, not observed (Fig. S10 in the ESIf).

The intensity of the band at 1239 cm™’, assigned to sym-
metric stretching of the azide group, initially decreases during
milling but does not diminish completely (Fig. S11 in the ESI¥).
Simultaneously, the band at 1175 ecm™', which changes its
position during milling to 1182 cm™" (Fig. 2b), and the band
at 1266 cm ™' increase in intensity, reflecting the formation of 3.
These bands are positively correlated in 2D synchronous spectra,
but their correlation with the band at 1239 cm ™' is absent
(Fig. S6-S9 in the ESIt). However, cross peaks in asynchronous
spectra show that the change in the 1239 cm ™' band occurs
before changes in bands at 1175 and 1266 cm ™. Interestingly,
the intensity of the 2136 cm™ " band, which is the antisym-
metric counterpart of the 1239 cm™ " band, continuously drops
during the reaction. This indicates another emerging species
contributing to the intensity of the band at 1239 cm™". At first
sight, no evidence could be found for the formation of
hydrazoic acid (HN;) which is formally the leaving group in
the substitution reaction (Scheme 1). This could have been
explained by its volatility and possible degradation resulting
from mechanical shock from milling ball impacts.>* However,
we note that the band at 1239 cm ™!, which survives the whole
milling process, could tentatively belong to HN;, supporting
the assumed reaction pathway toward amide without inter-
mediate species, where HNj; is formed as a by-product.

Neat milling” of 1 and 2 for 60 minutes resulted in slow and
incomplete formation of 3 (Fig. S12 in the ESIt). Liquid-assisted
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Fig. 1 Time-resolved Raman spectra recorded under different LAG con-
ditions using as liquid additives: (a) chloroform, (b) acetonitrile, (c) acetone,
(d) ethanol and (e) N,N-dimethylformamide (DMF). The spectrum of the

reaction vessel is given in (a). Band positions are depicted in (e).
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Fig. 2 (a) Observed and calculated Raman spectra of participating species

with band positions and assignments. Raman scattering of the amine was
very weak in comparison to scattering of azide and amide. (b) Band shift
during LAG reaction with acetonitrile.

grinding was, in comparison, far more successful in driving the
amide formation (Fig. 1, Table 1). Except for chloroform which
had little effect, liquid additives dramatically increased the
reaction rate. This was especially true for LAG using DMF,
followed by ethanol, acetone and acetonitrile. As stated above,
all studied reactions proceeded along the same pathway, thus
allowing examination of the effect of additives on the mechano-
chemical process. Since LAG with chloroform resulted in no or
only minor reaction rate acceleration, while with other protic
and polar liquid additives significantly accelerated the reaction,
we conclude that the mere presence of the liquid to enhance
the molecular mobility was not enough to facilitate product
formation. This is also evident from the lack of a correlation

Table 1 Reaction times using various additives and their properties

Reaction time  Basicity =~ Dipole Relative

(min) (DN)* moment (D)  permittivity
LAG (liquid)
DMF 4 26.6 3.82 36.1
Ethanol 8 19.2 1.69 24.5
Acetone 10 17.0 2.88 20.7
Acetonitrile 16.5 14.1 3.92 38.0
Chloroform  30” — 1.15 4.81
No liquid 607 — — —
ILAG (ethanol, salt)
dabco® 6.5 -4 — —
NaOAc 7.2 — — —
NH,NO, 8 —d — —

“DN - donor number by Gutmann.?® * Reaction was not complete.
¢ dabco is not a salt but a molecular compound. ¢ We worked under the
assumption that dabco and NaOAc increased the basicity while ammonium
nitrate reduced the basicity relative to pure ethanol.
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Fig. 3 Correlation of reaction times and liquid basicity, expressed through
Gutmann's donor numbers,2® in LAG reactions.

between solubilities of participating species (Table S2 in the
ESIT) in each solvent and the corresponding reaction times.

However, we note that product formation was faster when
the liquid additive was more basic. This is clearly suggested
from the correlation of the time needed for reaction completion
and basicity of the liquid additive described using Gutmann’s
donor numbers*® (Table 1, Fig. 3). Such a correlation with
reaction times could not be established using liquid’s polarity,
represented by the molecule dipole moment, or its relative
permittivity (Table 1).

To corroborate this, simple salts were introduced in the reac-
tion mixture along with ethanol (Table S1 and Fig. S13-515 in the
ESIt). Resulting reaction conditions are termed ion- and liquid-
assisted grinding (ILAG) and may offer further possibilities of
reaction control.'®” With basic sodium acetate (10 mol% with
respect to reactants) added along with ethanol, the reaction was
accelerated relative to pure LAG with ethanol. If an even stronger
base like 1,4-diazabicyclo[2.2.2]octane (dabco) was used in an
analogous experiment, the reaction was even more accelerated. If
however, slightly acidic ammonium nitrate was added along with
ethanol, the reaction rate remained essentially the same. This
strongly supports the conclusion that this nucleophilic substitu-
tion reaction on a carbonyl group is base-catalysed and that proton
abstraction is an important step in the reaction’s mechanism.

In summary, we have employed in situ Raman spectroscopy
for uninterrupted, real-time monitoring of a mechanochemical
organic reaction. Nucleophilic substitution on the carbonyl
group was conducted under various LAG conditions which
revealed that the reaction is base-catalysed by the liquid addi-
tive. Such behaviour resembles acid/base catalysis as could be
expected for solution reactions and indicates the possibility of
reaction transfer to the liquid phase under LAG conditions.”**’
The presented results not only demonstrate high sensitivity
of organic mechanochemical reactions to additives, but also
provide a new entry for systematic understanding and control
of mechanochemical reactivity.
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