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Formation of a nanometer-thick water layer at
high humidity on a dynamic crystalline material
composed of multi-interactive molecules†

Yumi Yakiyama,‡a Gil Ryeong Lee,‡a Sung Yeon Kim,a Yoshitaka Matsushita,b

Yasushi Morita,c Moon Jeong Parkad and Masaki Kawano*a

Crystalline powders self-assembled from interactive discrete mole-

cules reversibly transformed from a porous structure to a 2D one

with a nanometer-thick H2O layer by hydration/dehydration. Multi-point

weak intermolecular interactions contributed to maintenance of each

phase. This structure transformation induced a humidity-dependent

ion conductivity change from insulator to 3.4 � 10�3 S cm�1.

Intermolecular interactions participate in emerging functions in
functional materials1 and biological systems.2 Especially, multi-
interactive interactions contribute to stabilizing key meta-stable
intermediates in biological processes, because the multiple inter-
actions can deepen the local minimum potential well to trap kinetic
states.3 Therefore, we aimed to implement multi-interactivity into a
ligand to achieve kinetically self-assembled networks.4 We designed
a multi-interactive ligand, tri(4-pyridyl)hexaazaphenalene anion
(TPHAP�), and succeeded in trapping meta-stable coordination
networks.5 In the process, we unexpectedly prepared crystalline
self-assembled materials composed of K+TPHAP� under highly
hydrated conditions. Here we report a 1.2 nm-thick H2O layer
formed of discrete molecules, and the dynamic structure
change revealed by X-ray powder diffraction (XRPD) analysis.6

The ion conductivity s of the hydrated material changed from
insulator to 3.4 � 10�3 S cm�1 depending on the amount of
intercalated H2O.

The TPHAP anion has a D3h symmetrical aromatic plane7

(Scheme 1) that can form p–p stacking interaction, and nine
nitrogen atoms that can form hydrogen bonds, coordination
bonds, or both.5 Such multi-interactivity of TPHAP enabled the
selective trapping of a kinetic network followed by surface-
mediated dynamic structure transformation.5a We also prepared
various coordination networks composed of Zn2+ ions and TPHAP
anions from the same crystallization set up by changing only
solvents or additives because of the multi-interactivity of TPHAP.5b,c

The interactive nature of TPHAP was also observed in a 1D-channel
structure of a K+TPHAP� single crystal 1. In the crystal, H2O mole-
cules were encapsulated by OH� � �N hydrogen bonds with the N atoms
on the TPHAP� skeleton (Fig. S1, ESI†). Indeed, the single crystal of
K+TPHAP� is highly hygroscopic: 1 g of powder of K+TPHAP� adsorbs
470 mL of H2O (at 25 1C, 30% RH) while the potassium salt of the
t-butyl group substituted hexaazaphenalene (HAP) anion does not

Scheme 1 Schematic model of structure transformation of K+TPHAP�

depending on the humidity.
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show any hygroscopic nature.7b K+TPHAP� powder retained its
crystallinity after hydration.

Therefore, we measured the XRPD pattern of fully-hydrated
powder 2 which was prepared by hydration of K+TPHAP� single
crystals 1 at 95% RH and 25 1C for 1 day (Fig. 1). The XRPD
pattern of 2 showed a drastic and irreversible change from
initial K+TPHAP� single crystalline powder 1 while maintaining
a surprisingly high crystallinity. We also identified how the
structure changed during drying. We gradually dried fully-
hydrated powder 2 by keeping it at 20% RH and 20 1C for
20 s, then quickly measured its XRPD pattern in an airtight cell
to avoid further drying during the measurement. This quick
drying operation was repeated three times. After the first 20 s,
the XRPD pattern was almost intact; the next 20 s of drying
induced drastic changes in the XRPD pattern, and a further
20 s of drying (total 1 min) produced a new phase close to the
final state, i.e., 1 day dried powder 3 (Fig. S2, ESI†). Notably,
the sharp powder pattern of 2 was recovered by rehydration
of 3. This hydration/dehydration process between 2 and 3 was
reversible.

To reveal the reversible structure transformation observed
during the hydration/dehydration process, we performed XRPD
structure analyses of fully-hydrated powder 2, 1 min dried
powder, and 1 day dried powder 3. The structures were deter-
mined by the simulated annealing method in DASH,8 followed
by Rietveld refinement using RIETAN-FP9 to refine the position
of each atom with soft bond-angle restraints for a TPHAP�

group. As a result, we revealed that 1.2 nm H2O layers form in
the fully-hydrated 2 (Scheme 1) and that 1D H2O channels form
in 3 by dehydration. Powder structure analysis of 1 min dried
powder revealed a severely disordered structure which was an
intermediate state before reaching the state of 1 day dried 3
(Fig. S2, ESI†). It should be noted that although the powder
patterns of the 1 min dried powder and 3 look very similar,

their unit cells are very different (1 min dried powder: a =
20.656(6) Å, b = 15.978(4) Å, c = 16.80(1) Å, b = 100.68(3)1, V =
5449(4) Å3, P2/a; 3: a = 20.90(1) Å, b = 15.93(1) Å, c = 9.711(5) Å,
b = 104.65(3)1, V = 3128(3) Å3, P2/a).

The powder analysis of 2 revealed four equally possible
models that have monoclinic P2/n systems that show good
agreement between the calculated and experimental XRPD
patterns in the final Rietveld refinement (Fig. S3, ESI†). Among
them, one (Fig. 2b) showed the best agreement with the
experimental data (Fig. 2a and b). Although the precise deter-
mination of disordered H2O and K+ positions was technically
difficult, every refinement result showed flat 2D-sheets
composed of K+TPHAP� dimer-like layers (Fig. 2c) forming
1.2 nm-thick H2O layers. These dimer-like layers are stabilized
by the intermolecular interactions between the N atoms of the
central HAP skeleton and the disordered K+ ions. These inter-
actions are strong enough to be detected by CSI-MS.5b Some
pyridine groups of TPHAP� are close to each other, but the
short contact can be explained by severe disorder. The amount
of H2O calculated from XRPD analysis is 31H2O molecules per
K+TPHAP� unit, which is close to the maximum value obtained
by direct weight measurement (12–28H2O molecules per
K+TPHAP� unit, Table S1, ESI†). Notably, other disordered K+

ions were dispersed in the 1.2 nm water layer. Therefore,
stabilization of this H2O layer is probably due to a large number
of H-bonding interactions between H2O molecules and TPHAP
skeletons at the boundary and K+ ions on the inner part of the
H2O layer. In addition, the whole structure is constructed as
alternating stacks of positively-charged large H2O layers and
TPHAP� dimer-like layers, which are composed of a negatively-
charged TPHAP sheet and a positively-charged K+ layer (Fig. 2d).
This electrically neutral arrangement contributes to stabilization
of the 2D layered stacking structure.

Fig. 1 Synchrotron XRPD pattern changes depending on the amount of
water in 1.

Fig. 2 XRPD analysis of fully-hydrated powder 2. (a) Experimental (red),
calculated (pale blue), and difference (blue) diffraction patterns of the
best matching model obtained by the final Rietveld refinement of 2. (b) The
best matching model having a 2D layered structure. Synchrotron X-ray
radiation l = 1.4639 Å. Cell parameter: a = 24.131(5) Å, b = 19.458(2) Å,
c = 16.672(4) Å, b = 122.52(2)1. (c) 2D-sheet composed of K+TPHAP� dimer-
like layers. (d) Schematic model of a charged stacking layer structure.
P: ‘‘positively charged layer’’; and N: ‘‘negatively charged layer’’. Color code:
C, gray; N, blue; K, purple; O of H2O, red.
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Pulsed-Field-Gradient 1H-NMR measurement of 2 strongly
supported the hypothesized formation of an H2O layer with a
liquid-like state (Fig. S4, ESI†). Solid state 1H-NMR measure-
ment of 1 (as control) and 2 revealed only one peak corres-
ponding to internal H2O at d = 5.1 and 4.4 ppm, respectively.
The peak corresponding to 1 was small and broad due to a
much smaller amount of H2O in 1 than in 2. Furthermore, the
large number of hydrogen bonds between H2O molecules and
the TPHAP� skeleton in 1 reduced the mobility of H2O.10 In
contrast, compared to 1, H2O in fully-hydrated powder 2 could
move more freely to give a sharper and larger signal. The
diffusion coefficient DH2O of water in 2 was obtained from the
plot of spin-echo intensity I/I0 = exp[�Dg2g2d2(D � d/3)] against
the gradient strength g,11 where I and I0 are the signal intensities
with each g and without g, respectively, and g is the gyromagnetic
ratio. Applied gradient strengths reached 800 G cm�1 while gra-
dient d and gradient delay D time values were 0.5 ms and 3.55 ms,
respectively. The obtained DH2O value was 1.0 � 10�9 m2 s�1,
which is close to the self-diffusion coefficient of pure H2O at rt
(ca. 2 � 10�9 m2 s�1).12 This quite high DH2O value indicates that
the diffusion speed of H2O molecules in 2 is similar to that
in bulk H2O.

The structural effect of dehydration on the 2D layered
structure was also revealed by the XRPD analysis of 1 day dried
powder 3 which showed the formation of a porous structure
having a monoclinic P2/a system with excellent agreement
between the calculated and experimental XRPD patterns in
the final Rietveld refinement (Fig. 3). In the crystal structure,
the ordered TPHAP�s also maintain dimer-like structures con-
nected by K+ ions and interact with each other by p–p stacking

to form a 2D layer (Fig. 3b and c). The 2D layers stack with the
shortest distance (Fig. 3d), followed by formation of 1D chan-
nels along the c axis with a size of ca. 12 Å � 16 Å (Fig. 3e). In
the XRPD analysis, we could model only two H2O molecules per
K+TPHAP� unit in the channel, although elemental analysis
indicated five H2O molecules per K+TPHAP� unit. Notably, the
1D channel is surrounded by N atoms on a HAP skeleton as
observed in a K+TPHAP� single crystal 1 in which K+ ions and
H2O molecules are less mobile than in 2. Therefore, the
significant mobility decrease of K+ ions and H2O was expected
as a result of the structural transformation from a 2D-layered
structure to a 1D-porous structure. This reduction is also
suggested by humidity-dependent IR spectra (Fig. S5, ESI†).
As the amount of absorbed H2O decreased, the peaks at
B1500–1600 cm�1 attributable to the CQN and CQC stretch-
ing modes of pyridine and the central skeleton of TPHAP�

showed clear red shifts: B10 cm�1 from the fully-hydrated
powder 2 to single crystal 1; 4–5 cm�1 from 2 to 1 day dried
powder 3. These peak shifts can be explained by enhancement
of Coulombic interaction between K+ and the anionic HAP
skeleton and by hydrogen bond formation between TPHAP�

and H2O.13 This discussion indicates that this dynamic struc-
ture transformation can make a significant contribution to the
ion conductivity of K+TPHAP� because the conductivity value
has a strong relationship with charge carrier mobility.14 There-
fore, we finally performed humidity-dependent ion conductivity
measurement and tried to interpret the relationship between
the structure and the conduction property.

The ion conductivity of K+TPHAP� single crystalline powder
1 was significantly correlated with the outer humidity. We
measured the ion conductivity of a compressed pellet of 1
(f 13 mm, thickness B0.2 mm) by ac impedance spectroscopy
under various conditions of humidity and temperature (ESI†).
The conductivity drastically changed from insulator at 20% RH
to 3.4 � 10�3 S cm�1 at 95% RH (25 1C, Fig. 4). Although a large
amount of H2O adsorption in the highly conductive state was
observed (Table S1, ESI†), the pellet of 1 remained soft and solid
after conductivity measurement (Fig. S6, ESI†). We unambiguously
confirmed that the highly-conductive state corresponds to 2 having
a 2D layered structure by XRPD measurement of the pellet sample
(Fig. S7, ESI†). In contrast, drying of the fully-hydrated pellet even
for several seconds reduced its conductivity value significantly.
This phenomenon reminded us of the quick structural trans-
formation of 2 to the dried state 3. We confirmed by XRPD

Fig. 3 XRPD analysis of 1 day dried powder 3. (a) Experimental (red),
calculated (pale blue), and difference (blue) diffraction patterns after the
Rietveld refinement. X-ray radiation l = 1.5406 Å. Cell parameter: a =
20.90(1) Å, b = 15.93(1) Å, c = 9.711(5) Å, b = 100.65(3)1. (b) 2D layered
structure formed by p–p stacking of dimer-like TPHAP�s (pale red rec-
tangles). Pale blue dotted circles: stacking position. (c) Dimer-like structure
composed of two K+TPHAP�s. Red lines: ionic bond between the N atom
and K+. (d) Stacking structure of 2D layered structures. Red and yellow
components represent layers. (e) 1D channel structure in 3. Color code: C,
gray; N, blue; K, purple; O of H2O, red. Fig. 4 Humidity dependence of the ionic conductivity s of 1 at 25 1C.
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analysis that the dried pellet corresponds to 3 which possesses
a porous structure (Fig. S6, ESI†). Because the system contains
no mobile proton (H+),15 the main charge carrier is very likely K+.
In fact, the K+-exchanged proton conducting polymer shows
s = B3.0 � 10�2 S cm�1 (fully-hydrated at 25 1C) which gives the
diffusion coefficient of K+ rather than of H+.16 These facts
indicate that the main carrier that contributes to ion conductivity
is a metal cation. From the above discussion, this drastic
conductivity change can be explained based on the changes of
the structure and the amount of water in the system. In the
hydrated state of 2, K+ can readily diffuse by weak van der Waals
interaction with H2O within the 1.2 nm H2O layer because the
diffusion rate of H2O is almost the same as that of bulk H2O. This
wide H2O layer also contributes to the smooth migration of K+ by
keeping away K+ from the surface of the TPHAP� layer. This
effective K+ migration supported by the fast diffusion of bulk-like
H2O realized the high conductivity under humid conditions.
Oppositely, the structure transformation of 2 to porous 3 by
drying causes a significant decrease in the mobility of K+ ions and
H2O; the large amount of H2O removal involving this structure
transformation increases the contribution of strong H-bonds
between N atoms on the TPHAP skeleton and K+ or H2O com-
pared to that in 2. Therefore, the significant conductivity decrease
by dehydration is attributed to the decreased mobility of K+ and
H2O due to structural transformation from the 2D-layered struc-
ture to the interactive 1D-porous structure.

We revealed formation of a nanometer-thick H2O layer on a
multi-interactive ligand, K+TPHAP�, by XRPD analysis. We also
found reversible shrinkage/expansion of the hydrated powder
by dehydration/hydration. This structural transformation corre-
sponded to a drastic change of ion conductivity from insulator to
3.4� 10�3 S cm�1. Our material may provide better understanding
of the correlation between the structure and the physical proper-
ties of H2O- or humidity-triggered functional materials.
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W. Pisula, J. S. Gutmann, M. Klapper and K. Müllen, Angew. Chem.,
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