

ChemComm

Chemical Communications

www.rsc.org/chemcomm

ISSN 1359-7345

COMMUNICATION
Peter Portius *et al.*
Homoleptic low-valent polyazides of group 14 elements

 Cite this: *Chem. Commun.*, 2015, 51, 7435

 Received 11th January 2015,
 Accepted 19th February 2015

DOI: 10.1039/c5cc00259a

www.rsc.org/chemcomm

First examples of coordinatively unsaturated, homoleptic azido complexes of low-valent group 14 elements are reported. A simple strategy uses low-valent precursors, ionic azide transfer reagents and bulky cations to obtain salt-like compounds containing $E(N_3)_3^-$ of $Ge(II)/Sn(II)$ which are fully characterised, including XRD. Remarkably, these compounds are kinetically stable at r.t. and isolable in sub-gram quantities.

Binary azides are known for all elements in group 14 and exist as covalent $E(N_3)_4$ compounds ($E = C, Si$),² as hyper-coordinate $E(N_3)_6^{2-}$ complexes ($Si-Pb$)¹ and as $E(N_3)_2$ compounds (Sn, Pb).^{5c} However, no low-valent, homoleptic group 14 complex has yet been reported. All known binary p-block azides are highly endothermic primary explosives most of which possess exceedingly high electrostatic and friction sensitivities and a propensity to release N_2 . As covalent, N-rich compounds, their isolation is generally challenging and experimental characterisation is limited.⁵ In contrast, stability-inducing effects of hyper-coordination and of bulky, weakly coordinating counter ions (WCC)⁶ allow many salt-like homoleptic polyazides to be synthesised in bulk and characterised fully, including *via* X-ray crystallography and IR spectroscopy,^{5a} owing to azide groups (N_3) giving rise to intense bands in the mid-IR region. It has been shown that azide anions (N_3^-) are able to coordinate to low-valent centres in compounds such as $E(L)(N_3)$ and $E(L')(N_3)_2$, $E = Ge, Sn$.^{3,4} On the other hand, the stability of low valent molecules, *e.g.* carbenes, silylenes, germylenes, stannylenes,⁷ increases by saturating the electron deficient centre with sterically demanding, electron donating groups, such as N-based $C(N^iPr_2)_2(N^iPr_2)$ and $HC\{CMe\}(2,6-iPr_2C_6H_3N)_2$ ligands.^{7a,d} This insight has led to tri- and tetracoordinate complexes bearing uni-, bi- and terdentate ligands, *e.g.* $E(NHC)X_2$, $Ge(NHC)_2Cl^+$ and $Ge\{HB(Me_2pz)_3\}Cl$, $E = Si, Ge$; $X = Cl-I, N_3$; $NHC = N$ -heterocyclic carbene.^{4a,8} Exploitation of these concepts has permitted the

Homoleptic low-valent polyazides of group 14 elements†

Benjamin Peerless, Theo Keane, Anthony J. H. M. Meijer and Peter Portius*

Scheme 1 Synthesis of azido(chloro) germanates (1a-c, 2b) and stannates (3a-c, 4b, 4c).

synthesis and characterisation of the first low-valent and homoleptic Ge and Sn azides described in this paper.

Compounds already containing WCC ions and low-valent germanium, $AsPh_4GeCl_3$, PPh_4GeCl_3 ,⁹ $PPNGeCl_3$ (ref. 10) (1a-c), were prepared in high yield from the $GeCl_2(diox)$ adduct¹⁸ and WCC chlorides¹⁹ (Scheme 1, route A).^{†,11} These colourless, moderately air sensitive crystalline trichlorogermanates react readily with THF suspensions of NaN_3 . *In situ* IR spectra of the reaction (2b) show bands due to asymmetric NNN stretches, $\nu_{as}(N_3)$, typical for coordinated N_3 groups at $\bar{\nu}_{max}(\text{cm}^{-1}) = 2092$ and 2058, which have grown fully after a reaction time of 1 h. Exposure of the reaction solution to fresh NaN_3 results in no further spectral change. From the solution, a highly air sensitive, colourless solid (3b) was precipitated, the IR spectrum of which exhibits the finger print of PPh_4^+ and the $\nu_{as}(N_3)$ bands. The $\nu_{as}(N_3)$ frequencies lie within the range of those reported previously for semi-covalent germanium(II) azides (2027–2077 cm^{-1} , Fig. 1), below those of Ge(IV) azides ($Ge(N_3)_4$, $PPN_2Ge(N_3)_6$, 5c)^{1b} and above that of the N_3^- ion. While solution 1H , ^{13}C and ^{31}P NMR spectra of 3b show signals of the WCC cations only, two peaks are observed in the ^{14}N NMR spectra at –263 and –207 ppm next to the solvent (–136 ppm) with FWHM line widths of 552, 147 and 24 Hz, respectively. These characteristics are typical for the N_α and N_γ nuclei of coordinated N_3 groups while the signal for N_β is obscured by solvent.^{5a}

Alternative routes to 3 and 4 use WCC azides as azide transfer reagents. $GeCl_2(diox)$ reacts directly also with $(PPN)N_3$

Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK.
 E-mail: p.portius@sheffield.ac.uk

† Electronic supplementary information (ESI) available: Spectra, thermograms, full crystallographic data and computational details. CCDC 1030031 and 1030032. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5cc00259a

Fig. 1 IR spectra of $\text{Ge}(\text{N}_3)_3^-$ (black), $\text{Sn}(\text{N}_3)_3^-$ (red) in THF; $\nu_{\text{as}}(\text{N}_3)$ frequency ranges of related azides, $\text{Ge}(\text{N}_3)_4$,¹² HN_3 ,¹⁰ $\text{Ge}(\text{N}_3)_6^{2-}$,^{1b} $\text{L}_1\text{Ge}(\text{II})$ azides $\text{L}_1 = \{\text{Me}_2(\text{BuO})\text{Si}(\text{N}_3)_2\}$,^{4c} $\text{L}_2 = {}^n\text{Pr}_2\text{ATI}$, Mes_2DAP ,^{4f,g} $(\text{NHC})_2$,³ $\text{L}_3 = \text{HB}(\text{R}_2\text{pz})_3$, $(\text{C}_5\text{R}_5)\text{Co}(\text{P}(\text{O})(\text{OEt})_2)_3$,^{4a,e,10} $(2,6\text{-}{}^i\text{Pr}_2\text{C}_6\text{H}_3)_2\text{C}_2\text{H}_2\text{N}_2\text{CGe}(\text{N}_3)_2$ (ref. 8d) and N_3^- ,^{4e} are indicated in the top bar; see Table S1 (ESI†) for exact values.

in MeCN solution (Scheme 1, route B). Intriguingly, equimolar reactant mixtures produce only one $\nu_{\text{as}}(\text{N}_3)$ band (2078 cm^{-1}); increasing the stoichiometric ratio (1:2) results in two additional bands (2088 , 2066 cm^{-1}), while at ratios of 1:9 and above only bands at 2095 , 2064 cm^{-1} and that of N_3^- were detected. These observations are interpreted tentatively in terms of the formation of mono, di- and triazido complexes.

Tin dichloride was subjected to a similar treatment as GeCl_2 (diox) using $\text{WCC}(\text{N}_3)$ and NaN_3 ; however, complete Cl/N_3 exchange requires a larger excess of azide transfer reagent. Similar observations as with **3b** were made, including the intermediate rise and decay of a $\nu_{\text{as}}(\text{N}_3)$ band (2064 cm^{-1}) and the ultimate rise of bands of the final product **4b** (2081 , 2050 cm^{-1}) in the expected region between $\text{Sn}(\text{N}_3)_6^{2-}$ and charge-neutral $\text{Sn}(\text{II})$ monoazides (Table S1, ESI†), and ^{14}N resonances at -218.5 ppm ($\text{FWHM} \approx 32 \text{ Hz}$) and -260.0 ppm (166 Hz). The ^{14}N NMR signals of **3b** and **4b**, in particular those assigned to N_α , are deshielded in comparison to those of $\text{E}(\text{N}_3)_6^{2-}$ dianions.^{1b,5a,17} **3b** and **4b** are soluble in MeCN, THF and CH_2Cl_2 .

The synthetic strategy was extended to AsPh_4^+ and PPN^+ counter ions affording compounds **3a,c** and **4c** (Scheme 1A) which all have spectroscopic properties analogous to those of **3b** and **4b** described already. The combined analytical evidence, including the absence of chlorine in **3b** and the ^{119}Sn NMR signal of **4b** ($\delta = -220 \text{ ppm}$, see ESI†) point to the formation of anionic complexes in compounds of the type $(\text{WCC})\text{E}(\text{N}_3)_3$ as the final products of Cl/N_3 exchange.

Further insight into the nature of intermediates and products of the exchange reactions was obtained from quantum chemical calculations²⁰ on the $\text{ECl}_{(3-n)}(\text{N}_3)_n^-$ species, which were performed at the B3LYP/cc-pVTZ level²¹ with effective core potentials²² for Ge and Sn. Solvent (THF) was described using PCM.²³ The calculations found conformational isomerism resulting in several minima for $n = 1, 2, 3$, that were close in energy. These conformers are related by rotation of ligands. Since rotational barriers of sterically unhindered N_3 groups are

small (*c.f.* GeH_3N_3 , $\sim 1 \text{ kJ mol}^{-1}$),¹³ fast interconversion involves all significantly thermally populated rotamers above the minimum energy conformation ($E_{\text{rel}} < 5.8 \text{ kJ mol}^{-1}$). This process is likely to result in averaged absorption bands weighted by the rotamer population (rotamers may have more than one degenerate, absolute spatial configuration, and inter-rotamer vibrational energy transfer is unaccounted for). Taking account of the theoretical equilibrium mole fractions, absorption intensities and scaled vibrational frequencies,²⁴ approximate average frequencies of the in-phase and out-of-phase $\nu_{\text{as}}(\text{N}_3)$ stretches and the qualitative intensity ratios could be determined (Table S1, ESI†), which match those observed (*e.g.* $\text{Ge}(\text{N}_3)_3^-$, 2059 , 2091 *vs.* 2060 , 2093 ; $\text{Sn}(\text{N}_3)_3^-$, 2051 , 2080 *vs.* 2050 , 2078 cm^{-1}). This approach leads to the assignment of the observed bands of intermediates to $\text{GeCl}_2(\text{N}_3)^-$, $\text{GeCl}(\text{N}_3)_2^-$, $\text{SnCl}_2(\text{N}_3)^-$ and $\text{SnCl}(\text{N}_3)_2^-$. Calculations using the Gauge-Independent Atomic Orbital method²⁵ verify the assignment of ^{14}N NMR data (see ESI†).

Crystals of azido germanates were grown from THF- Et_2O (1:10) solutions at -18°C (**3b**, needles) or by diffusion of Et_2O into concentrated THF solutions (**3c**).^{§¶} According to single crystal X-ray diffraction studies, **3b** consists of PPh_4^+ and $\text{Ge}(\text{N}_3)_3^-$ ions (Fig. 2). The shortest interionic $\text{Ge}\cdots\text{N}$ and $\text{N}\cdots\text{N}$ distances were found to be 4.13 and 5.07 \AA , respectively (Fig. 4, left), hence, covalent $\{\{\text{Ge}(\text{N}_3)_3^-\}\cdots\{\{\text{Ge}(\text{N}_3)_3^-\}\}$ interactions are absent (Fig. 3). Germanium is coordinated by three, essentially linear N_3 ligands and occupies the apical position in a trigonal-pyramidal $\text{Ge}[\text{N}]_3$ framework. The ligands are bound in the fashion typical of covalent azides and adopt $\text{Ge}-\text{N}_\alpha-\text{N}_\beta$ angles between 116° and 121° . All inter-ligand angles are close to 90° which indicates stereochemical inactivity of the lone electron pair at germanium.¹⁴

This structural feature has been found in the valence isoelectronic complexes of $\text{Ge}_2(\mu\text{-pz}^*)_3^+ \text{GeCl}_3^-$ (ref. 11f) and pilocarpine-trichlorogeranate hemihydrate.^{11g} The $\text{Ge}-\text{N}_\alpha$ bonds of **3b** are shorter than those of tetracoordinate $\text{Ge}(\text{II})$ azides $2.088(6)$ – $2.094(7) \text{ \AA}$ (Fig. 1), longer than those of the homoleptic $\text{Ge}(\text{IV})$ azide $\text{PPN}_2\text{Ge}(\text{N}_3)_6$ (**5c**, Table S1, ESI†) and rather within the range of previously investigated, tricoordinate $\text{Ge}(\text{II})$ azides

Fig. 2 Thermal ellipsoid plot (50%) of $\text{Ge}(\text{N}_3)_3^-$ in the crystal of $\text{PPh}_4\text{Ge}(\text{N}_3)_3$ (**3b**). Bond lengths [\AA] Ge1-N7 $1.984(2)$, Ge1-N1 $1.988(3)$, Ge1-N4 $2.011(3)$, N1-N2 $1.213(3)$, N2-N3 $1.148(3)$, N4-N5 $1.209(3)$, N5-N6 $1.142(3)$, N7-N8 $1.206(3)$, N8-N9 $1.140(3)$, angles [$^\circ$] N7-Ge1-N1 $93.59(10)$, N7-Ge1-N4 $94.29(10)$, N1-Ge1-N4 $91.05(11)$, N2-N1-Ge1 $116.4(2)$, N5-N4-Ge1 $118.7(2)$, N8-N7-Ge1 $121.3(2)$.

Fig. 3 Thermal ellipsoid plot (50%) of $\{Sn_2(N_3)_6\}^{2-}$ in crystals of $PPh_4Sn(N_3)_3$ (**4b**). Bond lengths [Å] Sn–N1 2.262(3), Sn–N4 2.193(3), Sn–N7 2.207(3), 2.674(3), N1–N2 1.203(4), N2–N3 1.148(5), N4–N5 1.200(5), N5–N6 1.143(5), N7–N8 1.185(5), 1.193(5), N8–N9 1.157(6), 1.168(6) Sn⁺–N6 3.567(4), angles [°] N1–Sn–N4 88.35(12), N4–Sn–N7 89.14(13), N1–Sn–N7 88.59(12), N2–N1–Sn 123.6(3), N5–N4–Sn 119.4(2), N8–N7–Sn 128.2(9), 120.2(8), N7–Sn–N7 68.32(16), Sn–N7–Sn 111.68(18).

Fig. 4 Packing diagrams of $PPh_4Ge(N_3)_3$ (**3b**, left) and $PPh_4Sn(N_3)_3$ (**4b**, right); H (bright grey), C (dark grey), N (light blue), P (orange), Ge and Sn (turquoise).

Table 1 Bond lengths $D/\text{\AA}$ in the salt-like homoleptic azides of the type $(WCC)^+{}_n[E(N_3)_3n]^{n-}$, E = Ge, Sn; $n = 1$, WCC = PPh_4^+ ; $n = 2$, WCC = $N(PPh_3)_2^+$

E, n	$E-N_\alpha$	$N_\alpha-N_\beta$	$N_\beta-N_\gamma$	ΔNN_{av}^a
Ge, 1	1.984(3)–2.011(2)	1.206(4)–1.213(4)	1.140(4)–1.148(4)	6.6(5) ^b ^c
Ge, 2	1.969(2)–1.980(3)	1.210(4)–1.214(3)	1.143(3)–1.151(3)	6.5(4) ^d
Sn, 1	2.193(3)–2.262(3)	1.189(6)–1.203(4)	1.143(5)–1.163(6)	4.6(17) ^c
Sn, 2	2.117(3)–2.134(2)	1.182(3)–1.213(3)	1.111(4)–1.148(3)	5.7(10) ^e

^a $\Delta NN = \frac{1}{n} \sum_{i=1}^n [d(N_\alpha - N_\beta)_i - d(N_\beta - N_\gamma)_i]$, $s = \left[\frac{1}{n-1} \sum_{i=1}^n (\Delta NN - \Delta NN_{\text{av}})^2 \right]^{0.5}$ in parentheses. ^b $s \ll \sigma$, error estimated by $\sigma = \left[\sum_{i=1}^n \left(\frac{\sigma_i}{N} \right)^2 \right]^{0.5}$. ^c This work. ^d Ref. 1b. ^e Ref. 15.

(1.969–2.047(2) Å, Table 1). All other bond lengths and angles are close to those of **5c** (Table 1). The crystallographic structure of $Ge(N_3)_3^-$ is consistent with one of the geometries predicted by DFT (*vide supra*).

Single crystalline needles of **4b** were obtained and investigated with the methods used for **3b**.¹ The asymmetric unit of

4b also contains a $E(N_3)_3^-$ moiety; however, the packing is at variance with **3b**, which allows $Sn(N_3)_3^-$ to interact *via* two long $E \cdots N_\alpha$ bonds and form $\{Sn(N_3)_3\}^{2-}$ dimers (Fig. 3). The interaction involves asymmetric $\mu_{1,1}-N_3$ bridges with short (2.207(3) Å) and long (2.674(3) Å) Sn–N_α bonds, the latter being considerably shorter than the sum of the van der Waals radii (3.72 Å).¹⁶ Weak intermolecular interactions have been observed previously between neutral $Sn(^nPr_2ATI)N_3$ complexes (*vide supra*),^{4b} where a slightly longer Sn–N_α bond (2.87 Å) was found. The sum of bond angles involving the bridging N_α indicates planarity and effective sp^2 hybridisation. As in the crystal of **3b**, the primary E(II)–N_α bonds are significantly longer (2.193(3)–2.262(3) Å) than those found in the homoleptic E(IV) azide **6** (2.125 Å).¹⁵ The potential for dimerisation was studied by DFT using the geometry of $\{E(N_3)_2(\mu_{1,1}-N_3)\}^{2-}$ in crystalline **4b** as a starting point. Optimisation results in separate anions devoid of covalent interionic interactions in the case of $Ge(N_3)_3^-$, whereas a dimeric structure was found for $Sn(N_3)_3^-$ that resembles the molecular structure in the crystal. Estimates of the basis set superposition error for the solution phase were obtained from BSSE calculations²⁶ in the gas phase. After BSSE correction, $\{Sn(N_3)_2(\mu_{1,1}-N_3)\}^{2-}$ was found to be at least 4 kcal mol⁻¹ less stable than two monomers, rendering the existence of a dimer in solution highly unlikely.

According to differential scanning calorimetry measurements (Fig. S11 and S12, ESI[†]), compound **3b** decomposes in two exothermic processes with ($\Delta H = -270$ and -467 J g^{-1}).^{||} Remarkably, step 1 occurs at temperatures ($T_{\text{on}}^{\text{ex1}} = 99$ °C) that are drastically below the decomposition onset of the related, hypercoordinate azide **5c** ($T_{\text{on}}^{\text{ex1}} = 256$ °C),^{1b} whereas step 2 sets in at $T_{\text{p}}^{\text{ex2}} = 310$ °C, which is nearly identical with the temperature found in **5c** (312 °C).^{**} Furthermore, the molar enthalpies of step 2 (−251 vs. -482 kJ mol^{-1}) scale approximately with the complex charge; however, step 1 releases much less energy than expected (145 kJ mol⁻¹, **3b** vs. 705 kJ mol⁻¹, **5c**). This phenomenon is still under investigation. Further experiments show that heating of **3b** at 150 °C produces PPh_4N_3 , which suggests that the release of N_3^- initiates the decomposition of $Ge(N_3)_3^-$. The tin homologue **4b** melts at $T_{\text{on}} = 115$ °C and decays at 215 °C and 308 °C and thus behaves as expected relative to **6c**.¹⁵ No sensitivity was noted during preparation and analysis of compounds **3b** and **4b** on the stated reaction scale. The material remains unchanged when struck by a hammer. Upon lighting up, it burns rapidly with an orange flame leaving black residues.

In solution, $Ge(N_3)_3^-$ and $Sn(N_3)_3^-$ react with hydrazoic acid leading to a precipitate with the IR $\nu_{\text{as}}(N_3)$ absorptions characteristic for $Ge(N_3)_6^{2-}$ and $Sn(N_3)_6^{2-}$ complexes, respectively,

Scheme 2 Oxidation of the triazido complexes **3b** and **5b**.

which can be verified by comparison with spectra of the fully characterized salts **5c**, **6c** (Scheme 2, Fig. S13 and S14, ESI†).

The first low-valent homoleptic azido complexes of group 14 have been synthesized and fully characterised. The preparative approach to salt-like compounds containing these complexes has been demonstrated on a 0.2–0.7 g scale for a range of weakly coordinating cations and involves chloro(azido) species, $\text{ECl}_x(\text{N}_3)_y^-$. Unlike their hypercoordinate $\text{E}(\text{N}_3)_6^{2-}$ analogues and despite the presence of innocent cations, the new class of compounds is highly reactive, exhibiting low thermal stability and a propensity to oxidation. Crystallographic analysis revealed that in the solid state, $\text{E}(\text{N}_3)_3^-$ complexes of group 14 may dimerise *via* azido ligand bridges. Neither of the low-valent coordination centres exhibits a stereochemically active lone electron pair. DFT calculations correctly predict the dimerisation and suggest furthermore that the dimers are unstable in polar solvents.

The authors thank the EPSRC (EP/E054978/1), the University of Sheffield and Humboldt-Universität zu Berlin for support and Prof. A. C. Filippou for advice.

Notes and references

‡ GeCl_3^- (ref. 9 and 11) and SnCl_3^- salts (ref. 11c and *e–g*) with various organic counter ions have been reported previously.

§ All attempts to crystallize compound **3a** have been futile.

¶ Crystallographic data: **3b**, CCDC 1030032, $\text{C}_{24}\text{H}_{20}\text{GeN}_9\text{P}$, 538.07 g mol⁻¹, $P\bar{1}$, $a = 7.7712(2)$ Å, $b = 11.4711(4)$ Å, $c = 14.2003(4)$ Å, $\alpha = 93.278(2)^\circ$, $\beta = 99.357(2)^\circ$, $\gamma = 100.865(2)^\circ$, $Z = 2$, $V = 1221.59(6)$ Å³, $D_c = 1.463$ g cm⁻³, $T = 120(2)$ K, $F(000) = 548$, $R_1 = 0.0376$ (316 param.), $wR_2 = 0.0807$, GOOF = 1.090. **3c**, $P\bar{1}$, $a = 10.7640(11)$ Å, $b = 12.732(2)$ Å, $c = 25.713(3)$ Å, $\alpha = \gamma = 90^\circ$, $\beta = 100.682(12)^\circ$, $D_c = 1.414$ g cm⁻³, $T = 180(2)$ K, extensive disorder of $\text{Ge}(\text{N}_3)_3^-$ part (see ESI† and ref. 10). **4b**, CCDC 1030031, $\text{C}_{24}\text{H}_{20}\text{N}_9\text{PSn}$, $M = 584.15$ g mol⁻¹, $P\bar{1}$, $a = 10.7560(6)$ Å, $b = 11.0605(6)$ Å, $c = 12.3540(7)$ Å, $\alpha = 91.668(4)^\circ$, $\beta = 108.414(4)^\circ$, $\gamma = 116.545(3)^\circ$, $Z = 2$, $V = 1222.11(12)$ Å³, $D_c = 1.587$ g cm⁻³, $T = 100(2)$ K, $F(000) = 584$, $R_1 = 0.0521$ (334 param.), $wR_2 = 0.1020$, GOOF = 1.053.

|| Estimated error approx. $\pm 10\%$.

** This step is assigned tentatively to the thermolysis of $\text{PPN}(\text{N}_3)_3$ and $\text{PPh}_4(\text{N}_3)_3$ since enthalpies and onset temperatures are comparable with those of genuine samples of these salts: PPh_4N_3 , mp = 250 °C, $T_{\text{on}}^{\text{ex}} = 291$ °C, ref. 15.

- (a) A. C. Filippou, P. Portius and G. Schnakenburg, *J. Am. Chem. Soc.*, 2002, **124**, 12396; (b) A. C. Filippou, P. Portius, D. U. Neumann and K.-D. Wehrstedt, *Angew. Chem., Int. Ed.*, 2000, **39**, 4333; (c) D. Fenske, H. D. Dörner and K. Dehnicke, *Z. Naturforsch., B: J. Chem. Sci.*, 1983, **38**, 1301; (d) K. Polborn, E. Leidl and W. Beck, *Z. Naturforsch., B: J. Chem. Sci.*, 1988, **43**, 1206.
- (a) K. Banert, Y.-H. Joo, T. Rüffer, B. Walfort and H. Lang, *Angew. Chem., Int. Ed.*, 2007, **46**, 1168; (b) P. Portius, A. C. Filippou, G. Schnakenburg, M. Davis and K.-D. Wehrstedt, *Angew. Chem., Int. Ed.*, 2010, **49**, 8013.
- Y. Xiong, S. Yao and M. Driess, *Chem. Commun.*, 2014, **50**, 418.
- (a) A. C. Filippou, P. Portius and G. Kociok-Köhn, *Chem. Commun.*, 1998, 2327; (b) H. V. R. Dias and A. E. Ayers, *Polyhedron*, 2002, **21**, 611; (c) M. Veith and A. Rammo, *Z. Anorg. Allg. Chem.*, 2001, **627**, 662; (d) V. N. Khrustalev, I. A. Portnyagin, N. N. Zemlyansky, I. V. Borisova, Y. A. Ustyryuk and M. Y. Antipin, *J. Organomet. Chem.*, 2005, **690**, 1056; (e) A. C. Filippou, P. Portius, G. Kociok-Köhn and V. Albrecht, *Dalton Trans.*, 2000, 1759; (f) A. E. Ayers, D. S. Marynick

- (a) P. Portius and M. Davis, *Coord. Chem. Rev.*, 2013, **257**, 1011; (b) W. P. Fehlhammer and W. Beck, *Z. Anorg. Allg. Chem.*, 2013, **639**, 1053, ref. cited; (c) T. Müller, F. Karau, W. Schnick and F. Kraus, *Angew. Chem., Int. Ed.*, 2014, **53**, 13695.
- (a) C. J. Price, H.-Y. Chen, L. M. Launer and S. A. Miller, *Angew. Chem., Int. Ed.*, 2009, **48**, 956; (b) I. Krossing and A. Reisinger, *Coord. Chem. Rev.*, 2006, **250**, 2721.
- (a) M. Asay, C. Jones and M. Driess, *Chem. Rev.*, 2011, **111**, 354; (b) S. Nagendran and H. W. Roesky, *Organometallics*, 2008, **27**, 457; (c) Y. Mizuhata, T. Sasamori and N. Tokitoh, *Chem. Rev.*, 2009, **109**, 3479; (d) B. Blom, M. Stoelzel and M. Driess, *Chem. – Eur. J.*, 2013, **19**, 40; (e) M. Mück, K. Junold, J. A. Baus, C. Burschka and R. Tacke, *Eur. J. Inorg. Chem.*, 2013, 5821.
- (a) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn and D. Stalke, *Angew. Chem., Int. Ed.*, 2009, **48**, 5683; (b) A. C. Filippou, O. Chernov and G. Schnakenburg, *Angew. Chem., Int. Ed.*, 2009, **48**, 5687; (c) Y. Xiong, S. Yao and M. Driess, *Chem. Commun.*, 2014, **50**, 418; (d) B. Lyhs, D. Bläser, C. Wölper, S. Schulz, R. Haack and G. Jansen, *Inorg. Chem.*, 2013, **52**, 7236.
- U. M. Tripathi, G. L. Wegner, A. Schier, A. Jockisch and H. Schmidbaur, *Z. Naturforsch., B: J. Chem. Sci.*, 1998, **53**, 939.
- P. Portius, PhD thesis, Humboldt-Universität zu Berlin Weißensee Verlag, Berlin, 2002, ISBN 3-934479-63-4.
- (a) X. Tian, T. Pape and N. W. Mitzel, *Z. Naturforsch., B: J. Chem. Sci.*, 2004, **59**, 1524; (b) S. Nogai, A. Schriewer and H. Schmidbaur, *Dalton Trans.*, 2003, 3165; (c) G. Kociok-Köhn, J. G. Winter and A. C. Filippou, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, 1999, **55**, 351; (d) G. L. Wegner, A. Jockisch and H. Schmidbaur, *Z. Naturforsch., B: J. Chem. Sci.*, 1998, **53**, 430; (e) M. Karnop, W. W. du Mont, P. G. Jones and J. Jeske, *Chem. Ber.*, 1997, **130**, 1611; (f) A. Steiner and D. Stalke, *Inorg. Chem.*, 1995, **34**, 4846; (g) S. Fregerslev and S. E. Rasmussen, *Acta Chem. Scand.*, 1968, **22**, 2541.
- J. E. Drake and R. T. Hemmings, *Can. J. Chem.*, 1973, **51**, 302.
- D. T. Durig, M. S. Durig and J. R. Durig, *Spectrochim. Acta, Part A*, 2005, **61**, 1287.
- (a) D.-K. Seo, N. Gupta, M.-H. Whangbo, H. Hillebrecht and G. Thiele, *Inorg. Chem.*, 1998, **37**, 407; (b) U. Schwarz, H. Hillebrecht, M. Kaupp, K. Syassen and H.-G. V. Schnerring, *J. Solid State Chem.*, 1995, **118**, 20.
- R. Campbell, B. Peerless and P. Portius, unpublished results.
- A. Bondi, *J. Phys. Chem.*, 1964, **68**, 441.
- (a) W. Beck, W. Becker, K. F. Chew, W. Derbyshire, N. Logan, D. M. Revitt and D. B. Sowerby, *Dalton Trans.*, 1972, 245; (b) W. Beck, W. P. Fehlhammer, P. Pöllmann, E. Schuierer and K. Feldl, *Chem. Ber.*, 1967, **100**, 2335.
- (a) J. Kouvetsakis, A. Haaland, D. J. Shorokhov, H. V. Volden, G. V. Girichev, V. I. Sokolov and P. Matsunaga, *J. Am. Chem. Soc.*, 1998, **120**, 6738; (b) S. P. Kolesnikov, I. S. Rogozhin and O. M. Nefedov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1974, **23**, 2379.
- (a) V. Y. Kukushkin and A. I. Moiseev, *Inorg. Chim. Acta*, 1990, **176**, 79; (b) A. Martinsen and J. Songstad, *Acta Chem. Scand., Ser. A*, 1977, **31**, 645.
- M. J. Frisch, *et al.*, *Gaussian 09, Revision D.01*, Gaussian, Inc., Wallingford, CT, 2013.
- (a) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648; (b) C. Lee, W. Yang and R. Parr, *Phys. Rev. B*, 1988, **37**, 785; (c) T. H. Dunning Jr., *J. Chem. Phys.*, 1989, **90**, 1007.
- K. A. Peterson, *J. Chem. Phys.*, 2003, **119**, 11099.
- (a) B. Mennucci and J. Tomasi, *J. Chem. Phys.*, 1997, **106**, 5151; (b) M. Cossi, V. Barone, B. Mennucci and J. Tomasi, *Chem. Phys. Lett.*, 1998, **286**, 253 and references therein.
- K. K. Irikura, R. D. Johnson and R. N. Kacker, *J. Phys. Chem. A*, 2005, **109**, 8430.
- R. Ditchfield, *Mol. Phys.*, 1974, **27**, 789.
- S. F. Boys and F. Bernardi, *Mol. Phys.*, 1970, **19**, 553.

