ChemComm

Chemical Communications www.rsc.org/chemcomm

ISSN 1359-7345

COMMUNICATION Peter Portius *et al.* Homoleptic low-valent polyazides of group 14 elements

ChemComm

COMMUNICATION

View Article Online View Journal | View Issue

Open Access Article. Published on 23 February 2015. Downloaded on 7/19/2025 11:07:31 PM.

into updates

Cite this: *Chem. Commun.,* 2015, **51**, 7435

Received 11th January 2015, Accepted 19th February 2015

DOI: 10.1039/c5cc00259a

CrossMark

www.rsc.org/chemcomm

Homoleptic low-valent polyazides of group 14 elements[†]

Benjamin Peerless, Theo Keane, Anthony J. H. M. Meijer and Peter Portius*

First examples of coordinatively unsaturated, homoleptic azido complexes of low-valent group 14 elements are reported. A simple strategy uses low-valent precursors, ionic azide transfer reagents and bulky cations to obtain salt-like compounds containing $E(N_3)_3^-$ of Ge(n)/Sn(n) which are fully characterised, including XRD. Remarkably, these compounds are kinetically stable at r.t. and isolable in sub-gram quantities.

Binary azides are known for all elements in group 14 and exist as covalent $E(N_3)_4$ compounds (E = C, Si),² as hyper-coordinate $E(N_3)_6^{2-1}$ complexes $(Si-Pb)^1$ and as $E(N_3)_2$ compounds (Sn, Pb).^{5c} However, no low-valent, homoleptic group 14 complex has yet been reported. All known binary p-block azides are highly endothermic primary explosives most of which possess exceedingly high electrostatic and friction sensitivities and a propensity to release N2. As covalent, N-rich compounds, their isolation is generally challenging and experimental characterisation is limited.⁵ In contrast, stability-inducing effects of hyper-coordination and of bulky, weakly coordinating counter ions (WCC)⁶ allow many salt-like homoleptic polyazides to be synthesised in bulk and characterised fully, including via X-ray crystallography and IR spectroscopy, 5^{5a} owing to azide groups (N₃) giving rise to intense bands in the mid-IR region. It has been shown that azide anions (N_3^-) are able to coordinate to low-valent centres in compounds such as $E(L)(N_3)$ and $E(L')(N_3)_2$, E = Ge, Sn.^{3,4} On the other hand, the stability of low valent molecules, e.g. carbenes, silylenes, germylenes, stannylenes,⁷ increases by saturating the electron deficient centre with sterically demanding, electron donating groups, such as N-based $C(N^{i}Pr)_{2}(N^{i}Pr_{2})$ and $HC\{(CMe)(2,6^{-i}Pr_{2}C_{6}H_{3}N)\}_{2}$ ligands.^{7a,d} This insight has led to tri- and tetracoordinate complexes bearing uni-, bi- and terdentate ligands, e.g. E(NHC)X₂, Ge(NHC)₂Cl⁺ and Ge{HB(Me₂pz)₃}Cl, E = Si, Ge; X = Cl-I, N₃; NHC = N-heterocyclic carbene.4a,8 Exploitation of these concepts has permitted the

Scheme 1 Synthesis of azido(chloro) germanates (1–) and stannates (1–), E = Ge, *n* = 1 (1, 3); E = Sn, *n* = 0 (2, 4); WCC = AsPh₄ (a), PPh₄ (b), N(PPh₃)₂ (PPN, c).

synthesis and characterisation of the first low-valent and homoleptic Ge and Sn azides described in this paper.

Compounds already containing WCC ions and low-valent germanium, AsPh₄GeCl₃, PPh₄GeCl₃,⁹ PPNGeCl₃ (ref. 10) (1a-c), were prepared in high yield from the GeCl₂(diox) adduct¹⁸ and WCC chlorides¹⁹ (Scheme 1, route A).^{‡11} These colourless, moderately air sensitive crystalline trichlorogermanates react readily with THF suspensions of NaN3. In situ IR spectra of the reaction (2b) show bands due to asymmetric NNN stretches, $\nu_{as}(N_3)$, typical for coordinated N₃ groups at $\bar{\nu}_{max}/(cm^{-1}) = 2092$ and 2058, which have grown fully after a reaction time of 1 h. Exposure of the reaction solution to fresh NaN3 results in no further spectral change. From the solution, a highly air sensitive, colourless solid (3b) was precipitated, the IR spectrum of which exhibits the finger print of PPh₄⁺ and the $\nu_{as}(N_3)$ bands. The $\nu_{as}(N_3)$ frequencies lie within the range of those reported previously for semi-covalent germanium(π) azides (2027–2077 cm⁻¹, Fig. 1), below those of Ge(rv) azides $(Ge(N_3)_4, PPN_2Ge(N_3)_6, 5c)^{1b}$ and above that of the N₃⁻ ion. While solution ¹H, ¹³C and ³¹P NMR spectra of 3b show signals of the WCC cations only, two peaks are observed in the ¹⁴N NMR spectra at -263 and -207 ppm next to the solvent (-136 ppm) with FWHM line widths of 552, 147 and 24 Hz, respectively. These characteristics are typical for the N_{α} and N_{γ} nuclei of coordinated N_3 groups while the signal for N_β is obscured by solvent.5a

Alternative routes to 3 and 4 use WCC azides as azide transfer reagents. $GeCl_2(diox)$ reacts directly also with (PPN)N₃

Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK. E-mail: p.portius@sheffield.ac.uk

[†] Electronic supplementary information (ESI) available: Spectra, thermograms, full crystallographic data and computational details. CCDC 1030031 and 1030032. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5cc00259a

Fig. 1 IR spectra of Ge(N₃)₃⁻ (black), Sn(N₃)₃⁻ (red) in THF; $\nu_{as}(N_3)$ frequency ranges of related azides, Ge(N₃)₄, ¹² HN₃, ¹⁰ Ge(N₃)₆^{2-, 1b} L_nGe(II) azides L₁ = {Me₂(¹BuO)Si}₂N;^{4c} L₂ = ⁿPr₂ATI, Mes₂DAP,^{4f,g} (NHC)₂, ³ L₃ = HB(R₂pz)₃, (C₅R₅)Co{P(O)(OEt)₂}₃, ^{4a,e,10} (2,6⁻ⁱPr₂C₆H₃)₂C₂H₂N₂CGe(N₃)₂ (ref. 8*d*) and N₃^{-,4e} are indicated in the top bar; see Table S1 (ESI†) for exact values.

in MeCN solution (Scheme 1, route B). Intriguingly, equimolar reactant mixtures produce only one $\nu_{\rm as}(N_3)$ band (2078 cm⁻¹); increasing the stoichiometric ratio (1:2) results in two additional bands (2088, 2066 cm⁻¹), while at ratios of 1:9 and above only bands at 2095, 2064 cm⁻¹ and that of N_3^- were detected. These observations are interpreted tentatively in terms of the formation of mono, di- and triazido complexes.

Tin dichloride was subjected to a similar treatment as GeCl₂(diox) using WCC(N₃) and NaN₃; however, complete Cl/N₃ exchange requires a larger excess of azide transfer reagent. Similar observations as with **3b** were made, including the intermediate rise and decay of a ν_{as} (N₃) band (2064 cm⁻¹) and the ultimate rise of bands of the final product **4b** (2081, 2050 cm⁻¹) in the expected region between Sn(N₃)₆²⁻ and charge-neutral Sn(I) monoazides (Table S1, ESI†), and ¹⁴N resonances at -218.5 ppm (FWHM \approx 32 Hz) and -260.0 ppm (166 Hz). The ¹⁴N NMR signals of **3b** and **4b**, in particular those assigned to N_α, are deshielded in comparison to those of E(N₃)₆²⁻ dianions.^{1b,5a,17} **3b** and **4b** are soluble in MeCN, THF and CH₂Cl₂.

The synthetic strategy was extended to $AsPh_4^+$ and PPN^+ counter ions affording compounds **3a,c** and **4c** (Scheme 1A) which all have spectroscopic properties analogous to those of **3b** and **4b** described already. The combined analytical evidence, including the absence of chlorine in **3b** and the ¹¹⁹Sn NMR signal of **4b** ($\delta = -220$ ppm, see ESI†) point to the formation of anionic complexes in compounds of the type (WCC)E(N₃)₃ as the final products of Cl/N₃ exchange.

Further insight into the nature of intermediates and products of the exchange reactions was obtained from quantum chemical calculations²⁰ on the $\text{ECl}_{(3-n)}(N_3)_n^-$ species, which were performed at the B3LYP/cc-pVTZ level²¹ with effective core potentials²² for Ge and Sn. Solvent (THF) was described using PCM.²³ The calculations found conformational isomerism resulting in several minima for n = 1, 2, 3, that were close in energy. These conformers are related by rotation of ligands. Since rotational barriers of sterically unhindered N₃ groups are small (cf. GeH₃N₃, ~1 kJ mol⁻¹),¹³ fast interconversion involves all significantly thermally populated rotamers above the minimum energy conformation ($E_{\rm rel} < 5.8 \text{ kJ mol}^{-1}$). This process is likely to result in averaged absorption bands weighted by the rotamer population (rotamers may have more than one degenerate, absolute spatial configuration, and inter-rotamer vibrational energy transfer is unaccounted for). Taking account of the theoretical equilibrium mole fractions, absorption intensities and scaled vibrational frequencies,²⁴ approximate average frequencies of the in-phase and out-of-phase $\nu_{as}(N_3)$ stretches and the qualitative intensity ratios could be determined (Table S1, ESI⁺), which match those observed (e.g. Ge(N₃)₃⁻, 2059, 2091 vs. 2060, 2093; Sn(N₃)₃⁻, 2051, 2080 vs. 2050, 2078 cm⁻¹). This approach leads to the assignment of the observed bands of intermediates to $GeCl_2(N_3)^-$, $GeCl(N_3)_2^-$, $SnCl_2(N_3)^-$ and $SnCl(N_3)_2^-$. Calculations using the Gauge-Independent Atomic Orbital method²⁵ verify the assignment of ¹⁴N NMR data (see ESI[†]).

Crystals of azido germanates were grown from THF–Et₂O (1:10) solutions at -18 °C (**3b**, needles) or by diffusion of Et₂O into concentrated THF solutions (**3c**).§¶ According to single crystal X-ray diffraction studies, **3b** consists of PPh₄⁺ and Ge(N₃)₃⁻ ions (Fig. 2). The shortest interionic Ge···N and N···N distances were found to be 4.13 and 5.07 Å, respectively (Fig. 4, left), hence, covalent {[Ge(N₃)₃]⁻}···{[Ge(N₃)₃]⁻} interactions are absent (Fig. 3). Germanium is coordinated by three, essentially linear N₃ ligands and occupies the apical position in a trigonal-pyramidal Ge[N]₃ framework. The ligands are bound in the fashion typical of covalent azides and adopt Ge–N_α–N_β angles between 116° and 121°. All inter-ligand angles are close to 90° which indicates stereochemical inactivity of the lone electron pair at germanium.¹⁴

This structural feature has been found in the valence isoelectronic complexes of $\text{Ge}_2(\mu\text{-pz}^*)_3^+$ GeCl_3^- (ref. 11*f*) and pilocarpine-trichlorogermanate hemihydrate.^{11g} The Ge–N_{α} bonds of **3b** are shorter than those of tetracoordinate Ge(II) azides 2.088(6)–2.094(7) Å (Fig. 1), longer than those of the homoleptic Ge(IV) azide PPN₂Ge(N₃)₆ (**5c**, Table S1, ESI[†]) and rather within the range of previously investigated, tricoordinate Ge(II) azides

Fig. 2 Thermal ellipsoid plot (50%) of $\text{Ge}(N_3)_3^-$ in the crystal of PPh₄Ge(N₃)₃ (**3b**). Bond lengths [Å] Ge1-N7 1.984(2), Ge1-N1 1.988(3), Ge1-N4 2.011(3), N1-N2 1.213(3), N2-N3 1.148(3), N4-N5 1.209(3), N5-N6 1.142(3), N7-N8 1.206(3), N8-N9 1.140(3), angles [°] N7-Ge1-N1 93.59(10), N7-Ge1-N4 94.29(10), N1-Ge1-N4 91.05(11), N2-N1-Ge1 116.4(2), N5-N4-Ge1 118.7(2), N8-N7-Ge1 121.3(2).

Fig. 3 Thermal ellipsoid plot (50%) of ${Sn_2(N_3)_6}^{2-}$ in crystals of PPh₄Sn(N₃)₃ (**4b**). Bond lengths [Å] Sn–N1 2.262(3), Sn–N4 2.193(3), Sn–N7 2.207(3), 2.674(3), N1–N2 1.203(4), N2–N3 1.148(5), N4–N5 1.200(5), N5–N6 1.143(5), N7–N8 1.185 (5), 1.193(5), N8–N9 1.157(6), 1.168(6) Sn¹–N6 3.567(4), angles [°] N1–Sn–N4 88.35(12), N4–Sn–N7 89.14(13), N1–Sn–N7 88.59(12), N2–N1–Sn 123.6(3), N5–N4–Sn 119.4(2), N8–N7–Sn 128.2(9), 120.2(8), N7–Sn–N7 68.32(16), Sn–N7–Sn 111.68(18).

Fig. 4 Packing diagrams of $PPh_4Ge(N_3)_3$ (**3b**, left) and $PPh_4Sn(N_3)_3$ (**4b**, right); H (bright grey), C (dark grey), N (light blue), P (orange), Ge and Sn (turquoise).

Table 1 Bond lengths D/Å in the salt-like homoleptic azides of the type $(WCC)^+_n [E(N_3)_{3n}]^{n-}$, E = Ge, Sn; n = 1, $WCC = PPh_4^+$; n = 2, $WCC = N(PPh_{32}^+)^{n-1}$

Е, п	$E-N_{\alpha}$	$N_{\alpha} - N_{\beta}$	$\mathbf{N}_{\beta}\text{-}\mathbf{N}_{\gamma}$	$\Delta {\rm NN}_{\rm av}{}^a$
Ge, 2 Sn, 1	1.969(2)-1.980(3) 2.193(3)-2.262(3)	$\begin{array}{c} 1.206(4) - 1.213(4) \\ 1.210(4) - 1.214(3) \\ 1.189(6) - 1.203(4) \\ 1.182(3) - 1.213(3) \end{array}$	1.143(3)–1.151(3) 1.143(5)–1.163(6)	6.5(4) ^d 4.6(17) ^c
^{<i>a</i>} $\Delta NN = \frac{1}{n} \sum_{i=1}^{n} \left[d \left(N_{\alpha} - N_{\beta} \right)_{i} - d \left(N_{\beta} - N_{\gamma} \right)_{i} \right], s = \left[\frac{1}{n-1} \sum_{i=1}^{n} \left(\Delta NN_{i} - N_{\beta} \right)_{i} \right]$				
ΔNN	$\left[av\right]^{2}$ in par	entheses. ^b s «	σ , error estin	mated by
$\sigma = \left[\right]$	$\sum_{i=1}^{n} \left(\frac{\sigma_i}{N}\right)^2 \right]^{0.5} \cdot c \mathbf{T}$	his work. ^d Ref. 1	b. ^e Ref. 15.	

(1.969–2.047(2) Å, Table 1). All other bond lengths and angles are close to those of **5c** (Table 1). The crystallographic structure of $Ge(N_3)_3^-$ is consistent with one of the geometries predicted by DFT (*vide supra*).

Single crystalline needles of **4b** were obtained and investigated with the methods used for **3b.**¶ The asymmetric unit of

4b also contains a $E(N_3)_3^-$ moiety; however, the packing is at variance with 3b, which allows $Sn(N_3)_3^-$ to interact *via* two long $E \cdots N_{\alpha}$ bonds and form $\{Sn(N_3)_3\}_2^{2-}$ dimers (Fig. 3). The interaction involves asymmetric $\mu_{1,1}$ -N₃ bridges with short (2.207(3) Å) and long (2.674(3) Å) Sn–N_{α} bonds, the latter being considerably shorter than the sum of the van der Waals radii (3.72 Å).¹⁶ Weak intermolecular interactions have been observed previously between neutral Sn(^{*n*}Pr₂ATI)N₃ complexes (*vide supra*), ^{4b} where a slightly longer Sn \cdots N_{α} bond (2.87 Å) was found. The sum of bond angles involving the bridging N_{α} indicates planarity and effective sp² hybridisation. As in the crystal of **3b**, the primary $E(\pi)-N_{\alpha}$ bonds are significantly longer (2.193(3)-2.262(3) Å) than those found in the homoleptic E(IV) azide 6 (2.125 Å).¹⁵ The potential for dimerisation was studied by DFT using the geometry of $\{E(N_3)_2(\mu_{1,1}-N_3)\}_2^2$ in crystalline 4b as a starting point. Optimisation results in separate anions devoid of covalent interionic interactions in the case of $Ge(N_3)_3$, whereas a dimeric structure was found for $Sn(N_3)_3$ that resembles the molecular structure in the crystal. Estimates of the basis set superposition error for the solution phase were obtained from BSSE calculations²⁶ in the gas phase. After BSSE correction, $\{Sn(N_3)_2(\mu_{1,1}-N_3)\}_2^{2-}$ was found to be at least 4 kcal mol⁻¹ less stable than two monomers, rendering the existence of a dimer in solution highly unlikely.

According to differential scanning calorimetry measurements (Fig. S11 and S12, ESI⁺), compound 3b decomposes in two exothermic processes with ($\Delta H = -270$ and -467 J g⁻¹). Remarkably, step 1 occurs at temperatures (T_{on}^{ex1} = 99 °C) that are drastically below the decomposition onset of the related, hypercoordinate azide 5c ($T_{on}^{ex1} = 256 \ ^{\circ}C$),^{1b} whereas step 2 sets in at $T_{\rm p}^{\rm ex2}$ = 310 °C, which is nearly identical with the temperature found in 5c (312 °C).** Furthermore, the molar enthalpies of step 2 $(-251 vs. -482 \text{ kJ mol}^{-1})$ scale approximately with the complex charge; however, step 1 releases much less energy than expected (145 kJ mol⁻¹, **3b** *vs.* 705 kJ mol⁻¹, **5c**). This phenomenon is still under investigation. Further experiments show that heating of 3b at 150 °C produces PPh₄N₃, which suggests that the release of N_3^- initiates the decomposition of $Ge(N_3)_3^-$. The tin homologue 4b melts at $T_{\rm on}$ = 115 °C and decays at 215 °C and 308 °C and thus behaves as expected relative to 6c.¹⁵ No sensitivity was noted during preparation and analysis of compounds 3b and 4b on the stated reaction scale. The material remains unchanged when struck by a hammer. Upon lighting up, it burns rapidly with an orange flame leaving black residues.

In solution, $Ge(N_3)_3^-$ and $Sn(N_3)_3^-$ react with hydrazoic acid leading to a precipitate with the IR $\nu_{as}(N_3)$ absorptions characteristic for $Ge(N_3)_6^{2-}$ and $Sn(N_3)_6^{2-}$ complexes, respectively,

Scheme 2 Oxidation of the tri(azido) complexes 3b and 5b.

which can be verified by comparison with spectra of the fully characterized salts **5c**, **6c** (Scheme 2, Fig. S13 and S14, ESI[†]).

The first low-valent homoleptic azido complexes of group 14 have been synthesized and fully characterised. The preparative approach to salt-like compounds containing these complexes has been demonstrated on a 0.2–0.7 g scale for a range of weakly coordinating cations and involves chloro(azido) species, $ECl_x(N_3)_y^-$. Unlike their hypercoordinate $E(N_3)_6^{2-}$ analogues and despite the presence of innocent cations, the new class of compounds is highly reactive, exhibiting low thermal stability and a propensity to oxidation. Crystallographic analysis revealed that in the solid state, $E(N_3)_3^-$ complexes of group 14 may dimerise *via* azido ligand bridges. Neither of the low-valent coordination centres exhibits a stereochemically active lone electron pair. DFT calculations correctly predict the dimerisation and suggest furthermore that the dimers are unstable in polar solvents.

The authors thank the EPSRC (EP/E054978/1), the University of Sheffield and Humboldt-Universität zu Berlin for support and Prof. A. C. Filippou for advice.

Notes and references

 $GeCl_3^-$ (ref. 9 and 11) and $SnCl_3^-$ salts (ref. 11*c* and *e*-*g*) with various organic counter ions have been reported previously.

§ All attempts to crystallize compound 3a have been futile.

 \P Crystallographic data: **3b**, CCDC 1030032, C₂₄H₂₀GeN₉P, 538.07 g mol⁻¹, PĪ, a = 7.7712(2) Å, b = 11.4711(4) Å, c = 14.2003(4) Å, a = 93.278 (2)°, β = 99.357(2)°, γ = 100.865(2)°, Z = 2, V = 1221.59(6) Å³, D_c = 1.463 g cm⁻³, T = 120(2) K, F(000) = 548, R₁ = 0.0376 (316 param.), wR₂ = 0.0807, GOOF = 1.090. **3c**, P2₁, a = 10.7640(11) Å, b = 12.732(2) Å, c = 25.713(3) Å, a = γ = 90°, β = 100.682(12)°, D_c = 1.414 g cm⁻³, T = 180(2) K, extensive disorder of Ge(N₃)₃ part (see ESI† and ref. 10). **4b**, CCDC 1030031, C₂₄H₂₀N₉PSn, M = 584.15 g mol⁻¹, PĪ, a = 10.7560(6) Å, b = 11.0605(6) Å, c = 12.3540(7) Å, a = 91.668(4)°, \beta = 108.414(4)°, \gamma = 116.545(3)°, Z = 2, V = 1222.11(12) Å³, D_c = 1.587 g cm⁻³, T = 100(2) K, F(000) = 584, R₁ = 0.0521 (334 param.), wR₂ = 0.1020, GOOF = 1.053.

 \parallel Estimated error approx. $\pm 10\%$.

** This step is assigned tentatively to the thermolysis of PPN(N₃) and PPh₄ (N₃) since enthalpies and onset temperatures are comparable with those of genuine samples of these salts: PPh₄N₃, mp = 250 °C, T_{on}^{ex} = 291 °C, ref. 15.

- (a) A. C. Filippou, P. Portius and G. Schnakenburg, J. Am. Chem. Soc., 2002, 124, 12396; (b) A. C. Filippou, P. Portius, D. U. Neumann and K.-D. Wehrstedt, Angew. Chem., Int. Ed., 2000, 39, 4333; (c) D. Fenske, H. D. Dörner and K. Dehnicke, Z. Naturforsch., B: J. Chem. Sci., 1983, 38, 1301; (d) K. Polborn, E. Leidl and W. Beck, Z. Naturforsch., B: J. Chem. Sci., 1988, 43, 1206.
- 2 (a) K. Banert, Y.-H. Joo, T. Rüffer, B. Walfort and H. Lang, Angew. Chem., Int. Ed., 2007, 46, 1168; (b) P. Portius, A. C. Filippou, G. Schnakenburg, M. Davis and K.-D. Wehrstedt, Angew. Chem., Int. Ed., 2010, 49, 8013.
- 3 Y. Xiong, S. Yao and M. Driess, Chem. Commun., 2014, 50, 418.
- 4 (a) A. C. Filippou, P. Portius and G. Kociok-Köhn, *Chem. Commun.*, 1998, 2327; (b) H. V. R. Dias and A. E. Ayers, *Polyhedron*, 2002, 21, 611; (c) M. Veith and A. Rammo, *Z. Anorg. Allg. Chem.*, 2001, 627, 662; (d) V. N. Khrustalev, I. A. Portnyagin, N. N. Zemlyansky, I. V. Borisova, Y. A. Ustynyuk and M. Y. Antipin, *J. Organomet. Chem.*, 2005, 690, 1056; (e) A. C. Filippou, P. Portius, G. Kociok-Köhn and V. Albrecht, *Dalton Trans.*, 2000, 1759; (f) A. E. Ayers, D. S. Marynick

and H. V. R. Dias, *Inorg. Chem.*, 2000, **39**, 4147; (g) A. E. Ayers, T. M. Klapötke and H. V. R. Dias, *Inorg. Chem.*, 2001, **40**, 1000.

- 5 (a) P. Portius and M. Davis, *Coord. Chem. Rev.*, 2013, 257, 1011;
 (b) W. P. Fehlhammer and W. Beck, *Z. Anorg. Allg. Chem.*, 2013, 639, 1053, ref. cited; (c) T. Müller, F. Karau, W. Schnick and F. Kraus, *Angew. Chem., Int. Ed.*, 2014, 53, 13695.
- 6 (a) C. J. Price, H.-Y. Chen, L. M. Launer and S. A. Miller, Angew. Chem., Int. Ed., 2009, 48, 956; (b) I. Krossing and A. Reisinger, Coord. Chem. Rev., 2006, 250, 2721.
- 7 (a) M. Asay, C. Jones and M. Driess, *Chem. Rev.*, 2011, 111, 354;
 (b) S. Nagendran and H. W. Roesky, *Organometallics*, 2008, 27, 457;
 (c) Y. Mizuhata, T. Sasamori and N. Tokitoh, *Chem. Rev.*, 2009, 109, 3479;
 (d) B. Blom, M. Stoelzel and M. Driess, *Chem. Eur. J.*, 2013, 19, 40;
 (e) M. Mück, K. Junold, J. A. Baus, C. Burschka and R. Tacke, *Eur. J. Inorg. Chem.*, 2013, 5821.
- 8 (a) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn and D. Stalke, Angew. Chem., Int. Ed., 2009, 48, 5683; (b) A. C. Filippou, O. Chernov and G. Schnakenburg, Angew. Chem., Int. Ed., 2009, 48, 5687; (c) Y. Xiong, S. Yao and M. Driess, Chem. Commun., 2014, 50, 418; (d) B. Lyhs, D. Bläser, C. Wölper, S. Schulz, R. Haack and G. Jansen, Inorg. Chem., 2013, 52, 7236.
- 9 U. M. Tripathi, G. L. Wegner, A. Schier, A. Jockisch and H. Schmidbaur, Z. Naturforsch., B: J. Chem. Sci., 1998, 53, 939.
- 10 P. Portius, PhD thesis, Humboldt-Universität zu Berlin Weißensee Verlag, Berlin, 2002, ISBN 3-934479-63-4.
- (a) X. Tian, T. Pape and N. W. Mitzel, Z. Naturforsch., B: J. Chem. Sci., 2004, 59, 1524; (b) S. Nogai, A. Schriewer and H. Schmidbaur, Dalton Trans., 2003, 3165; (c) G. Kociok-Köhn, J. G. Winter and A. C. Filippou, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1999, 55, 351; (d) G. L. Wegner, A. Jockisch and H. Schmidbaur, Z. Naturforsch., B: J. Chem. Sci., 1998, 53, 430; (e) M. Karnop, W. W. du Mont, P. G. Jones and J. Jeske, Chem. Ber., 1997, 130, 1611; (f) A. Steiner and D. Stalke, Inorg. Chem., 1995, 34, 4846; (g) S. Fregerslev and S. E. Rasmussen, Acta Chem. Scand., 1968, 22, 2541.
- 12 J. E. Drake and R. T. Hemmings, Can. J. Chem., 1973, 51, 302.
- 13 D. T. Durig, M. S. Durig and J. R. Durig, Spectrochim. Acta, Part A, 2005, 61, 1287.
- 14 (a) D.-K. Seo, N. Gupta, M.-H. Whangbo, H. Hillebrecht and G. Thiele, *Inorg. Chem.*, 1998, 37, 407; (b) U. Schwarz, H. Hillebrecht, M. Kaupp, K. Syassen and H.-G. v. Schnering, *J. Solid State Chem.*, 1995, 118, 20.
- 15 R. Campbell, B. Peerless and P. Portius, unpublished results.
- 16 A. Bondi, J. Phys. Chem., 1964, 68, 441.
- (a) W. Beck, W. Becker, K. F. Chew, W. Derbyshire, N. Logan, D. M. Revitt and D. B. Sowerby, *Dalton Trans.*, 1972, 245;
 (b) W. Beck, W. P. Fehlhammer, P. Pöllmann, E. Schuierer and K. Feldl, *Chem. Ber.*, 1967, **100**, 2335.
- 18 (a) J. Kouvetakis, A. Haaland, D. J. Shorokhov, H. V. Volden, G. V. Girichev, V. I. Sokolov and P. Matsunaga, *J. Am. Chem. Soc.*, 1998, **120**, 6738; (b) S. P. Kolesnikov, I. S. Rogozhin and O. M. Nefedov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1974, **23**, 2379.
- 19 (a) V. Y. Kukushkin and A. I. Moiseev, *Inorg. Chim. Acta*, 1990, 176, 79; (b) A. Martinsen and J. Songstad, *Acta Chem. Scand., Ser. A*, 1977, 31, 645.
- 20 M. J. Frisch, et al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
- 21 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W. Yang and R. Parr, Phys. Rev. B, 1988, 37, 785; (c) T. H. Dunning Jr., J. Chem. Phys., 1989, 90, 1007.
- 22 K. A. Peterson, J. Chem. Phys., 2003, 119, 11099.
- 23 (a) B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 106, 5151;
 (b) M. Cossi, V. Barone, B. Mennucci and J. Tomasi, Chem. Phys. Lett., 1998, 286, 253 and references therein.
- 24 K. K. Irikura, R. D. Johnson and R. N. Kacker, *J. Phys. Chem. A*, 2005, **109**, 8430.
- 25 R. Ditchfield, Mol. Phys., 1974, 27, 789.
- 26 S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553.