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The enhanced reduction potential of riboflavin tetraacetate co-
ordinating to scandium triflate enables the challenging photocata-
lytic C—H oxidation of electron-deficient alkylbenzenes and benzyl
alcohols.

The important role of flavins as photoreceptors and redox
cofactors in nature has inspired the use of synthetic flavin
analogues as bioinspired photocatalysts." The most prominent
example, riboflavin tetraacetate (RFT), catalyses the aerobic
photooxidation of benzyl alcohols,> benzyl amines,® and sulf-
oxides (Scheme 1).*” A particularly intriguing application of RFT
is the photocatalytic C-H bond oxidation of alkyl benzenes to the
corresponding aldehydes.®” Spectroscopic studies revealed an
initial electron transfer from the aromatic substrate to the
singlet excited state "RFT* as the basis of this process.® However,
the limited reduction potential E°("RFT*/*RFT ") = 1.67 V vs. SCE
exclusively allows the oxidation of very few selected substrates

blue light (440 nm)
RFT

&
e e
N%(NH 0,
o]

oxidized substrate

oxidation flow of 2e” and 2H* reduction
R
benzyl alcohols, amines, Ni N. O H
methyl benzenes | Y e
NH
N
H O

RFTH,

Scheme 1 Photocatalytic cycle for the aerobic oxidation of various
organic substrates with riboflavin tetraacetate (RFT) and blue light.®

University of Regensburg, Institute of Inorganic Chemistry, D-93040 Regensburg,
Germany. E-mail: robert.wolf@ur.de

i Electronic supplementary information (ESI) available: Full experimental
details, additional catalytic results, and GC-FID and UV-vis monitoring studies.
See DOI: 10.1039/c5cc00178a

This journal is © The Royal Society of Chemistry 2015

Bernd Muhldorf and Robert Wolf*

which feature strongly electron-donating arene substituents.
Most other substrates are unsuccessful, because their oxidation
potential is too positive.

Fukuzumi et al. found that the redox potential of RFT can be
modified by metal ion coordination.” As shown in Fig. 1,
complexes of RFT with Mg>", Zn**, Yb** and Sc*" ions have a
significantly more positive reduction potential E°("RFT*/’RFT ")
in the excited singlet state. In particular, the Sc** systemi
appears promising as it features high fluorescence quenching
rate constants of ("RFT-2Sc®**)* in the presence of alkyl- and
methoxy-substituted benzenes.® This indicates an efficient
single electron transfer from the substrate to (‘RFT-2Sc**),
which is a prerequisite for photocatalytic activity.

Motivated by these insights, we sought to explore the catalytic
properties of RFT/metal salt combinations for challenging benzylic
C-H bond oxidations. The reaction of ethylbenzene (1) to aceto-
phenone (2) was chosen as a benchmark (Scheme 2), because 1
shows a high oxidation peak potential (Ep(1**/1) = 2.14 vs. SCE) and

EO
V vs SCE Oxidation of
substrate
e 1 . S+y*
2.45 el
('RFT-Yb3*)*
2.25 1 .
_____________________ e . ('RFT-Mg2*)*
boe | /.( T-Mg**)
paeg
1 ",
167 P n
hv MeO
+X MI‘H— o
RFT RFT-x™
-x M™

Fig. 1 Enhanced reduction potentials EC(*RFT*/?RFT~) of RFT—metal ion
complexes (RFT—xM"*) 82
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Scheme 2 Photocatalytic oxidation of ethylbenzene.

therefore cannot be oxidised by 'RFT* alone.® A screening of
various Lewis acids (Table S1, ESIt) and solvents (Table S27)
indicated Sc(OTf); in acetonitrile to be the best choice. Irradiation
of 1 (0.02 mmol) in CH;CN for 2.5 h with blue light (440 nm) in the
presence of RFT (10 mol%) and Sc(OTf); (20 mol%) afforded
acetophenone 2 in 58% yield. Substrate 1 was completely con-
sumed, and the formation of H,O, was confirmed by UV-vis
spectroscopy (Fig. S1t). Note that 2 is formed in <10% yield in
the absence of Sc**-ions, while Mg(OTf), and Zn(OTf), gave only
very low yields of 2. The reaction is significantly accelerated by
higher Sc*" concentrations (Fig. $21). In order to reduce the
amount of Sc(OTf); required, the effect of acids and other additives
was investigated (Table S31). Importantly, 1 is converted nearly
four times as fast in the presence of HCI (30 mol%) with the same
Sc(OTf); concentration (Fig. S37).

Using this optimized system, we subsequently assessed the
substrate scope (Table 1). Toluene is converted to benzaldehyde

Table 1 Photocatalytic oxidation: scope and limitations?

No s¢*
yield” Conv.” Yield”
Entry Substrate Product [%] R [%] [%]
0 H 9% 71
‘Bu 100 68
Me? 100 62
cl 100 84
CN 56 29

CO,Me 44 15

-
;U i
a
O
/;
o
(SRS NN

Me 100 60
CO,Me 92 49

So 0 H 93 90
. 5 OMe 100 63
o H 100 93

4
6 Ph 89 52
23 COOH n.d. 80
[o]

100 95
100 81

pe)
[=JNN)

7 F 100 88
100 73
100 84

OH 9 12 cl
6 14 Br
. - 0 CF; 63 53

0 NO,? 66 44

% All reactions were performed with substrate (0.02 mmol), RFT
(10 mol%), HCl (37%, 0.8 pL) and Sc(OTf); (4.6 mM) in 1 mL MeCN
and irradiated with blue light (440 nm, 3 W) for 2.5 h when not
indicated otherwise (see footnote d).” Conversion and yield deter-
mined by GC-FID integration. © No HCl added; n.d. = not determined.
? Irradiation time: 0.5 h (R =Me), 1 h (R = Cl) and 7 h (R = NO,).
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in 71% yield, while p-tert-butylbenzaldehyde and p-chlorobenz-
aldehyde are obtained in 68% and 84% yield, respectively (entry 1).
Benzylethers do not give the corresponding esters, but benz-
aldehydes (entry 3). Diarylmethylene derivatives (entry 4) and
benzyl alcohols (entries 5 and 6) are oxidised with good to excellent
yields as well. Triphenylmethane and diphenylacetic acid both
yield benzophenone via oxidative C-C cleavage.'® Note that the
oxidations of p-trifluorobenzyl alcohol and p-nitrobenzyl alcohol
proceed selectively, but the reaction speed is slow, resulting in an
incomplete conversion.

Control experiments confirmed that the reaction does not
proceed in the dark, in the absence of RFT or under anaerobic
conditions (Table S4,1 entries 1-5). When the reaction was
carried out in an atmosphere of pure dioxygen, slower bleach-
ing of RFT was observed (Fig. S47), but the yield of 2 did not
improve (Table S4, entry 6). Moreover, a very similar yield (44%)
was obtained in deuterated acetonitrile, therefore, a singlet
oxygen pathway seems unlikely (Table S4,t entries 7 and 8).'""?

The reaction mechanism was probed by UV-vis spectroscopy.
Before starting to irradiate a mixture of 1, RFT, Sc(OTf); and
HCI in acetonitrile with blue light (440 nm), an absorption
band can be identified at /.« = 390 nm both under aerobic
conditions (Fig. S51) and under argon (Fig. 2). This band may
be assigned to RFTH"-2Sc®*" by comparison with the character-
istic spectrum of uncoordinated RFTH"."® The IR spectrum of
the mixture shows that the C=O0 stretching bands are shifted to
lower frequency compared to those of RETH" in the absence of
metal ions (Table S51). This indicates that the scandium(m)
ions coordinate to the carbonyl groups in RFTH'-2Sc¢”*.1®

A possible catalytic cycle is displayed in Scheme 3. In line with
previous fluorescence quenching experiments by Fukuzumi
et al., we propose that the electron transfer occurs between the
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Fig. 2 UV-vis absorption spectra of ethylbenzene (5.8 mM) and RFT
(0.14 mM) in the presence of Sc(OTf)s (0.68 mM) and HCL (2.7 mM) during
irradiation with blue light in deaerated MeCN at 298 K under nitrogen
(straight: 05,60 s, 120 s, 180 s, 360 s; dashed: 2 h). Inset: ESR-spectrum of
2RFTH,**-25c®" generated in the photocatalytic reaction RFT (3.0 mM)
with ethylbenzene (20 mM), Sc(OTf)s (10 mM) and 10 mM HCIO, in
deaerated MeCN at 298 K. Parameters obtained by computer simulation:
g =2.0033,alN% = 6.7 G, a(N'°) = 4.6 G, a(H®) = 10.6 G, a(3H®) = 2.9 G,
a(N®—CH,) = 4.3 G; see the ESI¥ for the labelling scheme.
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Scheme 3 Proposed mechanism for the photocatalytic aerobic oxidation
of ethylbenzene (1) to acetophenone (2) with RFT in presence of Sc**-ions
and HCL.

substrate and the photoexcited flavin metal complex ("RFTH'-2Sc¢**)*
in its singlet state (step i).* This electron transfer produces the
ethylbenzene radical cation 4 and the protonated flavin radical
complex *RFTH*-2Sc>*. It seems likely that the RFTH*-2Sc>*
complex is then protonated to yield *RFTH,*"-2Sc**, while the
strongly acidic ethylbenzene radical cation 4 is deprotonated to
the benzyl radical 5 (step ii).§"* >RFTH,**-2Sc®" should give rise
to broad absorptions at Amax = 400-550 nm similar to those of
the uncoordinated dihydroflavin radical cation RFTH,*"."> Such
a broad band is indeed observed in the UV-vis spectrum of
the reaction mixture under argon (Fig. 2). In addition, the ESR
spectrum of the reaction mixture of 1, RFT, Sc(OTf); and HCIO,
obtained while irradiating at 440 nm exhibits a signal at g = 2.0033
(Fig. 2, inset), which is in line with the expected spectrum for
RFTH,**-2Sc**.® The presence of the scandium(III) ions appears
to have only a slight effect on the shape of the ESR spectrum.
The hyperfine coupling constants obtained by computer simu-
lation are similar to those reported for free >RFTH,*".'°
The ESR spectrum of a mixture of 1, RFT, Sc(OTf); and HCI
(instead of HClIO,, Fig. S67) is more complicated and thus defied
a satisfactory simulation so far. This is presumably due to the
formation of an equilibrium between RFTH,**-2Sc** and
RFTH*-2Sc** with the weaker acid HCL

There are at least two conceivable pathways that connect the
benzyl radical 5 with the final product 2 (Scheme 3). One
possibility is that >RFTH,**-2Sc>" recombines with 5 to form
a covalent RFT-benzyl radical adduct (not shown in Scheme 3),
which rapidly collapses under irradiation in air to product 2
and RFTH-2Sc*" (3).” However, this pathway seems less likely
based on the UV-vis spectra of the reaction mixture, where
characteristic broad absorptions are expected for such an
adduct at Amax = 600-630 nm. An alternative pathway is the
conversion of 5 into the benzylperoxyl radical 6, which subse-
quently transforms into 2 via the benzyl hydroperoxide.'® As
observed for RFTH,*", >RFTH,**-2Sc** may disproportionate
into oxidized RFTH'-2Sc®" and the reduced dihydroflavin
RFTH;"-2Sc®" (step iii)."> The formation of the latter species
is supported by the observation of an absorption band at 295 nm
that increases over time (see Fig. 2).'> RFTH;"-2Sc¢®" can react
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with dioxygen, regenerating 3 while producing H,0, (Fig. $8%)."
In addition, RFTH'-2Sc** (3) may also be regenerated by the
direct reaction of *RFTH,*"-2Sc*" with O, (step iv, Fig. S71).
This process may conceivably be facilitated by Lewis acid
coordination."®

We presume that the mechanism of the catalytic oxidation
of benzyl alcohols (Table S1 (ESIt), entries 5 and 6) is analogous
to the one previously suggested by Fukuzumi et al. for the
oxidation p-chlorobenzyl alcohol.® The proposed catalytic
cycle involves an initial electron transfer from the substrate
to (‘RFT-2Sc*")*, followed by proton transfer forming the
hydroxybenzyl radical (p-R-C¢H,CHOH®) and the protonated
RFT radical anion (*RFTH*-2Sc¢**)*. Subsequent H atom transfer
between these species yields the aldehyde and RFTH,-2Sc>".

In summary, RFT/scandium triflate is an efficient photoca-
talytic system for the aerobic oxidation of alkylbenzenes and
electron deficient benzyl alcohols. The results show that the
well-known effect of Lewis acid coordination on the redox
potential of flavins®® can be exploited to improve their photo-
catalytic properties. An extension of this principle, and an
exploration of the effects of other metal ions including redox-
active ones, is hand.

We thank Dr Michael Sporner and Helmut Schiiller for
assistance with ESR measurements and Prof. Burkhard Konig
for stimulating discussions. Support by the DFG Graduate
Program “Chemical Photocatalysis” (GRK 1626) is gratefully
acknowledged.

Note added after first publication: This article replaces the
version published on 03 Feb 2015, which contained errors in
the text introduced by the Editorial Office.
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§ The pK, of the closely-related RFTH,"* radical is approximately 2, while
the pK, of a toluene radical cation in MeCN is estimated to —12 to 713.20
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