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Triphenylarsonium-functionalised gold
nanoparticles: potential nanocarriers for
intracellular therapeutics†
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Two new triphenylarsonium alkylthiolate precursors, a thiosulfate

zwitterion and a thioacetate salt, have been structurally characterised

and their cytotoxicity evaluated against PC3 cells. The arsonium

compounds have been used to prepare gold nanoparticles decorated

with triphenylarsonium groups.

Arsenic has attracted the attention of scientists for centuries
and its compounds have a variety of applications ranging from
electronic and semiconductor materials1 to organic reagents,
arsonium ylides finding utility in the Wittig reaction.2 Historically,
arsenic compounds have been widely investigated for their
medicinal properties although interest declined as greater
understanding of their toxicity became apparent.3,4 Generally
inorganic As(III) and As(V) species are highly toxic, whereas
organic arsenic compounds are significantly less toxic.1,5 More
recently there has been a resurgence of interest in the medicinal
properties of arsenic compounds, including the use of arsenic
trioxide and organic arsenic derivatives as treatments for
leukaemia and other cancers,1,3,4 the characterisation of an
arsenic trioxide analogue of cisplatin,6 and the observation that
72As and 74As radiopharmaceuticals could be useful in positron
emission tomography (PET).1

The chemistry of arsenic is broadly similar to that of phosphorus,
and organic phosphonium salts are known to act as lipophilic
cations that are preferentially accumulated in the mitochondria
of cells.7 Similarly, arsonium cations are also lipophilic and
lipophosphoramidate derivatives containing arsonium head-groups
(1)8 have been studied as gene delivery systems, and 64Cu-labelled
complexes of 1,4,7,10-tetraazacyclododecane-4,7,10-triacetic

acid-conjugated triphenylarsonium cations (2) have been found to
act as tumour-selective PET imaging agents.9 Phosphonium species
have been found to be extremely valuable for mitochondria-targeted
therapeutics and diagnostics. Mitochondrial dysfunction is
associated with a number of disorders and there is increasing
awareness of the importance of targeting drugs to this organelle.7

Recent work has demonstrated the potential of combining
phosphonium compounds with nanotechnological approaches
to traffic pharmaceutical and diagnostic moieties into mito-
chondria.10 For example, incorporation of phosphonium groups
into the lipid bilayer of liposomes,11 or onto the surface of
dendrimers12 and polymer nanoparticles,13 facilitates their prefer-
ential uptake by mitochondria. We have prepared phosphonium-
functionalised gold nanoparticles14–16 which are accumulated by
cells and shown by TEM to be localised in the mitochondria.17

Inspired by the success of arsonium systems such as 1 and 2 we
decided to broaden the scope of our studies to include triphenyl-
arsonium compounds and herein report our preliminary results
on the biological properties of triphenylarsonium alkylthiosulfate
zwitterions (3) and salts (4) and their application in the synthesis
of triphenylarsonium-functionalised gold nanoparticles (AuNPs).

The synthesis of 3, 4 and the triphenylarsoniumalkylthiolate-
functionalised AuNPs are described in the ESI.† The structures of
3 and 4 were confirmed by X-ray crystallography. Perhaps surpris-
ingly, the structures of few organic thiosulfate zwitterions have
been reported.18 Both compounds display the expected tetra-
hedral geometry around the arsenic atoms with mean C–As–C
bond angles of 109.5(2)1 in 3 and 109.46(11)1 in 4. In zwitterion
3 (Fig. 1), the S–O bonds in the thiosulfate group are similar
with a mean length of 1.447(4) Å, indicative of multiple bond
character, and that the negative charge is delocalised over the
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entire sulfate group. The mean O–S–O angle [113.8(2)1] is
consistent with those in other thiosulfate ions.18 The S–S bond
length [2.1081(18) Å], is slightly shorter than that of the
corresponding phosphonium compound [2.1117(9) Å],15 but
longer than the S–S bond in ionic thiosulfate ions such as
Me2HN(CH2S2O3)2

�Na+.18 Within the crystal lattice the zwitter-
ions pack fairly loosely, held together by hydrogen-bonding
interactions between the sulfate oxygens and the phenyl hydro-
gens, but there is no close interaction between the arsonium
and the thiosulfate moieties. The bond lengths and angles of
the thioacetate group in salt 4 (Fig. 2), are as expected. The
molecular packing shows no significant interactions between
the arsonium centre and the bromide anion or between the
bromide and the carbonyl group.

In order to evaluate the efficacy of the triphenylarsonium-
functionalised AuNPs as cellular transport systems we first
screened the parent arsonium compounds 3 and 4 against
the PC3 prostate cancer cell line. Cell viability was assessed
using MTT and CellTitre-Glos assays (Fig. 3). MTT measures
mitochondrial activity to determine the in vitro cytotoxic effects
of chemical entities. The results showed 3 and 4 to have IC50

values of 75 mM and 72 mM, respectively, after 72 hours. These
values compare very favourably with those of phosphonium
compounds, a large number of which have been screened using
MTT against PC3 cells, and which displayed IC50 values in the
range 0.4–5 mM.19 These results are also in accordance with
cellular toxicity data for lipophosphoramidate derivatives, where
phosphonium compounds show greater cytotoxicity than the
corresponding arsonium compounds.8 We also used the

CellTitre-Glos assay to confirm the MTT cytotoxicity data. This
uses luminescence to determine the number of viable cells
based on a quantification of ATP levels. The data showed a
similar trend to that determined using MTT.

The cytotoxicity of arsenic compounds is crucially dependent
on the nature and oxidation state of the species. Inorganic
compounds, such as arsenite and arsenate, show acute toxicity;
for example, the IC50 of sodium arsenate was reported as 6 mM.20

In contrast, the organic derivative arsenobetaine, Me3As+CH2CO2
�,

an important metabolite of arsenic which is widely distributed in
marine ecosystems and found in comparatively high levels in
seafood, is reported to have no toxic effects and was found to
significantly enhance the cell viability of bone marrow cells in vitro
in a concentration-dependent manner.20

Phosphonioalkylthiosulfate zwitterions,15 and phosphonium
alkylthioacetate salts,16 are known to act as ‘masked thiolates’
and under reductive conditions cleavage of the thiosulfate S–S or
thioacetate S–C bonds, respectively, takes place, generating
phosphonioalkylthiolate zwitterions that can coordinate to the
surface of gold films.

We have exploited this chemistry to generate water-soluble
cationic gold nanoparticles functionalised with alkylthiolate
ligands bearing phosphonium head-groups. We have now
extended this approach to the analogous arsonium compounds.
Reduction of tetrachloroaurate salts in situ with sodium boro-
hydride in the presence of 3 or 4 in a biphasic water/dichloro-
methane mixture yields the triphenylarsonium-capped AuNPs.
Recent work has reported rare examples of the coordination
chemistry of tertiary arsine ligands bearing pendant thiolate
groups towards Ni(II), Pt(II) and Pd(II).21 However, to the best
of our knowledge, there are no reports of the coordination
chemistry of triorganoarsonium thiolate species or of the use of
tertiary arsines or arsonium compounds as capping ligands in
the formation of functionalised nanoparticles, although nano-
scale liposomes or nanobins, composed of lipids and metal salts,
have been used to encapsulate and stabilise arsenic trioxide
in order to extend the clinical utility of this compound.22

Fig. 1 Molecular structure of zwitterion 3.

Fig. 2 Molecular structure of thioacetate salt 4.

Fig. 3 Cell viability studies of triphenylarsonium derivatives 3 and 4: (a) Cell
Titre Glo assay of zwitterion 3; (b) Cell Titre Glo assay of thioacetate salt 4;
(c) MTT assay of 3; (d) MTT assay of 4.
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The triphenylarsonium-AuNPs can be purified by extraction
with dichloromethane followed by freeze drying. The UV-Vis
spectrum of a typical sample of arsonium-capped nanoparticles
shows an absorption band with lmax of 520 nm. High resolution
TEM analysis of the AuNPs derived from the thiosulfate zwitter-
ions is shown in Fig. 4, and revealed the AuNPs to have spherical
shapes. Size distribution analysis of 1000 particles using Abel
imaging software revealed a mean diameter of 2.7 � 0.9 nm. This
compares favourably with the corresponding phosphonium-capped
AuNPs which have an average particle size of 3.0 � 1.2 nm. Wide
scan XPS spectra of the arsonium-AuNPs contained signals due to
Au, S, As and C, with the gold displaying the characteristic doublet
for Au (4f7/2) and Au (4f5/2) with binding energies of ca. 83.9
and 87.5 eV respectively, indicative of the presence of Au(0).14

Research is now ongoing to understand the cellular uptake
of the triphenylarsonium-AuNPs and confirm their presence
inside the cells using TEM to realise their potential intracellular
transport properties.

We are grateful to Sheffield Hallam University and Indian
Institute of Science (NL) for financial support.
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associated particle size histogram.
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