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Helquat dyes are the first helicene-like cationic styryl dyes obtained
as separate enantiomers. Their remarkable chiroptical properties
are due to the unique combination of a cationic hemicyanine
chromophore and a helicene-like motif. The magnitude of the
ECD response and the pH switching along with their positioning
in the visible region are unprecedented among helicenoids.

Cationic dyes receive great attention due to their widely useful
photophysical properties." This field played a pivotal role in
transforming organic chemistry from a purely academic effort
into a highly profitable industrial endeavour.” However, chiral
cationic dyes are attractive yet surprisingly underdeveloped,**
compared to achiral dyes. Specifically, cationic dyes based on a
helicene structure® remain largely overlooked. Rare exceptions
are helicenium systems from the groups of Lacour® and Arai’
(e.g- 1, 2, Scheme 1a). The seldom visited territory of helical
cationic dyes promises compounds with significant chiral pro-
perties such as sizeable chiroptical response in the visible region.

We introduced recently helquats as a structural link between
helicenes and viologens (Scheme 1b).® The present work is
motivated by an expectation that methyl-substituted helquats
will lead to an original class of helically chiral cationic dyes
(eg (+)(P)3a, Scheme 1c) with unique properties, opening up
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Scheme 1 (a) Rare examples of helical cationic dyes;G'7 (b) structural
relationship of [6]helquat with paraquat and [6]helicene; (c) one-step
diversification strategy providing access to a range of helical dyes from a
common methyl-substituted helquat precursor as presented in this paper;
(d) synthesis of hemicyanine dye 4a as reported by Walter Kénig in 1912102
and structure of pinaflavol (5a) prepared analogously by Knoevenagel
condensation.*® EDG = electron-donating group.

intriguing application opportunities for chiral sensing” or chiroptical
pH-switching® >’ (3k and 7k, Scheme 5). Here, we describe such
dyes and demonstrate their remarkable chiroptical properties such
as large electronic circular dichroism (ECD) in the visible
region and prominent switching of the chiroptical response
by pH. The magnitude of the ECD response and the
pH-switching effect along with their positioning in the visible
region are unprecedented among helicenoids.

Reacting arylaldehydes with methyl-substituted cationic
heteroaromatics to produce hemicyanine dyes'®'! (e.g. 4 — 4a,
Scheme 1d) has been since the early 20th century the enabling
technology that led to sensitizers widely used in photography (e.g:
pinaflavol).”” This transformation (Knoevenagel condensation,"®
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Scheme 2 Structures of novel racemic methyl-substituted helquats used
in this work. For synthetic details, see the ESI, Section S3.

Scheme 1d) is generally reliable, selective, experimentally simple,
and versatile."* At the outset of the present study, we proposed
novel methyl-substituted helquats 3, 6, and 7 (Scheme 2) as dye
precursors suitable for Knoevenagel condensation.

Our approach relies on a convenient three-step synthesis
of the methyl-substituted helquats,®*** involving [2+2+2] cyclo-
addition." This strategy affords racemic helquat dye precursors
3, 6, and 7 in gram quantities (Scheme 2, for synthetic details,
see the ESI,T Sections S3A-S3C).

Using [6]helquat 6 demonstrates the potential of our
approach, reacting with various arylaldehydes to give a series
of dyes 6a-h (Table 1). Their triflate salts are typically easy to
purify by precipitation. From the three methyl groups in
helquat 6, only the one attached to a pyridinium moiety proved
to be reactive in the Knoevenagel condensations. Precursors 3
and 7 show that helquats with two active methyl groups can
be used for double Knoevenagel condensations (e.g. 3 — 3a,
7 — 7a, Scheme 3 and Sections S3G and S3H, ESIt).

A further key favorable feature of our strategy is that a single
non-racemic methyl-helquat such as (—)-(P)-3 (Scheme 3a) provides
access to a whole range of non-racemic (P)-configured dyes. To this
end, racemic helquat 3 is resolved via a dibenzoyltartrate method"®
into (—)-(P)-3 and (+)-(M)-3 (Section S3D, ESIt). The former is
transformed into (P)-configured dyes 3a, 3i, and 3j (Scheme 3a).
The absolute configuration of both enantiomeric series of dyes
derived from 3 is established unambiguously by helicity assign-
ment of (M)-3 and (M)-3a by X-ray crystallography (Section S7,
ESIt). Similarly, a series of dyes 7a, 7i, and 7j (Scheme 3b and
Section S3H, ESIT) are synthesized as both enantiomers from the
respective precursors (—)-(P)-7 and (+)-(M)-7.

Table 1 Use of [6]helquat 6 in Knoevenagel condensation to obtain a
series of helquat dyes 6a—6h?

pyrrolidine
CH3OH, RT

85% 82% 83%

Product yield
70% 84% 97% 75%
¢ Typical conditions: 6 (0.07 mmol), arylaldehyde (5 eq.), pyrrolidine

X-rayh 3&%
6a

6a° 6b° 6d®

| o~
Qo J@f
N Ci2H,50

6e 6f ehb

80%
(5 eq.), 60-120 min. ? For X-ray data, see the ESI, Sectlon S7. Full
experimental data, see Section S3F.
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Scheme 3 (a) Three representative (P)-configured helquat dyes 3a, 3i,
and 3j obtained from the precursor (—)-(P)-3 via Knoevenagel condensa-
tion with respective aldehydes; (b) the isomeric (P)-configured dyes 7a, 7i,
and 7j derived from (—)-(P)-7. For (M)-configured dyes and further details,
see the ESI i Sections S3G and S3H.
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Fig. 1 Results from chiral analysis of the racemic and non-racemic
samples of helquat dye 7a by CE with a sulfated y-cyclodextrin selector.
Analysis established the enantiomeric purity of the non-racemic dyes to be
greater than 95% ee in (P)- as well as (M)-series. See Section S4 (ESIT) for
details.

Capillary electrophoresis (CE) with sulfated cyclodextrin
chiral selectors'” allows direct enantiocomposition analysis of
the new dyes (e.g. 7a, Fig. 1 and Section S4, ESIt). This analysis
confirms that the stereointegrity of the helix persists during the
Knoevenagel condensations forming dyes shown in Scheme 3
and Section S3G and S3H (ESIt)."®

The non-racemic dyes show notable chiroptical properties.
Compound (+)-(P)-3a exhibits a large molar rotation ([¢]3 =
+223 830 deg cm® dmol '), and exciton coupling™® leads to
significantly intense Cotton effects in ECD spectra in the visible
region (Scheme 4a and Section S5, ESIT). Specifically, the dye
with right-handed helicity (+)-(P)-3a shows a strong positive
ECD band at 555 nm (Ae = +143 M~' cm™ ). While the
prominent chiroptical response of many helicenoids in the
UV region is documented amply in the literature,>*® systems
with substantial ECD in the visible are very rare.”"*> Thus, in

This journal is © The Royal Society of Chemistry 2015
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Scheme 4 Opposite Cotton effects in the visible region of isomeric dyes
of the same absolute configuration: ECD spectra of (a) (+)-(P)-3a and (b)
(=)-(P)-7a. Inset: X-ray geometry of (P)-configured scaffold of 3a.

this spectral region, the title dyes exhibit the most intense ECD
bands among the helicenoids known.

The dye (—)-(P)-7a is a positional isomer of (+)-(P)-3a.
The former also shows significant molar rotation ([¢]3 =
—100880 deg cm® dmol ') and a markedly strong visible
Cotton effect (Ae = —96 M~ ' ecm™" at 527 nm, Scheme 4b).
However, it is noteworthy that, despite their same absolute
configuration, (+)-(P)-3a and (—)-(P)-7a display opposite visible
Cotton effects (compare Scheme 4a and b). Also, this pheno-
menon is observed consistently for the other two isomeric
pairs, (—)-(P)-3i/(—)-(P)-7i and (—)-(P)-3j/(—)-(P)-7j (Section S5,
ESIt).>® This effect is verified by first-principles calculations at
several levels of theory (Section S6, ESIt). The ECD spectra
simulated for (P)-3a and (P)-7a reproduce the experimental
results in all major features (Fig. S35 and S37, ESI{).>* Transi-
tions between orbitals of the opposite symmetry with respect to
the C, axis of the molecule give rise to positive ECD in (P)-3a
and negative ECD in (P)-7a. On the other hand, transitions
between orbitals of the same symmetry give rise to negative
ECD in (P)-3a and positive ECD in (P)-7a (see Fig. S39 and S41
and Tables S13 and S15, ESIY).

Incorporating two pH-active phenol units into our helically chiral
bischromophoric dyes can engender an outstanding chiroptical
pH-switchability. To this end, we have synthesized two dyes with
phenol moieties, (+)-(P)-3k and (—)-(P)-7k (Scheme 5, Sections S3I
and S3], ESIT). For both of these compounds, pH changes trigger
sizeable and reversible modulation of ECD response.*>*® Notably,
(+)(P)}-3k shows particularly intense chiroptical pH-switching
(A(Ae) = 100 M' em™" at 650 nm). The magnitude of this pH-
switching effect and its positioning in the visible region are signifi-
cant in general, and exceptional among helicenoids in particular.

In summary, this study introduces an original class of
dicationic helical dyes with prominent chiroptical properties.
The results are significant on multiple counts: (1) many non-
racemic dyes are prepared easily from common precursors via a
single-step Knoevenagel condensation; (2) the syntheses are

This journal is © The Royal Society of Chemistry 2015
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Scheme 5 ECD switching between protonated (blue line) and deproton-
ated form (red line) of (a) (+)-(P)-3k and (b) (—)-(P)-7k.

convenient to perform and the products are typically easy to
purify; (3) the new dyes show very intense ECD responses beyond
the UV region due to a unique combination of a cationic hemi-
cyanine chromophore with a helicene-like structural motif; (4)
opposite Cotton effects in isomeric bis-chromophoric dyes of the
same scaffold helicity are observed; (5) efficient pH-switching of
the chiroptical responses is achieved (A(Ae) = 100 M~ ' ecm ™" at
650 nm) and the magnitude of this pH-effect as well as its
positioning in the visible region are unprecedented among heli-
cenoids.”” As the field of helical cationic dyes is extremely under-
developed, helquat derivatives are attractive for many potential
applications such as chiral environment-sensitive probes.
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acknowledged in the literature and synthesis of pinaflavol'**
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