Isoxazole to oxazole: a mild and unexpected transformation†

Raymond C. F. Jones,*a Alexander Chatterley,a Romain Marty,a W. Martin Owtonb and Mark R. J. Elsegooda

3-Aryltetrahydrobenzisoxazoles prepared en route to the coleophomone natural products and analogues, were found to undergo a remarkable base-mediated rearrangement to 2-aryltetrahydrobenzoxazoles. The scope of this unprecedented, facile transformation was probed: a range of analogues was produced, a mechanism proposed, and an application demonstrated by synthesis of a known herbicidal compound.

As an extension of our interest in natural products containing the cyclic trione unit 1,1,2 we were attracted to the coleophomone natural products, exemplified by coleophomones A (2) and B (3), reported as being in equilibrium via an aldol process.3,4 This group of metabolites have enzyme inhibitory properties towards bacterial cell wall transglycosylase and human heart chymase.4,5

Applying our previously reported isoxazole masking strategy for the cyclic trione unit1,2 led us to propose the disconnection of Scheme 1, requiring 3-aryltetrahydrobenzisoxazole building blocks to access the natural products and (masked) analogues. Whilst manipulating one such arylbenzisoxazole, we observed a remarkable rearrangement to a 2-arylbenzoxazole. We report here our exploration of this unprecedented, facile transformation.

Scheme 1 Strategic disconnection of coleophomones.

A suitable set of 3-aryltetrahydrobenzisoxazoles 4 was prepared by 1,3-dipolar cycloaddition of aryl nitrile oxides [available from benzaldehyde oximes via C-chlorination (NCS, CHCl₃ refux) and 1,3-elimination] with cyclohexone-1,3-diones under basic conditions (Scheme 2).6

During attempts to complete O-allylation of 3-(2-hydroxyphenyl)benzisoxazole 4a (R = R1 = H) under standard basic conditions (Cs₂CO₃, THF reflux), we did not observe the expected product but instead isolated 2-(2-allyloxy)tetrahydrobenzoxazole 5.

Scheme 2 Synthesis and rearrangement of 3-aryltetrahydrobenzisoxazoles 4. Reagents: (i), NaO-i-Pr, i-PrOH; (ii), Cs₂CO₃, THF reflux; (iii), H₂C=CHCH₂Br, Cs₂CO₃, THF reflux.

† Electronic supplementary information (ESI) available. CCDC 962972–962975. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4cc07999j

a Department of Chemistry, Loughborough University, Leics. LE11 3TU, UK. E-mail: r.c.f.jones@lboro.ac.uk; Fax: +44 (0)1509 223926; Tel: +44 (0)1509 222557
b Lilly UK, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK

References:
1. 3-Aryltetrahydrobenzisoxazoles prepared en route to the coleophomone natural products and analogues, were found to undergo a remarkable base-mediated rearrangement to 2-aryltetrahydrobenzoxazoles. The scope of this unprecedented, facile transformation was probed: a range of analogues was produced, a mechanism proposed, and an application demonstrated by synthesis of a known herbicidal compound.

2. As an extension of our interest in natural products containing the cyclic trione unit 1,1,2 we were attracted to the coleophomone natural products, exemplified by coleophomones A (2) and B (3), reported as being in equilibrium via an aldol process.3,4 This group of metabolites have enzyme inhibitory properties towards bacterial cell wall transglycosylase and human heart chymase.4,5

3. Applying our previously reported isoxazole masking strategy for the cyclic trione unit1,2 led us to propose the disconnection of Scheme 1, requiring 3-aryltetrahydrobenzisoxazole building blocks to access the natural products and (masked) analogues. Whilst manipulating one such arylbenzisoxazole, we observed a remarkable rearrangement to a 2-arylbenzoxazole. We report here our exploration of this unprecedented, facile transformation.

4. A suitable set of 3-aryltetrahydrobenzisoxazoles 4 was prepared by 1,3-dipolar cycloaddition of aryl nitrile oxides [available from benzaldehyde oximes via C-chlorination (NCS, CHCl₃ refux) and 1,3-elimination] with cyclohexone-1,3-diones under basic conditions (Scheme 2).6

5. During attempts to complete O-allylation of 3-(2-hydroxyphenyl)benzisoxazole 4a (R = R1 = H) under standard basic conditions (Cs₂CO₃, THF reflux), we did not observe the expected product but instead isolated 2-(2-allyloxy)tetrahydrobenzoxazole 5.
This rearrangement also took place in the absence of alkylating agent (Scheme 2); the phenolic product 6a (R = R1–4 = H) was stable to the basic conditions, and was successfully O-allylated to give ether 5 on addition of allyl bromide. We have verified the structures of both isoxazole 4a and dimethyl product oxazole 6b (R = Me, R1–4 = H; vide infra) through X-ray crystal structure determinations, Fig. 1a and b.

‡

We further investigated the scope of the remarkable rearrangement of benzisoxazoles 4 to benzoxazoles 6. Using isoxazole 4a, rearrangement was found to occur in aprotic solvents with reaction time of 4 h under a range of basic conditions (Table 1) including carbonates, alkoxide and amidine, but failed with tertiary amines. In the presence of water or ethanethiol (entries 12, 13) the amide products 7a,b, respectively, of ring opening of the oxazole 6a were isolated; the constitutions of the amides were confirmed by X-ray crystal structures.7

Table 1 Rearrangement of isoxazole 4a to oxazole 6a under various reaction conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>Solvent</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cs2CO3</td>
<td>THF</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>K2CO3</td>
<td>THF</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>Na2CO3</td>
<td>THF</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Et3N</td>
<td>THF</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>DMAP</td>
<td>THF</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>DBU</td>
<td>THF</td>
<td>83</td>
</tr>
<tr>
<td>7</td>
<td>LDA</td>
<td>THF</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>Cs2CO3</td>
<td>Toluene</td>
<td>97</td>
</tr>
<tr>
<td>9</td>
<td>NaOt-Pr</td>
<td>t-PrOH</td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>Cs2CO3</td>
<td>EtOH–H2O</td>
<td>87 (for 7a)</td>
</tr>
<tr>
<td>11</td>
<td>None</td>
<td>H2O</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>Cs2CO3</td>
<td>H2O</td>
<td>91 (for 7a)</td>
</tr>
<tr>
<td>13</td>
<td>Cs2CO3, & EtSH</td>
<td>THF</td>
<td>6 (for 7b)</td>
</tr>
</tbody>
</table>

a Isoxazole 1 (2.18 mmol), base (4.37 mmol), reaction time 4 h, solvent under reflux. b Isolated yields refer to 6a unless otherwise stated.

This rearrangement also took place in the absence of alkylating agent (Scheme 2); the phenolic product 6a (R = R1–4 = H) was stable to the basic conditions, and was successfully O-allylated to give ether 5 on addition of allyl bromide. We have verified the structures of both isoxazole 4a and dimethyl product oxazole 6b (R = Me, R1–4 = H; vide infra) through X-ray crystal structure determinations, Fig. 1a and b.

We further investigated the scope of the remarkable rearrangement of benzisoxazoles 4 to benzoxazoles 6. Using isoxazole 4a, rearrangement was found to occur in aprotic solvents with reaction time of 4 h under a range of basic conditions (Table 1) including carbonates, alkoxide and amidine, but failed with tertiary amines. In the presence of water or ethanethiol (entries 12, 13) the amide products 7a,b, respectively, of ring opening of the oxazole 6a were isolated; the constitutions of the amides were confirmed by X-ray crystal structures.

A range of 3-(2-hydroxyphenyl)tetrahydrobenzisoxazoles 4a–i, differently substituted in the aryl and the cyclohexane ring were shown to undergo rearrangement (Table 2) using the convenient Cs2CO3 conditions (THF reflux) to afford oxazoles 6a–i.§

We propose the mechanism illustrated in Scheme 3 for the rearrangement. Until the oxazole structure was determined, we had supposed that a Boulton–Katritzky ring transposition8 (similar to that reported by Suzuki et al.) was taking place.

Table 2 Rearrangement of oxazole 4 to isoxazole 6

<table>
<thead>
<tr>
<th>Isoxazole 4</th>
<th>Oxazole 6</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>6a</td>
<td>87b</td>
</tr>
<tr>
<td>4b</td>
<td>6b</td>
<td>59a</td>
</tr>
<tr>
<td>4c</td>
<td>6c</td>
<td>82a</td>
</tr>
<tr>
<td>4d</td>
<td>6d</td>
<td>70b</td>
</tr>
<tr>
<td>4e</td>
<td>6e</td>
<td>28b</td>
</tr>
<tr>
<td>4f</td>
<td>6f</td>
<td>55b</td>
</tr>
<tr>
<td>4g</td>
<td>6g</td>
<td>58b</td>
</tr>
<tr>
<td>4h</td>
<td>6h</td>
<td>75b</td>
</tr>
<tr>
<td>4i</td>
<td>6i</td>
<td>77b</td>
</tr>
</tbody>
</table>

a Isoxazole 4 (2.18 mmol), Cs2CO3 (4.37 mmol), THF at reflux. b Reaction time 4 h. c Reaction time 12 h. d Reaction time 2 h.
substituent. The 1,3-dipole finally collapses to the oxazole in a
at the formal negative end by the 1,3-dione system, and at
the formal positive end by the electron-rich 2-hydroxyphenyl
substituent. The 1,3-dipole finally collapses to the oxazole in a
6π electrocyclic ring closure.

Previous reports indicate that it is possible to form oxazoles
from azirines, and also that an azirine can be generated from
an isoxazole either thermally or photolytically,13,14 However,
the energies required well exceed those of our reaction condi-
tions and thus an alternative rationale was required. The Neber
rearrangement is an alternative way of generating azirines given
the appropriate leaving group.15 This mechanism implies that
the base is catalytic, and this was supported by isolation of 6a
(66%) from 4a using 0.1 mol equiv. of Cs2CO3 (THF reflux, 1.5 h).
An intermediate with m/z identical to both the isoxazole and
oxazole was observed by LC-MS during the rearrangements of 4a
and 4c to 6a,6c, respectively, and isolated by HPLC. We were not
able to unambiguously identify the structure, but NMR studies
indicate the cyclohexane portion to be symmetrical, supporting
either the azirine or nitrile ylide formulation.16 An attempt to
crystallise the dimethyl intermediate formed from 4c led merely
to recovery of the oxazole 6c. The oxazole ring opening to form
amides 7a,b is consistent with nucleophilic attack at C-5 of the
oxazole.

To discount the possibility of the oxazoles being formed by
retro-cycloaddition from the isoxazoles and recombination via
a different connectivity, we have shown that treatment of a
mixture of the two tetrahydrobenzoxazoles 4c and 4i under
the Cs2CO3–THF reflux conditions led only to the tetrahydro-
benzoxazoles 6c and 6i predicted by the mechanism of Scheme 3,
with no crossover products observed.

The tetrahydrobenzoxazoles prepared herein are closely related
to a series of herbicides described in a patent by Ueda et al.17
Using benzoxazole 6a we have prepared an example 8 of this
group by reaction with 2-chloropyrimidine (47%) (Scheme 4).

In conclusion, we have discovered an unexpected, remark-
ably facile novel base-mediated rearrangement of tetrahydro-
benzoxazoles to tetrahydrobenzoxazoles, demonstrated the
scope and probed the reaction mechanism of this surprising
transformation. The synthetic utility of this rearrangement has
been demonstrated by synthesis of a known bioactive compound.

The authors thank Loughborough University for a studentship
(A. C.) and Lilly UK for financial support, and ENSIACET
(Toulouse) for support for a work placement (R. M.).

Notes and references

‡ Crystal data for 4a: C13H11NO3, M = 229.23, orthorhombic, Pca21,
a = 16.7595(8) Å, b = 21.5779(4) Å, c = 13.3093(5) Å, V = 5299.18(15) Å3, Z = 16,
µ(Mo-Kα) = 0.102 mm−1, 36 812 reflections measured, 8811 unique,
Rint = 0.064, Rw(10081 data with F2 > 2σ(F2)) = 0.056, Rw(10081 data) = 0.166, absolute structure x = 0.419, Four molecules in asymmetric unit.
For 6a: C16H15NO3, M = 237.28, orthorhombic, Pna21, a = 12.9362(2) Å, b = 9.3159(15) Å, c = 21.663(4) Å, V = 2609.4(8) Å3, Z = 8, µ(Mo-Kα) = 0.09 mm−1,
25 390 reflections measured, 6484 unique, Rint = 0.034, Rw(5459 data with F2 > 2σ(F2)) = 0.035, Rw(5459 data) = 0.088, absolute structure x = 0.2(4). Two molecules in asymmetric unit. CCDC 962972 and 962973.
§ Typical procedure for oxazole formation: 3(2-hydroxyphenyl)-6,7-
dihydrobenzo[d][1,3]oxazol-4(5H)-one 4a (0.500 g, 2.18 mMol) and Cs2CO3
(1.42 g, 4.37 mMol) in dry THF (30.0 mL) was heated under reflux for 4 h.
Hydrochloric acid (2 M; 5 mL) and CH2Cl2 (25 mL) were added after the
0.2(4). Two molecules in asymmetric unit. CCDC 962972 and 962973.

References

Studies with the 3-phenyltetrahydrobenzisoxazole confirm the requirement for the phenolic substituent: unpublished observations.

Selected spectral data for the intermediate in rearrangement of 4a to 6a: δH (500 MHz; CDCl3) 2.05–2.15 (m, 2H, CH2C6H4CH2), 2.67 (4H, t, J = 6.4, 2 × CH2CO), 7.30–7.33 (1H, m, Ar–H), 7.52–7.60 (2H, m, 2 × Ar–H), 8.21 (1H, d, J = 8.2, Ar–H), 11.18 (s, 1H, OH).