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rational spectroscopy techniques
to non-destructively monitor plant health and
development†

Holly J. Butler,ab Martin R. McAinsh,*c Steven Adamsd and Francis L. Martin*a

Vibrational spectroscopy is a powerful analytical tool that is yet to be fully developed in plant science.

Previously, such tools have been primarily applied to fixed or in vitro biological materials, which do not

effectively encapsulate real-time physiological conditions of whole organisms. Coupled with multivariate

analysis, this study examines the potential application of ATR-FTIR or Raman spectroscopy to determine

spectral alterations indicative of healthy plant growth in leaf samples of Solanum lycopersicum. This was

achieved in the absence of destructive effects on leaf tissues locally or on plant health systemically;

additionally, autofluorescence was not a confounder. Feature extraction techniques including PCA-LDA

were employed to examine variance within spectral datasets. In vivo measurements are able to

successfully characterise key constituents of the leaf cuticle and cell wall, whilst qualifying leaf growth.

Major alterations in carbohydrate and protein content of leaves were observed, correlating with known

processes within leaf development from cell wall expansion to leaf senescence. These findings show that

vibrational spectroscopy is an ideal technique for in vivo investigations in plant tissues.
Introduction

With an increasing population anticipated to reach 9 billion by
2050, it is estimated that agricultural productivity will need to
increase by 70% in order to meet global food demands.1 For this
reason, plant science and food security are prominent research
topics that are fundamental to providing sustainable nutrition
for the foreseeable future. There are powerful genomic, pro-
teomic and physiological analysis tools available that have been
widely implemented in plant research, yet many are invasive
and destructive to the whole tissue. In particular, determination
of the nutrient status of plant tissue is profoundly reliant upon
chemical analyses, which oen requires substantial sample
preparation and training that can prove time-consuming and
expensive.2 Plant-focused research remains limited due to a lack
of analytical methods that can be applied in a truly non-
destructive manner, that can convey both chemical and struc-
tural information in vivo across all plant species.3

It is evident that a high-throughput, cost effective and non-
destructive technique would benet the eld of plant science
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and therefore food security. Vibrational spectroscopy in bio-
logical systems, or biospectroscopy, has been shown to be a
valuable tool for exploratory analysis in the disciplines of eco-
toxicology,4–6 food science7,8 and biomedical research.9 The
latter of these elds has expanded markedly in the past decade
with research spanning pharmaceuticals,10 cytology,11,12 histo-
pathology13–15 and cancer diagnostics in cervical,16 prostate,17

breast18 and mucosal19 tissues. This is in part associated with
advancements in biospectroscopy that allows for non-invasive
analysis of live cells and tissues,20 additional to biological uids
samples such as blood,21 serum22 and plasma23 that translate
into a clinical setting. In comparison, vibrational spectroscopy
has only been tentatively implemented across fundamental
plant biology and agronomy to provide an insight into the
microscopic and subcellular properties of plant tissues.24–26 This
could not only infer qualitative and quantitative information
regarding the biological components of the tissues in question,
but also any mechanical, environmental and nutritional stress
that they are subjected to.27–29

Infrared (IR) and Raman spectroscopy are two complemen-
tary vibrational spectroscopy methods that are commonly
employed when investigating biological samples. Although
based on distinctly different physical processes, both observe
the excitation of a molecule to higher energy levels due to
chemical bond absorption of radiation. IR spectroscopy uses
polychromatic light in the IR region that causes molecules
within a sample to vibrate due to their chemical composition.30

Coupled with the Fourier-transform (FT) algorithm conversion
of an interferogram, a spectrum is rapidly obtained as
Anal. Methods, 2015, 7, 4059–4070 | 4059
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transmittance or absorption of energy plotted against energy in
wavenumbers. The consequent spectrum derived is indicative
of the chemical bonds present and therefore provides an insight
into biochemical ‘ngerprint’ of the sample.31 FTIR spectros-
copy in plant research has been limited due to the strong dipole
moment of water and thus investigations have been predomi-
nantly conducted in non-aqueous and dried material.32 This has
been benecial in the quantication of plant substances32–34

and deriving information regarding cell wall architecture.35–38

FTIR spectroscopy has also contributed to our understanding of
key biotic and abiotic stresses such as plant–pathogen interac-
tions and salinity respectively.28,35,39–41 Furthermore, the
imaging capabilities of FTIR spectroscopy, particularly when
utilised in conjunction with synchrotron radiation, have
allowed the development of high resolution chemical imaging
for plant tissues including leaf,42 seed43,44 and vascular tissues,45

that accurately portray biochemical distributions of the
intrinsic structure. However, the necessity of dried samples
inhibits the use of FTIR for in vivo studies and also results in
substantial preparation time for in situ studies. This issue has in
part been overcome by the development of attenuated total
reection (ATR)-FTIR that utilises an internal reective element
(IRE), commonly made of diamond, Ge or ZnSe, to produce an
Fig. 1 An overview of the experimental principles and procedure. AT
processes and therefore have discrete targets in the leaf tissue, with the
palisade parenchyma by Raman alone.

4060 | Anal. Methods, 2015, 7, 4059–4070
evanescent wave that interrogates the sample in contact with
the ATR attachment.28 Consequently, analysis of fresh plant
tissue in situ is possible and has so far been implemented in
plant leaves to observe cell wall expansion,46 monitor temporal
variations,5,47 identify indicators of senescence,48 and also to
characterise components of the epicuticular waxes.49,50

In comparison, Raman spectroscopy uses monochromatic
light in the near-IR region in order to excite molecules to higher
virtual energy states. The technique exploits the phenomena of
inelastic, or Raman scattering, when a chemical bond is excited
by an incidence ray to a virtual energy state but does not return
to the original ground energy state, therefore resulting in an
energy shi represented in spectra.51 Although the occurrence
of Raman scattering is a low probability process, the technique
is highly sensitive with potential resolution approaching the
nanometer scale.52 Unlike IR spectroscopy, Raman spectroscopy
is not inhibited by aqueous samples, as water molecules do not
exhibit strong Raman scattering features, making the technique
ideal for analysis of live material. However, progress in plant
research has been impeded due to interference from auto-
uorescence of plant enzymes, which can completely suppress
the Raman signal.53 The use of radiation in the near-IR (NIR)
like that emitted from a Nd:YAG laser at 1064 nm, has been
R-FTIR and Raman spectroscopy rely on distinctly different physical
cuticle being interrogated by both techniques and the epidermis and

This journal is © The Royal Society of Chemistry 2015
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shown to reduce the inuence of uorescence on the Raman
spectrum; however, this can also reduce spatial resolution and
produce thermal emissions and absorption bands from
hydrogen bonding.54,55 Further development of the Raman
technique has increased our ability to obtain stronger Raman
signals free from autouorescence. Surface-enhanced Raman
scattering (SERS),35,56,57 resonance Raman,26,58 coherent anti-
Stokes Raman scattering (CARS),59,60 and stimulated Raman
scattering (SRS)3 have all contributed to improved resolution
and the advancement of imaging capabilities in plant and crop
science.61 In particular, the use of metallic nanoparticles in
SERS approaches have successfully quenched uorescence that
occurs in the presence of chlorophyll and pheophytin, two key
chromophores constituents of photosystems situated on the
thylakoid membrane of chloroplasts.62,63

IR spectroscopy is dependent on molecules being IR-active,
therefore having a dipole moment; however, Raman spectros-
copy is reliant on molecules having polarisability. Thus in
combination the techniques are complementary and informa-
tion that could be otherwise lost, is regained by employing both
techniques.64 Both systems are regarded as non-destructive due
to the use of relatively low energy lasers that are sufficient to
vibrate but not damage chemical bonds. In this study, ATR-FTIR
and Raman spectroscopy are critically assessed as analytical
tools for non-destructive monitoring of plant health and
development in Solanum lycopersicum (tomato) leaves. An
experimental overview can be seen in Fig. 1. We demonstrate
that biochemical information regarding cell wall expansion
during development can be characterised in vivo without
concerns from water and autouorescence interference.
Materials & methods
Plant growth conditions

Solanum lycopersicum cv. Moneymaker (Moles Seeds, Col-
chester, UK) were germinated and cultivated individually in M3
compost (Levington Horticulture Ltd, Ipswich, UK) in a
controlled environment growth room and watered daily up to
water-holding capacity. Articial light was generated by 600 W
metal halide lamp (Osram Ltd, UK) for 16 hours per day at an
intensity of 150 � 25 mmol m�2 s�1. The temperature was
maintained at 25 � 2 �C and 20 � 2 �C for photophase and
scotophase respectively. All plants were analysed in the middle
of the light period (12–4 pm) in order to maintain continuity.
Prior and during spectral acquisition in the lab, a portable light
system was used to maintain optimum light levels.
Review of non-destructive analysis

Tomato plants (t ¼ 4 weeks) were observed over a four week
period in response to analysis by ATR-FTIR spectroscopy.
Initially one set of plants (n ¼ 3) was analysed by ATR-FTIR
spectroscopy on amature leaet (A) for at least three time points
across a seven day period. The following week another set of
plants (n ¼ 3) was introduced to the experiment, with all plants
(n ¼ 6) analysed on the same or equivalent leaet three times
across another seven day period. Additionally during this
This journal is © The Royal Society of Chemistry 2015
second week of analysis (t ¼ 5 weeks) newly-expanded leaets
(B) from all plants in both sets were analysed to determine any
systemic effects of the ATR-FTIR technique. This process was
repeated for the following two weeks (t ¼ 6 and 7 weeks), each
time introducing a new set of previously unanalysed plants,
comparing leaets that had been previously analysed and newly
expanded leaets for systemic effects (n ¼ 12, leaets C and D
respectively). Furthermore this methodology was repeated
on separate tomato plants (n ¼ 9) over a period of three weeks
(t ¼ 4–6 weeks) using Raman spectroscopy, to compare the
destructive effects both locally and systemically on living tissue.
A full overview of this process can be seen in the ESI Fig. S1.†
Simultaneously to all spectral acquisitions, measurements for
rate of CO2 assimilation, H2O assimilation, internal CO2 and
stomatal conductance were obtained using a CIRAS-2 Portable
Photosynthesis System (PP Systems, MA, USA) to determine any
physiological indication of damage to the samples. Cuvette
conditions corresponded to ambient CO2 (390 ppm) light
(200 mmol m�2 s�1), temperature (22 �C) and humidity (50%)
conditions within the controlled environment room.

Characterisation of healthy plant growth and development

Two time-course experiments over the course of three weeks
were conducted in a total of nine tomato plants (t ¼ 4 weeks),
which were analysed using ATR-FTIR and Raman spectroscopy
at 12 and 11 different time points respectively. Three plants
were analysed at each time point to allow for sample rotation
and high-throughput analysis. Each plant was analysed on 3
separate leaves; a newly expanded (NE), a fully-expandedmature
(M) and a fully expanded senescing (S) leaf, to illustrate spectral
alterations in leaves at distinct morphological and develop-
mental stages.

ATR-FTIR spectroscopy

IR spectra were derived using a Bruker TENSOR 27 FTIR spec-
trometer with Helios ATR attachment (Bruker Optics, Coventry,
UK). The approximate sampling area was 250 mm � 250 mm as
dened by the IRE, diamond crystal. Spectra were obtained at a
spectral resolution of 8 cm�1, resulting in 3.84 cm�1 data
spacing, with 32 co-additions and a mirror velocity of 2.2 kHz for
optimum signal to noise ratio.9,28 Five spectra were obtained
from separate locations on each sample leaf with the diamond
crystal cleaned using distilled water and dried between each
measurement. Additionally, a background measurement was
taken before each new sample to account for any changes in
atmospheric conditions. Whole plant samples were positioned
carefully around the spectrometer, with individual leaets rested
upon MirrIR Low-E glass slides (Kevley Technologies, OH, USA)
on the sample stage. Raw spectra were cut at the spectral
ngerprint region between 1800–900 cm�1 where biological
molecules are known to absorb, second order differentiated for
baseline correction and vector normalised using Matlab 2013a
soware (The Maths Works, MA, USA) with open-source IRoot-
Lab graphical interface (https://code.google.com/p/irootlab/).65,66

The penetration depth (dp) of the ATR-FTIR evanescent wave
varies between 0.5–2.9 mm at 4000–700 cm�1 wavenumbers.9,47
Anal. Methods, 2015, 7, 4059–4070 | 4061
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This infers that this technique can derive information predom-
inantly from the plant leaf cuticle (0.1–10 mm), the extracellular
matrix of epidermal cells walls that is an essential barrier for
water loss and protection.67,68

Raman spectroscopy

An InVia Renishaw Raman spectrometer with a 785 nm excita-
tion laser (Renishaw Plc, Gloucestershire, UK), with charged
couple detector (CCD) and microscope attachment (Leica
Microsystems, Milton Keynes, UK) was employed to acquire
Raman spectra. The system was calibrated using a silicon
source prior to any sample analysis. Plants were positioned
around the microscope stage and individual leaets were rested
upon gold-coated glass slides (Platypus Technologies, WI, USA).
Ten spectra per sample were obtained at using a 1200 l mm�1

grating, �50 objective (0.75 numerical aperture), 50% laser
power (13 mW at sample), 10 seconds exposure time and one
accumulation within the spectral range 500–2000 cm�1 for
optimum resolution (�1 mm). The zap function in Renishaw
Wire 3.1 soware was used to remove any cosmic ray artefacts
from spectra, and the IRootLab Matlab interface was employed
to truncate spectra between 1750–700 cm�1, baseline correct
(1st order differentiation), vector normalise and wavelet de-
noise.69 The dp of Raman spectroscopy can be up to several
hundred micrometres in living tissues, therefore spectral anal-
ysis of leaf tissue could interrogate both the cuticle and the
underlying adaxial epidermal cells and potentially the palisade
parenchyma.70 However in this investigation, focus is placed
upon examination of the cuticle and epidermal cell wall.

Computational analysis

Dataset analysis was conducted using the IRootLab toolbox for
Matlab, unless otherwise stated. Spectral datasets are oen
complex, with each spectrum containing around 235 and up to
900 data points for ATR-FTIR and Raman spectra, respectively.
Subsequently any underlying variance within these datasets can
be difficult to unearth and feature extraction is essential.71

Exploratory principal component analysis (PCA), following
spectral standardisation, is an unsupervised technique that
effectively reduces the dataset into principal components (PCs),
which encapsulate variance throughout data classes.72 Coupled
with supervised linear discriminant analysis (LDA), a technique
to attain inter-class separation and minimize intra-class
differences, a critical insight into spectral variance can be
ascertained.73 The number of PCs used was optimised using the
PCA Pareto function within the IRootLab toolbox, in order to
prevent noise introduction, and K-fold, leave-one-out, cross-
validation was conducted to prevent over-tting.71

For biomarker identication, three main approaches were
conducted in order to visualise developmental differences in
leaves over time. Difference between mean spectra (DBM) is an
unsophisticated approach where mean spectra from two classes
are subtracted, creating a curve of fundamental wavenumber
differences between them.74 The cluster vector (CV) approach
takes input from data reduction by PCA and consequent linear
combination of variables from LDA, to create a loadings vector
4062 | Anal. Methods, 2015, 7, 4059–4070
for each class that passes through respective data points.75 The
pseudo-spectra that are created allow one to identify which
variables, or wavenumbers, are responsible for variance in the
data set in direct relation to the original absorbance/intensity
spectrum.73 Forward feature selection (FFS) periodically incor-
porates sub-sets of wavenumbers into a data set and ranks them
based on their contribution to improved classication,
producing a feature selection histogram that visualises the
number of times each wavenumber was selected.71,74 A Gaussian
t classier was used with random sub-sampling, repeated 100
times to randomise training and test data (90% training, 10%
data), and 10 variables were employed to improve stability of
biomarker identication.76 Wavenumbers were extracted using
a peak detection algorithm as described by Coombes et al.
2003.77 Following biomarker extraction, linear regression was
conducted on mean absorbance/intensity values between leaves
at distinct developmental stages, to characterise heterogeneity
between leaves.

Potential anomalies were identied using the Grubb's test
and one-way analysis of variance (ANOVA) with Tukey's multiple
comparison tests were conducted in GraphPad Prism 4 soware
(GraphPad Soware Inc, CA, USA) to determine signicant
differences between classes. Statistical tests were conducted
using mean data from each sample, as opposed to individual
scores.

Results and discussion
Review of non-destructive analysis

In order to identify any destructive effects of either ATR-FTIR or
Raman spectroscopy on living plant samples, a number of
comparisons between leaet observations were made. Initially,
physical damage to the leaf was assessed visually to detect any
signs of tissue damage and stress. Raman spectroscopy did not
contribute to any visual alterations in leaf tissue viability in
comparison to control leaves; however, ATR-FTIR spectroscopy
resulted in clear indentation of the tissue (Fig. 2). This occurs as
the technique requires contact between the diamond crystal
and the sample, resulting in pressure being applied to the
adaxial leaf surface and therefore causing damage to the cuticle
and epidermis. Although local damage can be seen at the
analysis site, no differences can be seen at other leaets and
systemic leaves, indicating that any damage is conned to the
dened leaet. Interestingly, no signicant alterations can be
observed when rates of CO2 assimilation were compared
between leaet samples (Table 1) following interrogation by
ATR-FTIR spectroscopy in both local and systemic leaves,
despite compromises to the leaf surface. No signicant alter-
ations were apparent in additional gas exchanges measure-
ments either (ESI Table S1†). It can be assumed that there is no
signicant effect on CO2 assimilation as a consequence of
analysis using ATR-FTIR and therefore no apparent impact on
leaf functionality.

Vibrational spectroscopy is a valuable tool for analysis of
plant material and can infer subtle alterations in structure and
biochemical composition that can be indicative of environ-
mental stress.5,78 Minimal variations can be seen in pre-
This journal is © The Royal Society of Chemistry 2015

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5ay00377f


Fig. 3 Cross-validated PCA-LDA 1D scores plot of ATR-FTIR spectra
obtained over a three week period (t ¼ weeks 5, 6 and 7 of develop-
ment) to distinguish spectral effects of the technique. Each square
corresponds to an individual spectrum, and colour variation indicates
advancing time points through the respective time frame. Full squares
(-) represent a comparison between leaflets specifically analysed the
previous week with equivalent leaflets from a newly introduced plant
set, and empty squares (,) compare a newly expanded leaflet to
observe any systemic effects as well as local effects of the technique.
(A) Compares previously analysed leaflet A and systemic leaflet B in
plant sets 1 and 2; (B) leaflets B and C and (C) leaflets C and D.

Fig. 2 Visible effect of ATR-FTIR spectroscopy on leaf tissue. (A)
depicts leaflet sample immediately following analysis at three distinct
points (t ¼ 4 weeks) and (B) shows the same leaflet one week later
(t ¼ 5 weeks).
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processed mean spectra from both ATR-FTIR and Raman
spectra (ESI Fig. S2 and S3†) when comparing the effects of both
analysis techniques in previously analysed and systemic leaves.
This displays similarity in leaf stage of development, but also
indicates the necessity of a feature extraction technique to
identify subtle variation between samples that reveal
biomarkers of damage. One-dimensional (1D) scores plots
produced by cross-validated PCA-LDA of IR spectral data across
the course of three weeks are shown (Fig. 3). Fig. 3A shows
variance between equivalent leaets at week 5 of plant devel-
opment in two plant sets, one of which had been previously
analysed using the ATR-FTIR technique. Spectra are plotted as
points against the rst linear discriminant (LD1), where sepa-
ration in the y-axis suggests difference between the individual
classes and consequently the samples. In this scores plot,
initially no separation can be identied between ‘plant set 1’
and ‘plant set 2’ in either leaet A (full square), which is a direct
comparison between an interrogated leaet and an equivalent
non-interrogated leaet. This suggests that there is no spectral
alteration between the two that can be associated with
continued analysis with ATR-FTIR spectroscopy, which is also
conrmed by a one-way ANOVA test with Tukey's post-hoc test
on each average sample score (ESI Table S2A†). Similarly in a
Table 1 Average rate of CO2 assimilation (mmol CO2 m
�2 s�1 � standard

of three weeks (t ¼ 5–7) to determine any detrimental effects of ATR
determine any significant differences between values, however no signi
technique are shown in italic

Leaet

t ¼ 5 weeks t ¼ 6

A B B

Plant set 1 8.03 � 0.61 10.54 � 0.99 —
2 6.44 � 0.40 12.26 � 0.59 6.97
3 8.66
4

This journal is © The Royal Society of Chemistry 2015
systemic leaf, leaet B in both plant sets, no differences can be
seen showing that the technique is not causing any distin-
guishable damage to the overall plant health. Individual time
error) for equivalent leaflets (A–D) in four plant sets over a time course
-FTIR spectroscopy interrogation. An ANOVA test was performed to
ficance was depicted (P > 0.05). Leaflets previously analysed using the

weeks t ¼ 7 weeks

C C D

11.39 � 1.72 — 10.65 � 0.44
� 0.97 12.70 � 1.22 — 11.86 � 0.79
� 1.59 10.36 � 1.73 12.28 � 1.84 10.63 � 1.49

6.70 � 1.78 6.82 � 1.25

Anal. Methods, 2015, 7, 4059–4070 | 4063
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points are identied using colour shading of individual spectra
in order to identify any time related patterns; however, none are
apparent.

During the following week of analysis (Fig. 3B), small alter-
ations can be observed between leaet B in both ‘plant set 2’,
which had been analysed since week 5 of development, and the
newly introduced ‘plant set 3’. This alteration may be due to the
effect of the ATR-FTIR technique on the integrity of the leaf.
However, a degree of overlap occurs and following statistical
analysis, this spectral feature is in fact not signicant (ESI Table
S2B†). Interestingly, no statistically signicant shis in LD1 are
present in leaet C across all three plant sets, notwithstanding a
potential outlier that could be associated with analysis at the
beginning of the time period (ESI Table S2C†). In Fig. 3C, the
nal week of analysis is shown (t ¼ 7) and a comparison
between ‘plant set 3’ and ‘plant set 4’ in leaet C indicates no
movement in LD1, demonstrating no spectral effects due to
previous analysis using ATR-FTIR spectroscopy. This is repli-
cated in leaet D across all four plant sets, which highlight the
Fig. 4 Cross-validated PCA-LDA 1D scores plot of Raman spectra
obtained over a two week period (t ¼ weeks 5 and 6 of development)
to distinguish spectral effects of the technique. Each point corre-
sponds to an individual spectrum, and colour variation indicates
advancing time points through the respective time frame. Full circles
(C) represent a comparison between leaflets specifically analysed the
previous week with equivalent leaflets from a newly introduced plant
set, and empty circles (B) compare a newly expanded leaflet to
observe any systemic and local effects of the technique. (A) Compares
previously analysed leaflet A and systemic leaflet B in plant sets 1 and 2
and (B) leaflets B and C.

4064 | Anal. Methods, 2015, 7, 4059–4070
lack of systemic effects on overall plant health. Deterioration of
leaf integrity would be identiable via IR spectroscopy as key
biochemical alterations occur during senescence including
higher absorption at 1650–1500 cm�1 corresponding to
phenolic and proteinaceous compounds.48 Therefore any indi-
cation of leaf degradation or senescence induced by the tech-
nique would be observable using the multivariate method of
analysis shown in Fig. 3.

Following cross-validated PCA-LDA manipulation of Raman
spectra, 1D scores plots comparing leaets against LD1 display
little separation or variance between data classes (Fig. 4). This
observation corresponds with the lack of visual damage to the
leaf surface, unlike the clear physical effects of the ATR-FTIR
technique (Fig. 2). It is for this reason that analysis was con-
ducted using the Raman across three weeks of development (t
¼ 4–6) as such minimal effects were perceived. Fig. 4A
compares spectral differences between leaet A in ‘plant set 1’,
analysed during week 4 of plant development, and in ‘plant set
2’ newly introduced at week 5. The scores plot shows almost
identical spectral responses between the equivalent leaets,
depicting heterogeneity between both classes (ESI Table S3†).
This pattern is also replicated in leaet B, representing the
systemic health of the plant away from the site of interrogation.
Following an additional week of analysis, further alterations
between leaet B in ‘plant sets 2’ and ‘3’ cannot be distin-
guished (Fig. 4B). Furthermore, systemic effects on plant
health shown by comparison of leaet C in ‘plant sets 1’, ‘2’ and
‘3’, indicate no spectral separation in LD1 and therefore display
no observable effect of interrogation using Raman
spectroscopy.
Fig. 5 Spectral data derived from ATR-FTIR (A and C) and Raman (B
and D) spectroscopy over time points spanning a three week period in
order to identify alterations indicative of healthy growth. (A) ATR-FTIR
class means spectra of pre-processed data, cut to 1800–900 cm�1

wavenumbers, 2nd order differentiation baseline correction and
vector normalisation; (B) Raman class means spectra cut to 1750–700
cm�1 wavenumbers, 1st order differentiated, vector normalised and
wavelet de-noised; (C) cross-validated PCA-LDA 1D scores plot of
ATR-FTIR spectra in regards to LD1 (D) cross-validated PCA-LDA 1D
scores plot of Raman spectra across LD1.

This journal is © The Royal Society of Chemistry 2015
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Table 2 Key wavenumber features determined by difference between
mean (DBM), cluster vector (CV) and forward feature selection (FFS)
biomarker extractionmethods, as identified in Fig. 7. Wavenumbers are
displayed in descending order of significance and bold type represents
wavenumbers identified in two or more extraction methods

Classes

Top six discriminating
biomarkers (cm�1)

DBM CV FFS

ATR-FTIR Days 1–3 versus Days 4–7 1107a 968 1192
1547 1057 1408
1643 1705 1327
1018 1408 1508
1126 1254 1076
1593 1512 1666

Days 1–3 versus Days 8–11 1103a 1331 1408
1639 968 1508
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Characterisation of healthy plant growth and development

Establishment of both ATR-FTIR and Raman spectroscopy as
entirely non-destructive, non-invasive techniques with high
throughput and resolution capabilities, indicates huge poten-
tial in the research elds of plant science. Firstly, it is important
to typify healthy plant growth and identify key spectral
biomarkers that are indicative of normal leaf development in an
in vivo system. Pre-processed FTIR spectra shown in Fig. 5A,
depict well-dened time dependent alterations across two
distinct spectral regions: the polysaccharide ngerprint region
from 1000–1150 cm�1 (ref. 41) and the protein absorbance
region between 1500–1700 cm�1 wavenumbers.42 Interestingly,
there is an opposite response at each of these regions, with a
reduction in absorbance over time apparent at 1570, 1639 and
1709 cm�1, associated with protein absorbance and an increase
observed at 1018, 1107 and 1125 cm�1 in the polysaccharides
region. During leaf development, it has been shown that plant
cell walls undergo secondary cell wall formation, mediated by
expansion proteins that allow for expansion of the cell wall by
introduction of matrix polysaccharides such as cellulose, pectin
and hemi-celluloses.79 This correlates to the increased absor-
bance over time, with cellulose alterations identied primarily
at 1125 cm�1,32 as well as 1107 and 1018 cm�1 with additional
contributions from pectin and hemicelluloses.34,80 At the higher
end of the spectrum, a decrease in overall protein contribution
can be seen at the amide I and amide II peaks, 1639 and
1570 cm�1 respectively, which could be tentatively associated
with progression towards leaf senescence during the analysis
period.48 In comparison, class mean spectra obtained using
Raman spectroscopy do not reveal any obvious spectral differ-
ences due to growth and development of the leaves (Fig. 5B) and
Fig. 6 Spectra derived from ATR-FTIR (A and C) and Raman (B and D)
spectroscopy with grouped time points in order to depict clear
spectral differences symptomatic of leaf development. (A) ATR-FTIR
pre-processed class means spectra, cut to 1800–900 cm�1, 2nd order
differentiation and vector normalised; (B) Raman class means spectra
cut to 1750–700 cm�1, 1st order differentiation base line correction,
vector normalised and wavelet de-noised; (C) cross-validated PCA-
LDA 1D scores plot of ATR-FTIR spectra against LD and (D) cross-
validated PCA-LDA scores plot of Raman spectra across LD1.

This journal is © The Royal Society of Chemistry 2015
therefore further multivariate analysis is necessary to distin-
guish biochemical features. It is important to note, that the
Raman spectra derived from in vivo analysis of plant samples
has good signal to noise ratio and good spectral resolution,
despite potential issues surrounding autouorescence. Any
minimal effect of this phenomenon has been alleviated or
removed by baseline correction.

Cross-validated PCA-LDA with optimised PC factors was
conducted on both FTIR absorbance (Fig. 5C) and Raman
scattering (Fig. 5D) spectra in order to elucidate variance
patterns within the data that correspond to the time progres-
sion. Fig. 5C shows a 1D scores plot that illustrates a gradual
migration in LD1, indicating an additive effect of subtle spectral
alterations between data classes. These differences are highly
1018 1057 1470
1126 1466 1358
1547 1308 1296
1593 1254 1666

Days 1–3 versus Days 12–17 1639 1327 1647
1015 1636 1751
1103 1308 1574
1123 1466 1431
991 1597 1099

1038 1011 990
Raman Days 1–3 versus Days 4–7 704 1318 1464

723 1173 1191
1229 1130 1654
1173 1217 1321
1103 1423 911
1513 718 1628

Days 1–3 versus Days 8–11 1158 1328 1527
1327 1157 1328
1526 1526 1157
1513 1287 1689
744 1186 1669

1186 1169 1643
Days 1–3 versus Days 12–17 1327 1327 1326

1513 1148 1416
1159 1598 1680
1533 1609 1624
744 1529 1601

1010 1510 1528

a Derived from one feature extraction technique.

Anal. Methods, 2015, 7, 4059–4070 | 4065

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5ay00377f


Analytical Methods Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
A

pr
il 

20
15

. D
ow

nl
oa

de
d 

on
 1

1/
1/

20
25

 2
:1

8:
01

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
signicant between relatively equal time periods of around 7
days, effectively splitting the classes into two, which potentially
allows for grouping of different time points that would aid
spectral analysis by reducing class size (ESI Table S4†). PCA-LDA
of Raman spectra displays few signicant alterations between
classes initially, indicating lack of change within the plant leaf
samples (Fig. 5D). However, a clear shi is seen mid-way
through the study shown in blue (Day 9), followed by a steady
progression back to the starting baseline. This feature is likely
to be attributed to the spectral variation shown in Fig. 5B, which
has increased absorbance between 890–850 cm�1, tentatively
associated with cellulose.61 The reason for this artefact could be
tentatively associated with secondary cell wall expansion,
resulting in sampling at a different region of the leaf tissue,
from initially the epidermal cell layer itself, to the then thick-
ened cell wall.

As both data sets depict overlap between adjacent time
points on 1D cross-validated PCA-LDA scores plots, classes were
merged to reduce number of classes and aid in visualisation of
spectral alterations. P-values relating to 1D scores plots,
ATR-FTIR classes effectively split the data set into two halves,
Fig. 7 Three biomarker extraction approaches, difference between me
forward feature selection histograms (bottom panels) to establish spect
Raman data. ‘Days 1–3’ represent the initial spectral characterisation of
‘Days 12–17’ (C and F) are all compared to this data class. The top six bio
units are arbitrary.

4066 | Anal. Methods, 2015, 7, 4059–4070
which were then split again to produce four classes, each
ranging from 3–5 days of acquisition (ESI Table S4†). This
grouping was simulated in Raman data, despite more varied
signicance patterns between classes. In doing so, the devia-
tions in protein and polysaccharide intensity seen previously in
FTIR data are emphasised further and optimised for biomarker
extraction (Fig. 6A and C). Although few differences were visible
in class means spectra of leaf samples using Raman spectros-
copy, by grouping the individual time point classes these subtle
changes are accentuated and simplied (Fig. 8B). Upon closer
inspection, it is possible to see a reduction in Raman scattering
at 1233 cm�1 which is conventionally associated with the amide
III peak, mirroring the decline in protein content and structure
found in ATR-FTIR spectra.55 Furthermore, a decline in chlo-
rophyll content is observed at 1534 cm�1 representing a well-
characterised indication of senescence as chloroplasts are
degenerated.81,82 This is a particularly good example of the
complementary nature of both the ATR-FTIR and Raman tech-
niques. Additional spectral differences are visible in the Raman
polysaccharide region, between 1160–970 cm�1 associated
predominantly with cellulose.55 At this stage no overall change
an spectra (top panels), PCA-LDA cluster vector (middle panels) and
ral biomarkers indicative of plant development in both ATR-FTIR and
the leaf and therefore ‘Days 4–7’ (A and D); ‘Days 8–11’ (B and E); and
markers identified in each approach are highlighted with symbols. All

This journal is © The Royal Society of Chemistry 2015
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in cellulose can be identied; conicting intensity patterns at
1054 cm�1, which displays a reduction over time, and
1139 cm�1 that depicts an increase over time, provide unclear
evidence for cellulose alterations. By grouping together equiv-
alent classes, 1D scores plots following PCA-LDA show that
group ‘Days 8–11’ signicantly deviates from the other data
classes (Fig. 6D).

A number of feature extraction methods are available to feed
into biomarker determination and classication models.71 In
this study, three approaches are explored to ascertain robust
biomarkers suggestive of standard leaf development: DBM (top
panels, B), CV approach (middle panel, ,) and FFS histo-
grams (bottom panels, D). In each instance, the rst data group
‘Days 1–3’ was used as a reference class and any consequent
changes along the biological spectrum would be indicative of
developmental alterations from this starting point of spectral
acquisition. The top six biomarkers for each approach were
identied using a peak detection algorithm and are listed in
Table 2.

Initially, by comparing ‘Days 1–3’ with ‘Days 4–7’ from ATR-
FTIR analysis it is clear to see a number of potential wave-
numbers emerging from all three feature extraction methods
(Fig. 7A). The DBM approach identies wavenumbers princi-
pally from the protein and polysaccharide regions, emulating
patterns identied in class means spectra. This is also repli-
cated in CV and FFS analysis, additional to a number of wave-
numbers across the spectrum that are also classied. Table 3
describes the top three biomarkers from each comparison,
derived from wavenumbers uncovered by two or more
biomarker extraction approaches, with a tentative band
assignment. As shown previously, the main alterations in
Fig. 7A are found at 1107 and 1408 cm�1 accounting for pectin
found in the plant cell wall, as well as at�1510 cm�1, tentatively
assigned to lignin or protein.80 Lignin is present in vascular
bundles within a tomato leaf and so may be noticeable due to
spectral acquisition on the leaf midrib or because of damage to
Table 3 Top discriminating biomarkers as derived from feature extractio

Wavenumber (cm

ATR-FTIR Days 1–3 versus Days 4–7 1408
1512–1508
1107

Days 1–3 versus Days 8–11 1470–1466
1308–1296
1103

Days 1–3 versus Days 12–17 1647–1636
1103–1099
1015–1013

Raman Days 1–3 versus Days 4–7 1229–1217
1191–1173
1462

Days 1–3 versus Days 8–11 1158–1157
1328–1327
1526–1527

Days 1–3 versus Days 12–17 1327–1326
1159–1148
1533–1529

This journal is © The Royal Society of Chemistry 2015
the leaf surface during analysis. When comparing ‘Days 1–3’
with ‘Days 8–11’ alterations in the protein regions manifests
across all three approaches with the amide III peak at
1302 cm�1 being the most discriminating (Fig. 7B). The DBM
and CV methodology also show similarities in polysaccharide
alterations, particularly at 1103 cm�1 associated with ester and
pectins, although this is not selected by the FFS histogram.
Ester bonds crosslink cutin in the leaf cuticle and thus this peak
infers information about this upper leaf surface layer.83 Fig. 7C
illustrates parity between the DBM, CV and FFS extraction
methods with each approach consistently identifying protein
alterations at 1642 cm�1 the amide I peak, and carbohydrate
markers at 1101 and 1014 cm�1 assigned to cellulose and pectin
respectively. As this is a comparison between the two extreme
time classes, the differences are expected to be more identi-
able by all approaches.

Raman data compared between ‘Days 1–3’ and ‘Days 4–7’
show very little variation, indicated by relatively noisy curves in
both DBM and CV analysis and a featureless FFS histogram
(Fig. 7D). As shown in ATR-FTIR data, these two data classes are
most similar and therefore spectral differences would be
minimal. In contrast, Fig. 7E consistently locates three distinct
wavenumbers associated principally with carotenoid at 1158
and 1527 cm�1, as well as chlorophyll at 1328 cm�1. The latter of
these observations may be expected as a leaf develops towards
senescence, due to a breakdown of chloroplasts and therefore a
decrease in chlorophyll content.84 The same wavenumbers are
again deduced when comparing ‘Days 1–3’ with ‘Days 12–17’,
although surprisingly these are not picked out as robustly in the
FFS histogram (Fig. 7F). Alterations at the 1158 and 1526 cm�1

band begins to infer that there is a variance in carotenoid
content between classes, attributed to leaf development. It is
well established that carotenoid content remains constant
whilst chlorophyll reduces through development of the leaf,
evidenced by colour transition from green to brown in young
n techniques, with tentative wavenumbers assignments derived

�1) Tentative assignment Reference

CH3 deformation, ns(COO
�) in pectin 88

n(C]C) in lignin, carotenoid or protein 43
n(CO), n(CC), pectin 32
CH2 bending in lipid 47
Amide III 80
n(C–O–C) in ester 89
Amide I 61
n(CO) in cellulose 36
n(CO), n(CC), d(OCH), ring in pectin 34
Amide III 55
as(PO2

�) in DNA 40
d(CH2) in hemicellulose 61
n(CC) in carotenoid 90
Chlorophyll 56
n(C]C) in carotenoid 91
Chlorophyll 56
n(CC) in carotenoid 90
n(C]C) in carotenoid, chlorophyll 56

Anal. Methods, 2015, 7, 4059–4070 | 4067
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Fig. 8 Linear regression analysis at key biomarker wavenumbers 1639 cm�1 (A), 1103 cm�1 (B), 1015 cm�1 (C) from mean IR spectra and 1529
cm�1 (D), 1327 cm�1 (E), 1158 cm�1 (F) from mean Raman spectra of leaves at different developmental stages.
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and senescent leaves.85 Thus any alteration in carotenoids
pigments is unexpected in regards to development of the leaf.

Linear regression analysis was conducted on the most dis-
tinguishing biomarkers previously determined, to ascertain any
patterns in absorbance between leaves at different morpholog-
ical stages (Fig. 8). In general, a negative relationship can be
seen between protein absorbance over time, particularly NE
leaves, typied by IR absorbance values at 1639 cm�1, repre-
senting progression from young towards senescent leaf
(Fig. 8A). This is also replicated to a lesser extent in M leaves,
which is attributed to the leaf being closer to senescence and
therefore not experiencing as severe protein reduction in the
acquisition time frame. No signicant decrease in protein can
be identied in S leaves over the course of the study due to
already having undergone substantial protein degradation
(ESI Table S5†). Fig. 8B and C highlight positive variations in
absorbance bands at 1107 and 1015 cm�1 corresponding to
polysaccharides cellulose and pectin, respectively. NE leaves
again depict the greatest alterations at these wavenumbers
corresponding to cell wall expansion. This pattern is less visible
in M leaves and even less so in S leaves, mirroring the response
shown in protein. A diminution of protein and increase of
carbohydrate are simple characteristics of leaf development and
have been effectively characterised here by ATR-FTIR in
different leaf stages.

Fig. 8D shows linear regression analysis of scattering inten-
sity at 1529 cm�1 resultant from Raman analysis of NE, M and S
leaves. Although only minimal signicance can be seen in M
leaves, there is a slight negative trend in the data, showing a
reduction in chlorophyll and carotenoid intensity. This
acknowledged indicator of leaf senescence appears to occur
more signicantly in M leaves, highlighting that chlorophyll
degradation in this case appears to be a late on-set process
4068 | Anal. Methods, 2015, 7, 4059–4070
within leaf senescence.86 In contrast, at peak 1328 cm�1 corre-
sponding primarily with chlorophyll, no signicant patterns
can be identied with NE expanded leaves showing slight
increases compared with small reductions in M and S leaves
(Fig. 8E). Overlap with DNA and protein can be observed around
this region and may contribute to masking any chlorophyll
scattering effect.87 Carotenoid alterations are portrayed in
Fig. 8F relative to intensity at 1158 cm�1 and do not show any
signicant differences between leaf samples.
Conclusion

ATR-FTIR and Raman spectroscopy are highly informative, non-
destructive and robust techniques that have been limitedly
employed in the eld of plant science.32 Whilst many studies
demonstrate the successful use of vibrational spectroscopy to
characterise plant tissues in xed and in vitro samples, thus far
research has been hindered by water interference and auto-
uorescence.3 In this investigation, in vivo spectral measure-
ments are obtained with no destructive effect on systemic plant
health. Although ATR-FTIR appears to cause minor local
damage, this had no signicant effect on the leaf and therefore
does not necessarily rule out non-destructive analysis. The
technique may not be suitable for direct analysis of fruit or
yieldable products, however in future eld studies, a single leaf
is more easily sacriced in a plant or crop system, with no
detriment to crop yield or quality. Raman spectroscopy in
particular had little visible effect on plant health and viability
and may prove to be a crucial tool for live plant analysis.
Additionally, both complementary methods coupled with
multivariate analysis, provide data that can accurately depict
known plant developmental processes, providing groundwork
for characterisation of complex stress responses, such as
This journal is © The Royal Society of Chemistry 2015
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nutrient deciency, that could be used in the eld. A prereq-
uisite for future studies would be to characterise a stress
response and locate spectral biomarkers indicative of this given
stress. This presents a novel method of ngerprinting plant
health in a high-throughput manner, which can be effectively
employed in agricultural and environmental studies.
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M. Miljković and C. Kra, in Ex-vivo and In-vivo Optical
Molecular Pathology, ed. J. Popp, 2014, ch. 3, pp. 45–102.
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