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ntioxidant capacity assays with
chemometric methods

Anita Rácz,ab Nóra Papp,a Em}oke Balogh,†a Marietta Fodora and Károly Héberger*b

Seven antioxidant capacity assays were compared and evaluated (ranked and grouped) using several

statistical methods. The aim of the research was to compare the results of different antioxidant capacity

assays and choose preferably one (or two) method(s), which could reproduce on its own the consensus

results of all of the others. The two datasets (berries and sour cherries) gave quite similar results. Cluster

analysis and principal component analysis could point out the methods that are most similar and best

connected to each other. Not only are the groupings of the methods novel in this study but also the

application of sum of ranking differences (SRD) and the generalized pair correlation method (GPCM) to

compare and rank the various antioxidant capacity assays independently. In the case of berry samples,

ferric ion reducing antioxidant power assay (FRAP) was the most successful as demonstrated by the

results of SRD and GPCM. Moreover, GPCM (with conditional exact Fisher's test and probability weighted

ordering) could distinguish between 2,2-diphenyl-1-picrylhydrazyl free radical scavenging (DPPH) and

lipid soluble antioxidant capacity (ACL) methods, which was not revealed by the SRD procedure. In the

case of sour cherry samples the total polyphenolic content (TPC) was the most appropriate method and

FRAP was the second to replace all the other assays. GPCM could differentiate between FRAP and trolox

equivalent antioxidant capacity (TEAC) methods. The suggested techniques were FRAP and TPC for both

datasets to replace all the others, whereas the ACL and water soluble antioxidant capacity (ACW)

techniques give extremely distant results.
Introduction
Antioxidant activity

Examination of antioxidant capacities has become a hot topic
nowadays as health-conscious lifestyles are becoming more
popular. Consequently, although the number of determination
techniques increases rapidly, as of now, they are not able to
determine the antioxidant capacity in vivo precisely.1

Free radicals in cells are formed in biochemical processes
under natural conditions, especially in oxidation processes.
Some amounts of free radicals are required for the normal
maintenance in vivo. A greater amount may damage lipids,
proteins, nucleic acids and carbohydrates.2,3 Free radical
formation is induced by internal and external factors (smoke,
stress, alcohol, etc.). Antioxidants are able to decrease the free
radical concentration or inhibit their formation. They are part
of an integrated defense system for cellular components.4,5

Some well-known antioxidant components are for example
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vitamin E, vitamin C, polyphenols, carotenoids, zinc and
copper.
Determination of antioxidant activity

Research dealing with antioxidants in foods, free radical scav-
enging of antioxidants and the determination of antioxidant
capacity is becoming more intense.6–9 Consequently, the
number of elaborated methods is over one hundred.1 The
reason for this large variety is that they are unable to measure
and model all of the natural in vivo reactions precisely.10

Different reactions perturb the measured values differently
according to the reaction mechanism and the system used.
Every method is selective for some antioxidant components and
reactions and none of them are able to measure the capacity of
all antioxidants properly.11

The techniques can be grouped in many ways. Depending on
what kind of reaction is involved, the methods can be classied
into two groups: based on hydrogen atom transfer (HAT) and
electron transfer (ET). HAT methods (for example ACL, ACW,
and ORAC) are related to free radicals and based on reaction
kinetics. Most of the HAT methods are based on a competitive
reaction scheme, where the antioxidant and substrate
compounds compete for thermally generated peroxyl radicals.
The scheme of the reaction is as follows:12
This journal is © The Royal Society of Chemistry 2015
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ROOc + AH / ROOH + Ac (1)

ET methods (for example FRAP, TPC, TEAC, etc.) are based
on the measurement of the capacity of an antioxidant in the
reduction of an oxidant, which has a different color in its
reduced form. From the change in color and from the extent
of this change the antioxidant capacity can be determined.13

The reaction scheme of ET methods is as follows:12

M(n) + e� (from AH) / AHc+ + M(n � 1) (2)

All antioxidant capacity assays measure the same thing, the
radical scavenging ability. However they produce different
results, as the assays use different model compounds with
various side reactions and other disturbing factors. Numerous
antioxidant capacity assays are commonly applied. However, a
justied answer is missing about which one(s) should be
preferred. Some authors use only one assay without the
knowledge of its systematic and random errors. Therefore, a
justied substitution of all methods with a less biased (less
erroneous) one is a desirable aim. The measurement of the
antioxidant activity in fruits is a very popular topic nowadays,
especially in berries, because generally their antioxidant effect
is higher than for other fruits.14,15 In the present study, we
measured the antioxidant capacity of berry and sour cherry
cultivars. The aim of the study was to compare the antioxidant
capacity assays using statistical methods (HCA, PCA, SRD and
GPCM) and select the most representative method or methods
for the available datasets based on time and cost efficiency.
Grouping and detection of similarities and differences among
the methods will also be revealed. The statistical methods pre-
sented below are suitable for comparison of other antioxidant
capacity assays and datasets.
Fig. 1 Grouping pattern of six different antioxidant activity assays
(dendrogram) for berry dataset. Euclidean distance andWard's method
were used.
Results and discussion

Antioxidant capacity values for thirteen berry genotypes and
twelve sour cherry cultivars were measured by seven antioxidant
capacity assays in total (FRAP, TPC, TRSC, DPPH, ACL, and ACW
for the berry samples and FRAP, TPC, TEAC, ACL, and ACW for
the sour cherry samples). Every sample had two duplicates and
each duplicate was measured three times. The average value of
the measurements for each sample was used for the further
statistical analysis.

The rst matrix (13 � 6) contained the berry sample anti-
oxidant capacity values for six determination techniques
(FRAP, TRSC, TPC, DPPH, ACL, and ACW). The second data
matrix (12 � 5) contained the sour cherry sample antioxidant
activity values for ve techniques (TPC, FRAP, TEAC, ACL, and
ACW). Both datasets were standardized before statistical
evaluation. The soware applied was the StatSo, Inc. (2005)
STATISTICA® (data analysis soware system), version 7.1 for
PCA and HCA and a custom-made Microso EXCEL VBA
macros for SRD and GPCM. The macros are available on the
internet: http://aki.ttk.mta.hu/srd and http://aki.ttk.mta.hu/
gpcm.
This journal is © The Royal Society of Chemistry 2015
First the comparisons and connections between the
methods are shown in the results with PCA and HCA. Finally,
the rankings by SRD and GPCM methods are presented.
HCA results

Fig. 1 presents the different clusters and connections between
the antioxidant capacity methods in the case of berry samples.
The Euclidian distance was used as distance measure and
Ward's method as the linkage rule.

Two groups are separated clearly, one contains the ACL and
ACW techniques, and the other one contains the TRSC, DPPH
and FRAP methods. It means that the results of these tech-
niques are more similar (related more closely) to each other in
the two separate groups.

Fig. 2 presents the grouping pattern for the sour cherry
dataset. It compares and clusters ve antioxidants capacity
methods. The distance measure and the linkage rule were the
same as for the previous case.

Two clusters are also observed in this case. The ACW and
ACL methods clearly form a distinct group and the other three
are more closely connected to each other.

Cluster analysis can reveal similarities, but is not able to
rank the different techniques, only to infer the connections. The
coupling between the methods and the grouping pattern will be
proved by PCA.
PCA results

When PCA was applied to the berry data matrix the rst two
principal components were sufficient to explain the majority of
the overall variance in the dataset (over 90%). When plotting the
rst and second PC loading vectors, the following observations
can be summarized (Fig. 3).

Most of the methods in the plot are scattered, but DPPH and
FRAP are in close proximity. ACL, ACW and TPC are not grouped
in the projection of PC loading 1 vs. PC loading 2.
Anal. Methods, 2015, 7, 4216–4224 | 4217
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Fig. 2 Grouping pattern of five different antioxidant activity assays
(dendrogram) for sour cherry samples. Euclidean distance and Ward's
method were used.

Fig. 3 PC loading 1 against PC loading 2 for the berry dataset.

Fig. 4 PC loading 1 against PC loading 3 for the sour cherry dataset.
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In the second case, when sour cherry samples were analyzed,
the rst three principal components were used for evaluation.
Three principal components explained 98% of the variance in
the data. The second and third components are “individual”
components which means, that only one original variable
carries most of the variance in that principal component. The
projection of points for antioxidant capacity methods onto the
plane dened by the rst and third PC loading vectors shows
the most characteristic clustering (Fig. 4).

The pattern can verify the results of cluster analysis (where
ACW and ACL formed an individual cluster), because here ACW
and ACL are detected as outliers (here PC loadings of less than
0.8 were considered as outliers). The points for the other three
methods are close to each other as in the previous case.

Although the rst dataset was not sufficient on its own for
making conclusions, the PCA and HCA results together have
shown that the ACW and ACL methods are very different from
the others. The TPC, FRAP and TEAC methods have close
resemblance, similar to the FRAP and DPPH methods in the
4218 | Anal. Methods, 2015, 7, 4216–4224
case of berry samples. This is not so surprising if we consider
the similarities between TPC and other ET-based assays (FRAP,
TEAC) and the differences between ET-based and HAT-based
assays (ACL, ACW). In the case of berry samples, the FRAP and
DPPH methods are highly correlated with each other, the
correlation coefficient is 0.941 (signicant at the a ¼ 0.05 level).
Although in that case the correlation coefficients were signi-
cant for both ET-based and HAT-based methods, these results
have shown that there are differences between the two types of
antioxidant capacity assays.
SRD results

Before the evaluation, the data matrix had to be preprocessed.
The number of rows and columns had to be added in the header
and the “golden reference” had to be pasted as the last column
of the table. In this case, the average was chosen as reference for
all of the datasets. It can also be called consensus in accordance
with themaximum likelihood principle, which yields a choice of
the estimator as the value for the parameter that makes the
observed data most probable (the average).16

SRD is implemented in an Excel VBA program. SRD values
are given in two scales. The rst is the original one and the
second is the scaled one denoted by SRDnor. In the diagram
(Fig. 5) the scaled results are used, which makes the methods
comparable, because the number of samples are different in the
two datasets. The scaled SRD values are between 0 and 100. The
equation of the scaling is as follows

SRDnor ¼ 100SRD/SRDmax, (3)

where SRDmax ¼ the maximum of the SRD values for the actual
variable (method).

We have assumed that all methods measure the same anti-
oxidant capacity with random and systematic errors (biases).
Then the row-average (or row-sum) is the best way of data
fusion. We can plausibly expect that the random errors and
biases at least partially cancel each other out.
This journal is © The Royal Society of Chemistry 2015
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Fig. 5 Evaluation of six antioxidant capacity methods using sum of ranking differences (berries dataset). Average was used as reference. Scaled
SRD values are plotted on the x axis and left y axis. The right y axis shows the relative frequencies for the black Gauss-like curve with triangles
(exact theoretical distribution).

Fig. 6 Box & Whisker plot of SRD % values for six antioxidant capacity
methods of the berry dataset. The uncertainties for SRDs are derived
from a seven-fold-cross-validation.
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The lower the SRD value is, the closer it is to the reference (to
the average). Thus, FRAP can substitute all methods for anti-
oxidant capacity with the smallest error. We have also plotted
the random probability distribution curve (a Gauss like one),
which helps us decide whether the applied method is better
than or similar to the use of random numbers. All of the
methods produce better results than random numbers, except
for ACW.

Validation of the ranking has been carried out using a
randomization test and a seven-fold cross-validation. For the
latter, the dataset was split into subsets and then each subset's
SRD values were calculated. SRDs calculated on the seven 6/7th

portion and the original SRD values dene the uncertainty of
the SRD values for each method. Otherwise, we would not know
whether the colored lines on the diagram are indistinguishable
or not (whether the distances between lines are negligible or
statistically signicant). The Box & Whisker plot shows the SRD
ranges (minimum and maximum), the second and third quar-
tiles (box in which the 50% of the data are located) and the
median small box.

Fig. 6 shows that the median of DPPH and ACL is very close
to each other. The null hypothesis is that the mean values of the
methods are equal (assuming normality). The two sample t-test
compares the mean SRD values pair-wise for all methods.
Similarly, the nonparametric Sign and the Wilcoxon matched
pair tests will reveal the differences in median values without
distributional assumptions. The nonparametric tests were
suitable, because not all SRD values followed normal distribu-
tion. The t-test and the nonparametric tests clearly indicated
SRDs for DPPH and ACL are derived from the same distribution.
The median SRDs for all other methods are signicantly
different.

For the sour cherry dataset, SRD analysis was applied in the
samemanner as for the previous case. Scaled SRD values for the
ve methods are shown on Fig. 7.

Fig. 7 suggests that TPC has the smallest error out of the ve
applied methods and hence it can be used to replace all of the
other methods. ACL and ACW methods are outside the
acceptable region of the graph. FRAP and TEAC had the same
This journal is © The Royal Society of Chemistry 2015
SRD value, and their medians are indistinguishable according
to the Sign and the Wilcoxon matched pair tests. The pattern
found for the berry dataset is very similar to the one for the sour
cherry dataset as evidenced by the Box & Whisker plot and the
aforementioned tests.

The Box & Whisker plot and the above tests produced univ-
ocal results. Fig. 8 shows that the medians of FRAP and TEAC's
SRD values are the same, and the parametric and nonpara-
metric tests reject the null hypothesis, i.e. there is no signicant
difference between the SRD values of these two methods.

In addition, SRD could rank the different antioxidant activity
methods for berry and sour cherry samples. For both datasets
FRAP and TPC have the lowest SRD values, while ACW and ACL
the highest.
GPCM results

GPCM may also be used for ranking antioxidant activity tech-
niques. We wanted to verify the SRD results with another
ranking method, which is based on entirely different
Anal. Methods, 2015, 7, 4216–4224 | 4219
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Fig. 7 Evaluation of five antioxidant capacity methods using sum of ranking differences of the sour cherry dataset. Average was used as
reference. Scaled SRD values are plotted on the x axis and left y axis. The right y axis shows the relative frequencies for the black Gauss-like curve
with triangles (exact theoretical distribution).

Fig. 8 Box &Whisker plot of SRD % values for five antioxidant capacity
methods of the sour cherry dataset. The uncertainties for SRDs are
derived from a seven-fold-cross-validation.
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calculations (and a different way of thinking). GPCM can be run
using an Excel VBA program, so the dataset is quite similar to
the SRD dataset, but the reference has to be in the rst column
for the evaluation. Again, the row average was selected as the
“golden standard” (as in the case of SRD methodology).
Table 1 Comparison of six antioxidant capacity determination technique
weighted wins; pLoser is the number of probability weighted losses. The
pLoser. The predefined error limit is a (user); a (emp.) means the theo
weighted wins without losses (and its confidence value, 1 � a times the

FRAP TRSC

pWinner 2.996796 2.995086
pLoser 0 0
No decision 2 2
Rank by pWin-pLos 1 2

a (user) 0.05
CondExact No differences in Y

4220 | Anal. Methods, 2015, 7, 4216–4224
The analysis was completed for all possible variable pairs.
Probability weighted ordering and conditional Fisher's exact
test were chosen for GPCM analysis. In the case of probability
weighted ordering, wins and losses are counted, but they are
weighted with the calculated condence level (¼ 1 � calculated
signicance level) based on a suitably chosen test statistic (in
this work conditional Fisher's exact test).

Table 1 contains a selected GPCM result for the berry dataset.
The variables are ordered according to the probability weighted
differences between the number of wins and number of losses.
FRAP and TRSC are associated the most with the Y variable,
which contained the mean of the antioxidant capacity values.
The probability corrected numbers of wins were very close to
each other in the case of these two methods. The TPC method
was the third one, just a little behind them. The ACW proved to
be the worst method for this case.

Table 2 contains the same selection of GPCM results for the
sour cherry dataset as in the case of berry data. This time the
TPC and FRAP assays were practically indistinguishable and
superior to the other methods. The difference between the
probability weighted numbers of wins minus numbers of losses
for the two methods was very small. The third in line was TEAC
and ACW was the last for this case, too.

The results are highly similar to the SRD results, but GPCM
could even distinguish the methods DPPH and ACL in the rst
case, and FRAP and TEAC in the second case.
s for berry dataset by GPCM. pWinner means the number of probability
ranking was performed by the differences between the pWinner and

retical limit probability. The critical sum is the sum of the probability
critical sum)

TPC DPPH ACL ACW

0.999994 0.995555 0.992692 0
0 1.996419 1.995464 4.988241
4 2 2 0
3 4 5 6
a (emp.) 0

Crit. sum 6.65 7

This journal is © The Royal Society of Chemistry 2015
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Table 2 Comparison of five antioxidant capacity determination techniques for sour cherry dataset by GPCM. For notations see Table 1

TPC FRAP TEAC ACL ACW

pWinner 1.999863 1.998376 1.989535 0.999711 0
pLoser 0 0 0 2.987774 3.999711
No decision 2 2 2 0 0
Rank by pWin-pLos 1 2 3 4 5

a (user) 0.05 a (emp.) 0
CondExact No differences in Y Crit. sum 5.7 6
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Experimental
Antioxidant capacity methods

The antioxidant capacity was determined by different assays.
FRAP, which is based on the ferric reducing power of the anti-
oxidants in the sample, was developed by Benzie and Strain.17

The reaction is based on the reduction of the Fe3+–TPTZ
complex to the ferrous form (Fe2+–TPTZ) by the antioxidants at
pH 3.6.

[Fe(III)(TPTZ)2]
3+ + e� / [Fe(II)(TPTZ)2]

2+ (4)

The reduced complex has a blue color, thus the reaction can
be followed with a spectrophotometer at 593 nm.12

The total polyphenolic content was measured using the
Folin–Ciocalteu's reagent according to the method of Singleton
and Rossi.18,19 The reagent is a mixture of tungsten and
molybdenum oxides and its color is yellow, while the product of
the metal oxide reduction has a blue color. In the electron
transfer reactionmolybdenum(VI) is reduced tomolybdenum(V).
Contrary to its name the measurement is not selective for the
polyphenolic components.13 The reaction can be followed at 760
nm.

The TEAC method was developed by Miller et al.20 The key
reaction is that the antioxidants reduce the quantity of the 2,20-
azinodi-(3-ethylbenzothiazoline)-6-sulfonic acid free radical
(ABTSc+). The ABTSc+ radical cation has a dark green color, but if
antioxidants are in the reaction medium, the radical cation is
transformed to ABTS2� and loses its color. The reaction can be
followed with a spectrophotometer at 734 nm.21

The radical-scavenging activity was measured by DPPH22 and
TRSC23 methods. The DPPH is one of the earliest methods,
which uses the 2,2-diphenyl-1-picrylhydrazyl commercially
available stable radical. Upon reduction the color of the solu-
tion fades. It can be measured with a spectrophotometer at 515
nm. The TRSC method is based on the inhibition of the H2O2/
OH microperoxidase-luminol system. This system is emitting
light in alkaline solution and OHc is generated from H2O2 in a
Fenton type reaction by the iron complex (microperoxidase).
The total scavenger capacity was measured by a chem-
iluminescence assay at 420 nm.24

The ACW and ACL antioxidant capacity was measured using
methods described by Popov and Lewin.25,26 This assay involves
the photochemical generation of superoxide anion free radicals
(O2c

�) combined with chemiluminescence detection. The
superoxide anion free radicals react with the antioxidant
This journal is © The Royal Society of Chemistry 2015
compounds present in the sample, while the quantity of the free
radicals decreases. Luminol is activated by the residue of the
superoxide radical anions and exhibits luminescence. Based on
these reactions the method is suitable for the measurement of
radical scavenging properties. The results are expressed in
Trolox equivalent in the case of lipid soluble and in ascorbic
acid equivalent in the case of water soluble antioxidant capacity.

Nicolet Evolution 300 BB (Thermo Electron Corporation,
Cambridge, UK) was used for all spectrophotometric measure-
ments. The TRSC is measured with a Lumat 9501 luminometer
(Berthold, BadWildbad, Germany) and the ACW and ACL assays
with a Photochem instrument (Analytik Jena AG, Jena, Ger-
many). In the latter case the hydrophilic antioxidants were
measured with the ACW kit, which contains 1.5 mL reagent 1
(carbonate buffer solution pH 10.5), 1 mL reagent 2 and 25 mL
reagent 3 (luminol as the photosensitizer). The lipophilic anti-
oxidants were measured with the ACL kit. The main compo-
nents of the kit are as follows: Merck methanol (reagent 1),
carbonate buffer solution (reagent 2) and working solution of
reagent 3 (luminol as the photosensitizer).25,26
Statistical methods

PCA. Principal component analysis is an unsupervised
pattern recognition method,27 which has been commonly used
for these problems in all elds of chemistry in the last twenty
years.28,29 The basic idea is that “latent variables” are created by
the linear combination of the original variables. It means that
the original data matrix (X) can be decomposed into the product
of two matrices, which must be orthonormal. The two matrices
are called PC loadings (P) and scores (T). The principal
components are ordered in such a way that the variance
explained by the rst principal component is the greatest; the
variance explained by the second one is smaller, and so on,
whereas that of the last is the smallest.

A basic assumption in the use of PCA is that the score and
loading vectors corresponding to the largest eigenvalues
contain the most useful information related to a specic
problem and that the remaining ones comprise mainly the
noise. The points (samples) are projected onto a subspace of
smaller dimensions, where dominant groups (clusters) and
outliers can be observed. The similarity of variables can also be
evaluated (i.e. from the directions, PC loadings) only their
scaling is different – between �1 and +1 – in the case of a
standardized input matrix. In the present study the variables
Anal. Methods, 2015, 7, 4216–4224 | 4221
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Table 3 Comparison of statistical methods. The statements about distance measure and software are connected to our investigations

HCA PCA SRD GPCM

Method type Unsupervised Unsupervised Supervised Supervised
Parametric Parametric Non-parametric Non-parametric
Pattern recognition Pattern recognition Ranking/pattern

recognition
Ranking

Used distance
measure

Euclidean Euclidean Manhattan Non-distance based

Soware Statistica 12 Statistica 12 MS Excel (with specially
developed macro)

MS Excel (with specially
developed macro)

Signicance test — Cross-validation Wilcoxon matched Pair test McNemar's/conditional Fisher's
test

Robustness Non-robust Non-robust Non-robust/robust Robust
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(assays), were grouped and evaluated, though the pattern
(similarity) of samples was also calculated (data not shown).

HCA. Hierarchical cluster analysis is also an unsupervised
pattern recognition technique.30,31 It is a very simple and illus-
trative statistical method, which is used in many elds of
science.32 More oen it is used with PCA to conrm each other's
result.33 The basic idea of the method is that the connections
between antioxidant capacity methods are based on distance
measures (between samples or methods) and linkage (amal-
gamation) rules. Linkage rules determine the way to dene
distances between groups (clusters), whereas the distance
measure denes the distance between samples or methods. The
latter can be Euclidian distance, Mahalanobis distance,
Manhattan distance, Minkowski distances, etc. Linkage rules
can be simple-, complete linkage, Ward's method, etc. The
disadvantage of cluster analysis is that the use of different
distance denitions and linkage rules can provide different
results. The best practice is that we try every combination and
accept the pattern only if there is no signicant difference. The
most-used distance measure and linkage rule is Euclidian
distance with Ward's method. We also used the above combi-
nation in this work. The data were (column-wise) standardized
before HCA.

SRD methodology. Sum of ranking differences is a novel and
simple method34,35 to compare models, methods, analytical
techniques, etc. and it is entirely general.32,36,37 In the input
matrix the samples are arranged in the rows and the methods
(variables) are arranged in the columns. In the rst step the
antioxidant capacity values in every column are ranked by
increasing magnitude. Then, the difference between the rank of
the actual method and the rank of the known reference (golden
standard) is computed. If the golden standard is not known, the
average (minimum or maximum) can be used instead. In the
last step, the absolute values of the differences are summed
together for all methods to be compared. The closer the SRD
value is to zero, the closer is the method to the reference (i.e.
contains less errors and in this sense it is a “better” method).
The SRD methodology utilizes the advantage, the basic prin-
ciple in analytical chemistry that random and systematic errors
(biases) of the different antioxidant capacity techniques also
cancel each other, at least partially. We are better off using the
average than any of the individual methods not knowing the
4222 | Anal. Methods, 2015, 7, 4216–4224
“truth”. We cannot reasonably assume that all measurements
are shied in one direction (biased in the same way). SRD is
validated by a randomization test and a bootstrap like cross-
validation. Leave-one-out cross-validation is used, if the number
of samples is smaller than 14 whereas a seven-fold cross-vali-
dation is applied if the number of samples is higher than 13.

GPCM. The pairwise correlation method is also an easy and
fast way to select and rank different variables (features) in our
case of antioxidant capacity methods.32,38,39 Here the input
matrix is the same as for SRD, so the samples are arranged in
the rows and the methods (variables) are arranged in the
columns. The variables are compared in pairs and in all
possible combinations. The three possible outcomes are winner
(when onemember of the compared pair is superior to the other
in interrelation to the reference according a statistical test),
loser (when one member of the compared pair is inferior to the
other) and no decision (tie) if none of the pair is superior (or
inferior) according to the statistical test. There are three ways to
order the variables: simple ordering (it counts the number of
wins), difference ordering (it calculates the differences between
wins and losses) and signicance ordering (the probability
weighted variant of difference ordering). The conditional Fish-
er's exact test based on testing signicance in the 2 � 2
contingency tables is a suitable selection criterion for GPCM,
but there are other selection criteria available, for example
McNemar's test,40 c2 test41 and Williams-t test. From the above
tests only the Williams t-test is parametric and requires the
assumption of normality.

The general comparison of the four statistical methods is
shown in Table 3. The methods are compared according to the
type, used soware, distance measure, signicance test and
robustness.
Conclusion

Although the chemometric methods provide somewhat devi-
ating results, credible general conclusions can be drawn: the
principal component analysis (PCA) and hierarchical cluster
analysis (HCA) prove that the antioxidant capacity assays based
on similar principles are connected to each other closely. All
statistical methods suggest that water soluble antioxidant
capacity (ACW) and lipid soluble antioxidant capacity (ACL)
This journal is © The Royal Society of Chemistry 2015
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methods differ from the others. It can be a conrmation of the
difference between the reaction mechanism of the group of
ACL, ACW and the other used methods. Ferric ion reducing
antioxidant power assay, FRAP, (and total polyphenolic content
methods, TPC) was recommended to substitute all the other
antioxidant capacity methods for both datasets. Our goal was to
determine which assay(s) can be used with the least error, if we
have to choose only one technique. Sum of ranking differences
and the pairwise correlation method order antioxidant capacity
assays in a statistically correct way using Wilcoxon's matched
pair test, Conditional Fisher's exact test, McNemar's test, etc.
The mentioned methods based on different ways of thinking
and different ways of calculation still support each other in
revealing the order of assays.

Abbreviations
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Lipid soluble antioxidant capacity

ACW
 Water soluble antioxidant capacity

HCA
 Hierarchical cluster analysis

DPPH
 2,2-Diphenyl-1-picrylhydrazyl free radical scavenging
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 Ferric ion reducing antioxidant power assay

PCA
 Principal component analysis

GPCM
 Pairwise correlation method

SRD
 Sum of ranking differences

TEAC
 Trolox equivalent antioxidant capacity

TPC
 Total polyphenolic content

TRSC
 Total radical scavenging capacity
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advice.

References

1 U. Cornelli, Clin. Dermatol., 2009, 27, 175–194.
2 Z. Djuric, J. B. Depper, V. Uhley, D. Smith, S. Lababidi,
S. Martino and L. K. Heilbrun, J. Am. Diet. Assoc., 1998, 98,
524–528.

3 E. Cadenas, Annu. Rev. Biochem., 1989, 58, 79–110.
4 I. F. F. Benzie, Eur. J. Nutr., 2000, 39, 53–61.
5 B. Halliwell and J. M. C. Gutteridge, Free Radical Biol. Med.,
1995, 18, 125–126.

6 E. N. Frankel and J. W. Finley, J. Agric. Food Chem., 2008, 56,
4901–4908.

7 H. J. C. Froufe, R. M. V Abreu and I. C. F. R. Ferreira,
Chemom. Intell. Lab. Syst., 2011, 109, 192–196.

8 V. M. Moo-Huchin, I. Estrada-Mota, R. Estrada-León,
L. Cuevas-Glory, E. Ortiz-Vázquez, M. De Lourdes Vargas Y
Vargas, D. Betancur-Ancona and E. Sauri-Duch, Food
Chem., 2014, 152, 508–515.
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28 M. Radunić, M. Jukić Špika, S. Goreta Ban, J. Gadže,
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