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Using integrated absorption to calibrate optical
cavity spectrometers

D. P. Fullam,? K. Shoji® and D. S. Venables*®

Sensitive absorption techniques using optical cavities (such as CEAS or ICOS) generally need the

spectrometer response to be calibrated for quantitative measurements. Most calibrations are based on
the instrument response to a known, steady state absorption. Such calibrations often have drawbacks in
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terms of cost, complexity, or convenience, especially for field measurements. In this paper, we show that

the relationship between the integrated absorption and a known amount of absorber provides an

DOI: 10.1039/c5ay00080g

www.rsc.org/methods

Introduction

Optical cavities are an essential tool for extremely sensitive
absorption measurements."* Spectroscopic methods exploiting
the properties of such cavities are now widely used in the
laboratory and the field for quantitative measurement of gases
and liquid spectra. Applications include breath analysis,® trace
gas detection,*® isotope ratio measurements,’® and aerosol
extinction measurements.”® The forerunner of optical cavity
methods, cavity ring-down spectroscopy (CRDS), is considered a
calibration-free method as it measures the rate of decay of
photons in a cavity (although calibration is sometimes recom-
mended in practice®). Cavity-enhanced absorption spectroscopy
(CEAS) and other methods measure the transmitted intensity
through an optical cavity to determine the extinction coeffi-

cient, &'
L—I\ 1-R
= (2 o

where I and I, are the measured intensities through the sample
and the reference intensity through a clean, non-absorbing
matrix or vacuum. The performance of the spectrometer is
determined by L, the length of the sample path in the cavity, and
R, the effective mirror reflectivity. Quantitative absorption
measurements require careful calibration of R, and of L if it is
not coextensive with the mirror separation. Calibration of
optical cavity instruments remains a focus of recent
studies.""**

CEAS systems are generally calibrated by introducing a
known, steady-state extinction into the cavity. This may be
achieved using a gas of known absorption line strength at a
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alternative calibration strategy that yields a highly linear calibration curve and has a low uncertainty. This
method is straightforward to implement and offers a practical alternative to other calibration strategies.

reduced pressure in an evacuable cavity.'® For systems operating
at ambient pressures, or for liquid samples, a known concen-
tration of an absorbing species is commonly used for the cali-
bration;**”*® absorption by water vapour or the O,-O, dimer in
ambient air may also be suitable for calibrating some wave-
lengths.” Equivalently, the difference in Rayleigh scattering
between two gases can be used to calibrate highly sensitive
spectrometers.'® Alternative approaches include using anti-
reflection coated optics with calibrated losses,” or measuring
the phase shift of a modulated light source or the ringdown
time."'*** These calibration methods are often inconvenient or
costly, requiring gas mixtures, multiple gas bottles, or more
complex instrumentation. The requirements for these calibra-
tions may be particularly onerous in field instruments. An
alternative, robust, and accurate calibration method, applicable
to the actual operating conditions of a given instrument, would
be desirable.

In this paper, we demonstrate that the integrated absorption
produced by a known amount of absorbing, volatile compound
is an effective and accurate calibration approach for CEAS
instrumentation. We relate the integrated absorption to spec-
trometer performance, and provide experimental evidence for
the accuracy of this calibration strategy.

Experimental

A field-deployable incoherent, broadband cavity-enhanced
absorption spectrometer (IBBCEAS) instrument was used to
demonstrate the calibration procedure. The system was similar
to other instruments and only a brief description will be given
here.>® The spectrometer comprised two moderately reflective (R
= 0.994 to 0.998) dielectric mirrors with a maximum reflectivity
region extending from 300 to 460 nm. Mirrors were separated by
114 cm; the sample inlet and outlet were 92 c¢m apart and
approximately centred with respect to the cavity mirrors. This

This journal is © The Royal Society of Chemistry 2015


http://crossmark.crossref.org/dialog/?doi=10.1039/c5ay00080g&domain=pdf&date_stamp=2015-03-21
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5ay00080g
https://pubs.rsc.org/en/journals/journal/AY
https://pubs.rsc.org/en/journals/journal/AY?issueid=AY007007

Open Access Article. Published on 02 March 2015. Downloaded on 1/17/2026 11:19:08 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Technical Note

configuration gives rise to a dead volume between each cavity
mirror and the nearest inlet or outlet. The inlet sampled labo-
ratory air and incorporated an inline septum for introducing
calibration standards. The sample was drawn through the
system by a small vacuum pump and a flowmeter controlled the
flowrate to between 1 and 5 dm*® min~". The light source of the
spectrometer was a high powered LED with an emission
maximum at 366 nm. The intensity spectrum of light trans-
mitted through the cavity was measured using an Andor
Shamrock 163 spectrometer equipped with an iDUS CCD
detector.

Biacetyl (butane-2,3-dione; Aldrich, 97%) and methyl vinyl
ketone (butenone; Aldrich, 99%) were used as calibration
standards. The boiling points of these compounds are 88 °C and
81.4 °C, respectively, and their absorption cross sections have
been reported.”** A 10 pL microlitre syringe was used to
introduce precise volumes of these liquids into the inlet flow of
the system. For determining the retention time in the system,
NO, was introduced into the inlet stream from a gas-tight
syringe through the septum.

Results and discussion
Integrated absorption in the spectrometer

The relationship between the integrated absorption, the
amount of calibration standard in the system, and the instru-
ment calibration parameters must account explicitly for the
time-dependence of the absorber passing through the optical
cavity. The instantaneous response of the system, I(¢), depends
on the average number density, N(¢), and hence the number of
molecules, n(t), in the cavity at time, t:

L()—1(r)  AI(z)
1 I(1)

where V¢ is the volume of the sample gas in the cavity and ¢ is
the absorption cross section of the molecules. The integral of
the fractional intensity change, which we hereafter refer to as
the integrated absorption, 4, arising from the absorption of a
single molecule is

(T AI()
=, 10 ¢

where 7 is the residence time of the molecule in the cavity. The
integrated absorption, Ay, from a total of nr molecules is then

(4)

gL n(t) oL
ml—R:7§u—R) 2)

_ oLt
" Ve(1-R)

(3)

nrolt

Ap = 22
" V(1-R)

An identical integrated absorption as that in eqn (4) could be
produced over the residence time by the continuous absorption
of a constant number density of molecules, Nc:

Al Ncolt
= —7T =

Av=-7 (I-R) (5)
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This constant number density of this time could be
produced by the same total number of molecules in the flowing
stream:

nr
Ne = — 6
= ©)
where Vs is the volume of the sample stream giving rise to this
concentration. It follows that Vg = fr, where fis the flowrate of
the sample stream. Accordingly, the integrated area of a fixed
number of molecules is

I

The effective pathlength of light through the sample,
L/(1 — R), can be determined from the slope of Ay against ny ata
particular flowrate.

Calibration measurements

The time profile of the fractional intensity change, (AI/I), at 366
nm is shown in Fig. 1 for a series of injections of biacetyl into
the spectrometer inlet stream. The integrated absorption was
taken as the area under the peak after removing the baseline
(estimated between the start and end of the peak). The inte-
grated intensity changed linearly with the volume of the cali-
bration standard (Fig. 2), regardless of the flowrate. No effect
associated with changes in the gas refractive index was
observed, and the calculated refractive indices of the calibration
gas in the spectrometer were virtually identical to that of the
matrix gas. Good repeatability was found: the standard devia-
tion of the integrated absorption of 10 uL volumes of biacetyl
was 3.4% (5 observations at 5 dm® min~"). Some of the variation
is likely due to variations in the volume dispensed as the
reproducibility of typical microlitre syringes is around 1%.
Although eqn (7) suggests that the integrated absorption
should be proportional to 1/f, the experimentally observed
dependence indicates a more complex relationship (Fig. 3). The
effect of the flowrate likely reflects the particular geometry of
our sample cell: at low flowrates, greater diffusion of the sample

Fractional intensity change
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Fig.1 Time profile of the fractional intensity change, (Al/l), at 366 nm
in the spectrometer for injections of liquid biacetyl into the spec-
trometer inlet stream at a flowrate of 5 dm* min~%. The dispensed
volumes (in order) were 1, 2, 4, 6, 8, and 10 nulL.
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Fig. 2 Calibration curves of integrated absorption, A1, against volume
of calibration standard at a flowrate of 5 dm® min~. The slopes and
standard errors are: biacetyl (black squares) 189.2 + 0.3 s uL™%, and
methyl vinyl ketone (blue triangles) 224.6 & 1.6 s uL ™. Other flowrates
also produced linear calibration curves.

’(7,\ 25 T T T T T 250
© u
A 20 & 4200 »
c
o [0}
§_ 154 -4 150 g
2 ’ 8
g 104 o {100 §
3 2
- [S]
o 54 & 150 @
3 e
£ 0 T T T T T 0

0.0 0.2 0.4 0.6 0.8 1.0

1/ (min dm™)

Fig. 3 Dependence on reciprocal flowrate, 1/f, of the integrated
absorption of 10 ulL biacetyl (solid black squares), and of the residence
time of NO,, (blue open circles) in the sample cavity. Within our control
of the flowrate (+5%), both curves display the same flowrate depen-
dence, as indicated by eqgn (4).

into the dead volume near the mirrors would occur, in effect
increasing the residence time and sample volume in the cavity.
These spaces would be flushed more rapidly at higher flowrates.
The residence time of the sample was determined with short
pulses of NO, introduced into the inlet stream (Fig. 3). The
residence time displays the same dependence as the integrated
intensity on the reciprocal flowrate, indicating that the
enhancement in the integrated intensity is a result of the longer
residence time of the sample in the cavity.

Based on the above data for 366 nm, we calculated the
characteristics for our spectrometer using the biacetyl and
methyl vinyl ketone data. At 5 dm® min™", L/(1 — R) is 156 m,
indicating the large pathlength enhancement achieved using
the optical cavity. Assuming L = 0.92 m (the distance between
the sample inlet and outlet) the mirror reflectivity is estimated
to be 0.9941, in good agreement with the manufacturer's spec-
ifications. The calibration is readily applied to the full spectral
range of the spectrometer.

The uncertainties associated with this calibration method
are low and should be appropriate for most applications. In our
results, the standard error in our calibration curves was below
1%; as a result, the overall uncertainty in the calibration would
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be dictated by the uncertainty in the absorption cross section
(typically around 5%). Based on our repeatability results, the
uncertainty of a single point calibration would be 6% and only
marginally larger.

Practical use of this calibration method requires a calibra-
tion standard that meets several criteria. First, it must absorb
appreciably in the spectral region of interest. Second, the
standard must be sufficiently volatile to evaporate quickly in the
sample stream. The standard need not be a liquid itself; it could
be dissolved in a volatile solvent. Other desirable properties for
the standard are chemical inertness in the spectrometer and
long term stability in the storage container. Both of our cali-
bration standards meet these criteria: the long wavelength limit
of methyl vinyl ketone absorption extends to about 380 nm
while biacetyl absorbs up to 460 nm, allowing coverage of a
significant portion of the visible spectrum. Volatile, absorbing
compounds are uncommon at longer wavelengths, but Br, or I,
(in solution) may be suitable for calibrating some spectrometers
across the visible region, although these compounds have
drawbacks of being corrosive and toxic.

More generally, however, calibration standards need not
be volatile liquids. The central point of this work is that the
integrated absorption from a known amount of any calibra-
tion standard can be used to calibrate a spectrometer, eqn
(7). This applies even if the standard's concentration in the
cavity and hence its absorption are time-dependent (as in
Fig. 1). A calibration using the integrated absorption has the
advantage of allowing a variety of other calibration standards
and strategies to be used, as appropriate or convenient for a
given instrument. These strategies include dispensing a fixed
volume of vapour from the headspace of a volatile substance
or in situ formation of the calibration standard when the
stoichiometry of product formation is well understood. The
method can also be used to calibrate the spectrometer
response at a single wavelength; the unquantified absorption
of a broad absorber can then the scaled to calibrate the
overall spectral response of the system.>® Moreover, this
approach is applicable to all spectral regions. An advantage
of the approach is that the calibration applies directly to the
particular operating conditions of the spectrometer.

Conclusions

The integrated absorption can be used to calibrate the
performance of an optical cavity spectrometer when the total
amount of absorber in the sample is known. We have devel-
oped the relationship between the optical cavity calibration
parameters and the amount of calibration standard; the line-
arity of this relationship was experimentally demonstrated by
adding a volatile absorbing compound in the inlet stream. The
uncertainties associated with this calibration method are low
and depend mainly on the uncertainty in the absorption cross
section. These results show the value and potential conve-
nience of this calibration strategy for optical cavity spec-
trometers, particularly when deployed outside of laboratory
environments.

This journal is © The Royal Society of Chemistry 2015
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