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We report collision cross sections (CCS) of high-mannose N-
glycans as [M + Nal*, [M + KI*, [M + HI*, [M + ClI~, [M + H,PO,]~
and [M — H]™ ions, measured by drift tube (DT) ion mobility-mass
spectrometry (IM-MS) in helium and nitrogen gases. Further analy-
sis using traveling wave (TW) IM-MS reveal the existence of distinct
conformers exclusive to [M — H] ™ ions.

N-glycans represent the most common carbohydrate protein
posttranslational modification and are attached to the protein
backbone via asparagine residues. The extent of protein N-gly-
cosylation in eukaryotes has been estimated up to 50% > and
the involved carbohydrates are important for protein structure,
signalling, protein-protein recognition and protection from
proteolysis. N-glycan structures contain a common core con-
sisting of two N-acetylglucosamine (GlcNAc) residues at the
reducing end (termed the chitobiose core) and three additional
mannose (Man) residues. Individual structures are extended
from the mannose residues and form elaborate branched
structures; characterized as high-mannose, hybrid or complex
type.

Due to the complexity inherent in their structure, the
characterization of glycans remains challenging. Typically,
their analysis relies on liquid chromatography techniques
(with or without exoglycosidase digestions) for separation of
complex mixtures and/or tandem mass spectrometry (MS) to
produce fragment ions that facilitate structural assignments.**
A more recent approach is the application of ion mobility
coupled to mass spectrometry (IM-MS) in which glycan mix-
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tures are separated in the gas phase. The use of IM-MS in gly-
comics studies is still comparatively limited, yet several reports
have demonstrated its potential using both travelling-wave
(TW) and drift-tube (DT) IM-MS instruments.”** The empha-
sis of these studies has been on the separation of isomers
from synthetically derived oligosaccharides or N-glycan mix-
tures purified from glycoprotein standards with alkali adduct
ions being interrogated in the majority of cases.>®'*"> Over
recent years, we have explored IM-MS of negative glycan ions
for both deprotonated or phosphate adducts. Using glycans
released from biologically derived material, we demonstrated
the capability of negative polarity IM-MS to differentiate glycan
isomers in complex mixtures®® and to extract glycan ions from
non-carbohydrate material in the sample.”

IM separates ions based on the time required to traverse a
region of inert neutral gas under the influence of a weak elec-
tric field. The separation is driven by differences in mass,
charge, size and shape of each analyte and thereby provides
information about the underlying three-dimensional structure.
IM-MS data typically consists of mass-to-charge values (m/z)
and arrival times which can be further converted into orienta-
tionally averaged collision cross sections (CCS).**'* These
CCSs are intrinsic to a particular glycan and are influenced by
both the ionic state (i.e. positive/negative mode and adduction)
as well as the particular drift gas (commonly helium or nitro-
gen). In a successful IM-MS glycomics experiment it can there-
fore be crucial to simultaneously consider multiple adduct
states, instrument polarities and IM gases.

CCS values calculated from theoretical structures obtained
by molecular dynamic simulations (MD) have been compared
to experimental CCS data of native oligosaccharides'" and per-
methylated N-glycans'® as [M + Na]” and [M + 2Na]*" adducts,
respectively. In both cases theoretical and experimental values
were comparable providing insight into the gas-phase struc-
ture of the glycan adduct ions. These studies are valuable, but
raise the questions as to whether, and how other adduct types
alter the CCSs. In this context protonated and deprotonated
ions are of particular interest, since the location of charge may
vary, making MD simulations rather challenging. The simplest
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oligo-mannose structure Man3GIcNAc2 (or “Man3”, denoting
the number of mannoses) for example carries 15 hydroxyl
groups, all of which are potential sites for deprotonation.
Although quantum chemical approaches may help to predict
the location of the charge, and the three-dimensional struc-
ture, the computational resources required are very demanding
and therefore often not practical for investigating a large
variety of glycan structures. The separation power of IM rests
solely in differences in glycan-adduct gas-phase structures and
so a comprehensive study examining the CCSs of pure, known
standards in all commonly observed ion states will aid the
utility of the method and facilitate further development.

Here we report absolute ""CCS values of pure, synthetically-
derived high-mannose N-glycans in six commonly observed
ion adduct states (M + H]", [M + Na]', [M + K]', [M — H], [M +
Cl]” and [M + H,PO,]") using helium and nitrogen drift gases
(Fig. 1). The investigated N-glycan standards were purchased
from Dextra Laboratories (Reading, UK) and absolute ®CCS
measurements were performed using a modified Synapt
HDMS fitted with a linear drift tube as described previously.*?
Glycan adducts were generated by the addition of respective
salt solutions to promote adduct formation.

The absolute P"CCS values of the investigated high-
mannose structures ranged from 190 A* to 355 A% in helium
and 269 A” to 455 A® in nitrogen drift gases. In general, the
PTCCSs of proton, sodium and potassium adducts are rather
similar especially so for the larger glycans Man8 (°"CCSy, (H)
413 A%, (Na) 415 A%, (K) 415 A%), Man9 (°"CCSy, (H) 436 A%,
(Na) 435 A%, (K) 437 A%) and Man9Gle (P"CCSy, (H) 453 A?,
(Na) 453 A% (K) 454 A®). This is consistent with the specific
cation having only minimal influence on the overall gas-phase
conformation. Molecular dynamics simulations of [M + Na]"
ions have shown that glycans tend to “wrap” around the metal
cation encouraging more compact gas-phase ions'>'! opposed
to possible conformations where the different branching arms
of the glycan are extended away from one another. Interest-
ingly [M + H]" ions had similar ""CCSs to sodium and potass-
ium adduct ions yet the effect of protonation is unknown. It is
likely that protons are located on nitrogens of N-acetylglucosa-
mine residues. As these moieties are exclusively present in the
chitobiose core, this would restrict charge effects in gas-phase
structure formation. Overall, the CCS differences between pro-
tonated and cationated glycans are modest which suggests that
they adopt rather similar gas-phase structures.

When examining positive ions we find that the similarity
in CCS values of the different adducts/protomers contrasts
considerably to negative ion DTCCS measurements where
[M — H] values were generally significantly smaller than those
for chloride and phosphate anion adducts most notably for
the smallest and largest N-glycans investigated. For example,
the deprotonated Man3 ""CCSy, is 269 A%, the chloride adduct
279 A” (3.8% larger) and the phosphate adduct 290 A* (7.6%
larger). Similarly, the Man9Gle PTCCSy, values for [M — H]”
(439 A%) were significantly smaller compared to [M + H,PO,]”
(455 A%), [M + H]" (453 A% and [M + K]" (454 A®) adducts.
Unlike positive ions where the addition of a proton shows a
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Fig. 1 Absolute collision cross sections (°TCCS) of N-glycan standards
measured in nitrogen and helium as [M + H]*, [M + Na]*, [M + KI*, [M —
HI7, [M + Cl]” and [M + H,PO,4]™ adducts using drift tube ion mobility-
mass spectrometry. For ATDs that exhibit multiple features the most
abundant feature was used for CCS determination. Mannose residues
are shown in green circles, N-acetylglucosamine residues are blue
squares, and glucose residues are blue circles. Glycosidic linkages are
based on the Oxford Glycan Nomenclature.*

minimal effect to the CCS (<1% change for higher mass
glycans) compared to cationated glycans, where the removal of
a proton significantly affects CCSs for high-mannose glycan
structures.

To understand why CCS values of deprotonated ions differ
significantly to other negative as well as positive ions we inves-
tigated synthetic standards as [M + H]', [M — H|~, [M + Cl]~
and [M + H,PO,]” ions by TW IM-MS using a Synapt G2-Si
instrument which has higher IM resolution than the DT
IM-MS instrument used for absolute ®"CCS measurements.
The extracted arrival time distributions (ATDs) of [M — H]|~
ions of the synthetically-derived glycans show at least two dis-
tinct features for Man5, Man6, Man9 and Man9Glc structures
that were absent in the respective [M + H|" ions (Fig. 2).

This journal is © The Royal Society of Chemistry 2015
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Fig. 2 Arrival time distributions (ATDs) of synthetic high-mannose
N-glycans as [M — H]™ and [M + H]"* ions. Multiple features are observed
in the ATDs of Man5, Man6, Man9 and Man9Glc [M — H]™ ions, which
points to the coexistence of multiple conformers. Measurements were
performed using a TW IM-MS instrument.

The shape and relative intensity of these distributions are not
affected by activation until the threshold of dissociation is
reached. In addition, the ®"CCS and "™ CCS values of [M — H]~
ions are systematically lower than those of [M + H]" ions (Fig. 1
and 2 and ESI Table 1) for which the nearly Gaussian shape
of the ATDs suggest the existence of only one species. Chloride
and phosphate adducts ATDs also had single species (ESI
Fig. 1}). Interestingly, the Man7 and Man8 [M — H]|~ ATD
peaks are also nearly Gaussian but the estimated "YCCSs were
lower (376 A* and 406 A%) than those of protonated ions
(392 A% and 421 A?).

Multiple features in the ATDs could in principle arise from
structural isomers or distinct gas-phase conformers that are
only detectable as [M — H]™ ions. It is well documented that
CID of negative ions generates informative fragment ions
specifically cross-ring (A-type) and D-type cleavages that can be
used to differentiate high-mannose isomers."* MS/MS of [M —
H]™ ions with collision-induced dissociation (CID) applied in
the transfer region (i.e. MS/MS after IM separation) showed
that the doublet peaks of Man5, Man6 and Man?9 yield similar
fragmentation patterns (Fig. 3). The CID spectra of the Man5
ATD peaks 1 and 2 match and the D’ (m/z 323), D (m/z 657) as
well as cross ring A fragments (m/z 545 and 575) verify the
existence of a single structure. Similarly, for Man6 we observed
the same D-type fragment series, which indicates that the
additional mannose residue is on the 3-arm. This is further-
more supported by the occurrence of characteristic **A,/Y,p
fragments m/z 869. The CID spectra of both Man9 ATDs also
indicate a single isomer that is commonly observed on eukary-
otic glycoproteins.' Tons at m/z 971 (D), 827 (D-18), 809 (Bs,)
and 485 (D) confirm this structure with five mannose residues

This journal is © The Royal Society of Chemistry 2015
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Fig. 3 Negative ion MS/MS spectra of synthetically derived Man5, Man6
and Man9 [M — H]™ ions. Fragmentation is identical between ATD peaks
1 and 2 from each sample confirming the presence of a single structure.

on the 6-arm and three mannose residues substituted on the
3-arm. However, some ions (e.g. the parent ion and the m/z 971
D ion) are less abundant in ATD peak 2. It is unclear why the
parent ions intensities differ here as equivalent CID voltages
were applied. A possible explanation is the difference in size
and CCS of both conformers, which could lead to considerably
different internal energy deposition during CID.

In order to investigate whether these conformations could
be impurities deriving from the synthesis of the synthetic
glycans, we examined N-glycans released from the glycoprotein
standards porcine thyroglobulin, bovine ribonuclease B
(RNase B) and chicken ovalbumin, which have been studied
previously by IM-MS as [M + Na]" and [M + H,PO,]” ions.®°
The presence of multiple Man5, Man6 and Man9 [M — H]~

Analyst, 2015, 140, 6799-6803 | 6801
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Fig. 4 Arrival time distributions of [M — H]~ high-mannose N-glycans
from ovalbumin, RNase B and thyroglobulin. The presence of multiple
conformers is evident for Man5, Man6 and Man9. Measurements were
performed using a TW IM-MS instrument.

conformers was observed in all cases (Fig. 4). However [M +
Cl]” and [M + H,PO,]” ion ATDs indicated single conformers
(ESI Fig. 2-41) although the presence of structural isomers,
particularly Man5 from RNase B'® may affect ATD peak widths.
Interestingly the relative intensity of Man5, Man6 and Man9
[M — H]™ conformers remained consistent between samples
(i.e. ATD peak shapes). For example, the most abundant Man5
conformer had a lower "CCS (thyroglobulin 321 A% RNase B
319 A%, ovalbumin 322 A?, synthetic 318 A%) than the second
species. This consistent ratio was also true for Man9 but
the opposite was seen for Man6 where the most abundant con-
former had a larger CCS (thyroglobulin 358 A% RNase B
359 A% ovalbumin 359 A%, synthetic 357 A%). MS/MS of thyro-
globulin Man5 and Man6 confirmed the presence of single
structures (ESI Fig. 51). While it remains unclear what causes
these N-glycans to adopt multiple distinct gas-phase confor-
mations, it is clear that IM-MS provides an exquisitely sensitive
means to separate, identify, and interrogate N-glycan
structures.

Conclusions

We have reported the absolute "'CCSs of pure high-mannose
N-glycans as commonly observed adducts by DT IM-MS in He
and N,. These and other previously published values are de-
posited in the recently launched glyoconjugate CCS database
GlycoMob  (http:/www.glycomob.org) housed within Uni-
CarbKB, a glycomics mass spectrometry resource.'” CCS values
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deposited in GlycoMob were measured both by DT IM-MS and
TW IM-MS and are well within instrument error of approxi-
mately 1%. We have found that "CCS of [M — H]~ were notice-
ably smaller than both [M + H]" and anion/cationated glycans.
Analysis by TW IM-MS furthermore revealed the presence of
distinctive gas-phase conformers, specifically for Man5, Man6
and Man9 N-glycans among four sample sets. The presence of
such conformers may lead to misinterpretation of IM-MS data
unless careful attention is given to MS/MS data to discriminate
between structural isomers and conformers. As IM-MS appli-
cations for glycomics studies are in their early stages further
systematic studies are needed to understand how these bio-
molecules fold into their specific, adduct-dependent gas-phase
structure.
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