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Application of mid-infrared (MIR) microscopy
imaging for discrimination between follicular
hyperplasia and follicular lymphoma in
transgenic mice

C. Woess,a M. Drach,b,c A. Villunger,d R. Tappert,e R. Staldere and J. D. Pallua*a

Mid-infrared (MIR) microscopy imaging is a vibrational spectroscopic technique that uses infrared radiation

to image molecules of interest in thin tissue sections. A major advantage of this technology is the acqui-

sition of local molecular expression profiles, while maintaining the topographic integrity of the tissue. There-

fore, this technology has become an essential tool for the detection and characterization of the molecular

components of many biological processes. Using this method, it is possible to investigate the spatial distri-

bution of proteins and small molecules within biological systems by in situ analysis. In this study, we have

evaluated the potential of mid-infrared microscopy imaging to study biochemical changes which distinguish

between reactive lymphadenopathy and cancer in genetically modified mice with different phenotypes. We

were able to demonstrate that MIR microscopy imaging and multivariate image analyses of different mouse

genotypes correlated well with the morphological tissue features derived from HE staining. Using principal

component analyses, we were also able to distinguish spectral clusters from different phenotype samples,

particularly from reactive lymphadenopathy (follicular hyperplasia) and cancer (follicular lymphoma).

1. Introduction

Follicular lymphoma is one of the most common subtypes of
indolent lymphoma. Therefore, most patients are diagnosed in
an advanced stage and there is still no standard therapy fitting
all patients.1 The genetic hallmark of this disease is a t(14;18)
translocation and the subsequent overexpression of the anti-
apoptotic protein B-cell lymphoma 2 (Bcl2), leading to a survival
advantage of B-cells and, therefore, playing a crucial role in the
pathogenesis of follicular lymphoma.2,3 This translocation is
observed in 75–90% of follicular lymphoma patients.2,4 It is the
result of changes in the genetic program that can lead to devel-
opmental arrest and/or uncontrolled proliferation of B-cells in a
certain stage of progress. These clones are from the germinal
centre type, thus centrocytes and centroblasts.4 Follicular hyper-
plasia, on the other hand represents the most common type of
reactive lymphadenopathy. Although there are some indicators

that can help differentiate between cancer (follicular lym-
phoma) and hyperplasia, such as the patient’s history and age,
or even some histological characteristics (e.g. density of fol-
licles), there is no pathognomonic histologic feature.5

To gain a deeper insight into the distinction between fol-
licular hyperplasia and follicular lymphoma, we analyzed
tissues from Vav-Bcl2 transgenic mice. These mice overexpress
Bcl2 in the hematopoietic system, leading to a predisposition
to suffer from follicular lymphoma and subsequently pre-
mature death.2 It has been shown that the overexpression of a
transmembrane activator and a CAML interactor receptor,
coupled to the Fc-fragment of human immunoglobulin
G (TACI-Ig) (causing the neutralization of the survival and
maturation factor for B-cells, BAFF (B-cell activating factor of
the TNF family)) is able to decrease the number of B-cells in
Vav-Bcl2 mice, which alleviates disease burden and sub-
sequently prolongs the survival of these mice. Histological
evaluation of spleens from double-transgenic mice indicated
reduced follicle and germinal center size.6

To distinguish follicular lymphoma (in Vav-Bcl2 mice) from
follicular hyperplasia (in Vav-Bcl2/TACI-Ig mice), we used a
bioanalytical technique for its investigation, in particular mid-
infrared (MIR) imaging.7–10

This modern imaging method is regarded as a promising
analytical tool for environmental mapping, product functional-
ity,11,12 determining the severity of plant diseases,13,14 detect-
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ing defects12 and contamination,15,16 as well as determining
the distribution of certain chemical components.17–23 Emer-
ging biomedical applications in MIR imaging also include
tissue histopathology, which has been proposed as a solution
for histopathological differentiation between normal, benign
and malignant tissue.24,25 This imaging method has already
demonstrated great promise for the detection and characteriz-
ation of malignancies in several tissues, including skin,26

cervix,27 esophagus,28 stomach,29 lung,30 ovary,31 prostate,32–34

colon,35 brain36–39 and squamous epithelia.40 It has been
applied to study individual cells at a subcellular spatial resolu-
tion and allows determination of the state of chemical
bonding and mapping of the relative concentration of the
lipid, protein, carbohydrate and phosphorylated molecular
domains, across the cell.41–43 A major advantage of this tech-
nique is the acquisition of local molecular expression profiles,
while maintaining the topographic integrity of the tissue and
avoiding time-consuming extraction, purification, and separ-
ation steps.34,44 The greatest benefit lies in the high molecular
sensitivity combined with a spatial resolution down to a few
micrometers. Hence, MIR imaging is a powerful tool in histo-
pathological characterization. It allows the investigation of the
spatial distribution of proteins and small molecules within
biological systems by in situ analysis of tissue sections without
the use of staining and with minimal sample preparation
effort.8,34,45–49 Monitoring capabilities of this method are
based on the vibrational excitation of chemical bonds by IR
radiation detecting biochemical changes during tumor
development (i.e., more DNA, less protein, or changes in
carbohydrates).24,25

The resulting spectral features (amide I region, amide II
region, lipid regions, carbohydrates, DNA/RNA and α-helical
structures) can provide a characteristic spectrum of infrared
absorption peaks, representing a molecular fingerprint of the
biochemical composition of the tissue.50–52

In order to gain more insight into MIR follicular lymphoma
pathology, a detailed investigation into the spectral cytology of
mouse spleens from various genotypes was deemed necessary.
The investigation aimed at understanding the spectral charac-
teristics of abnormalities by observing the origin of major
spectral types in follicular lymphoma. MIR microscopy
imaging, in conjunction with multivariate data analysis, was
applied to the analysis of spleen tissue in an attempt to dis-
tinguish between cancer and reactive hyperplasia. The main
goal of this study was to identify spectral characteristics
through correlating different spleen phenotypes (normal
tissue, follicular hypoplasia, follicular hyperplasia and follicu-
lar lymphoma) that can be used to predict a region-specific
susceptibility to follicular lymphoma.

2. Material and methods
2.1 Materials

Octane (≥99.0%) from Sigma Aldrich (St. Louis, MO, USA),
hematoxylin (hematoxylin solution according to Mayer) from

Sigma Aldrich (St. Louis, MO, USA) and eosin (Eosin Y) from
Sigma Aldrich (St. Louis, MO, USA) were used for the sample
preparation. All samples were mounted on infrared-transpar-
ent CaF2 slides, 1 mm thick (KORTH KRISTALLE GmbH,
Altenholz, Germany) and 1 mm thick (Menzel slides, Fisher
Scientific, Vienna, Austria).

2.2 Mouse strains and tissue preparation

C57BL/6 TACI-Ig transgenic and Vav-Bcl2 transgenic mice have
been described elsewhere.53,54 Organs were fixed in 4% PFA
(paraformaldehyde) in phosphate-buffered saline (PBS), pro-
cessed according to standard procedures.

2.3 Assessment of spleen sections

HE-stained slides from the various mouse genotypes (C57BL/6,
TACI-Ig transgenic, Vav-Bcl2 and Vav-Bcl2/TACI-Ig) were evalu-
ated by a pathologist.

2.4 MIR microscopy imaging

Mouse spleens from four different genotypes (wt, TACI-Ig,
Vav-Bcl2 and Vav-Bcl2/TACI-Ig) were chosen for the MIR
microscopy imaging study. For preparing tissue sections, the
blocks were fixed on a microtome and two tissue sections of
4 µm thickness were cut; one was stained with hematoxylin
and eosin (HE) for histological validation by a pathologist and
the other one was used for the MIR microscopy imaging study.
The tissue sections for the MIR microscopy imaging study
were de-paraffinized with octane at 40 °C in a water bath by
moderate shaking for 4 h.23 Thereafter, the slides were dried
in an aspirator (3.2 kPa) for 30 min at room temperature and
measured with a MIR microscope. The drying time proved to
be sufficient as prolonging the drying time to 24 h caused no
difference in spectra quality.23 Spectroscopic imaging data of
the tissue sections were acquired at room temperature in trans-
mission mode using a Bruker Vertex 70 Fourier transform
infrared (FTIR) spectrometer, coupled to a Hyperion
3000 microscope, which was equipped with a usual nitrogen-
cooled MCT-D316-025 (mercury cadmium telluride) detector
called a single-element detector and a nitrogen-cooled focal
plane array (FPA) detector consisting of 64 × 64 MCT-D364
detectors. The spectrometer was continuously flushed with
dried air to minimize the water-vapor background. Visual
image collection was performed via a video camera integrated
in the microscope stage. Spectral data were recorded using the
FPA detector with nominal lateral pixel resolution of 2.65 µm ×
2.65 µm and a spectral resolution of 4 cm−1 with 32 co-added
scans. The detector range was set from 3900 cm−1 to 850 cm−1.
Before each sample measurement, an appropriate background
spectrum was collected outside the sample area. After
measurement, the sections were stained with HE for histo-
logical reevaluation and compared with the imaging results by
the pathologist.

2.5 Data processing

All spectral data processing and image assembling were per-
formed using The Unscrambler X 10.2 (Camo, Norway, Oslo)
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and the CytoSpec™ software package (http://www.cytospec.
com, Hamburg, Germany).

2.5.1 Principal component analyses (PCA). Before princi-
pal component analyses (PCA) and image analysis, it was
necessary to remove atmospheric absorptions and noise by
using the CytoSpec™ software package (http://www.cytospec.
com, Hamburg, Germany).

PCA models were generated with The Unscrambler X 10.2
software, after atmospheric correction and noise reduction.
For PCA model generation, tissue type-associated spectra were
selected using the CytoSpec™ software. For this purpose, we
evaluated the sample and defined the regions of interest
(ROIs). The extracted spectra of ROIs were imported into The
Unscrambler X 10.2 software and underwent several data pre-
treatments (e.g., baseline correction, normalization), before
PCA model generation.

2.5.2 Mid-infrared (MIR) microscopy image analysis. For
univariate and multivariate image analyses (MIAs), MIR
images were loaded into the CytoSpec™ software. Before
image analyses, it was necessary to remove atmospheric
absorptions and noise by using the CytoSpec™ software. After
this pre-treatment, spectra were vector-normalized and
smoothed (Savitzky–Golay, 13 smoothing points) in the wave
number range from 3900 cm−1 to 850 cm−1. These procedures
led to better resolved peaks, eliminated background slopes,
and reduced the influence of intensity changes caused by the
differences in tissue density and roughness of the tissue.4

Univariate image analyses, depicting a single spectral
feature of the data set, were used to reproduce the actual mor-
phology. This strategy provides only a partial representation of
the obtained imaging data with a minimal computation
effort.55,56 Single spectral features displaying essential differ-
ences (1740 cm−1, 1155 cm−1 and 1080 cm−1) were used for
comparison among the spleen samples.

For further image analyses, MIAs were performed to fully
characterize the range of spectral variations.55,57–59 MIAs, such
as hierarchical clustering (HCA), K-means (KMC) clustering
and fuzzy C-means clustering (FCM) in the spectral ranges
3650 cm−1 to 3050 cm−1, 3000 cm−1 to 2800 cm−1 and
1750 cm−1 to 850 cm−1 were used for data analyses. Further-
more, the results of univariate analyses and of MIAs were
assembled and compared directly with the HE images taken
from the same samples. Different clustering techniques were
used to find the best method, which is able to reproduce the
actual morphology. For detailed information about univariate
image analysis, as well as MIAs theory and current develop-
ments, the interested reader is referred to the cited
literature.24–33,44,60–67

3 Results and discussion

Analyses of the resulting MIR microscopy imaging data sets
were performed using the before mentioned software
packages. In this study, tissue samples were analysed by
spectra-analysis, individual principal component analyses

(PCA), and individual multivariate image analyses (MIAs).
Results of single tissue samples are depicted in Fig. 1–4.

Results presented in Fig. 1 illustrate the capability of
spectroscopic imaging to accurately reproduce tissue histology
of the Vav-Bcl2/TACI-Ig mouse spleen.

In Fig. 1(A)–(F) comparison of the measured HE-stained
tissue sections, generated chemical maps and MIAs from one
particular mouse tissue sample is illustrated. The image dis-
played in Fig. 1(A) was collected from a tissue section
measured by MIR imaging with a nominal lateral resolution of
2.65 µm × 2.65 µm per pixel for each spot (chemically dewaxed
with octane for 4 h) and stained afterwards with HE. The
image of the HE-stained slide was then directly compared with
the images constructed from chemical maps (Fig. 1(B) and (C))
or cluster analyses (Fig. 1(D)–(F)). Different tissue types can be
recognized in Fig. 1(A): the white pulp, which primarily con-
sists of lymphoid follicles (mainly composed of B-lymphocytes
and follicular dendritic cells), represents a very active area.
There, B-lymphocytes get activated by antigens and sub-
sequently differentiate into centroblasts (still able to divide)
and proliferate, for this reason the zone is very dark. During
this expansion, somatic hypermutation (SHM) modifies the
affinity of the B-cell receptor. If the result is unwanted, the cell
is eliminated by apoptosis (programmed cell death). If the
result improves the affinity of the B-cell receptor, centroblasts
differentiate into centrocytes, and move to the light zone,
where, with the help of T-cells and follicular dendritic cells
(FDCs), they are selected and become memory B-cells or
plasma cells.68 Furthermore, there is the red pulp (abundant
with blood and vessels), which consists of reticular connective
tissue with fibroblastic reticular cells and reticular fibres. In
these pictures, the histological appearance of follicular hyper-
plasia (from Vav-Bcl2/TACI-Ig mice) is shown. Fig. 1(B) depicts
a chemical map generated by integrating the area under the
absorption band at 1155 cm−1, which is commonly attributed
to carbohydrates. The result correlates well with the mor-
phology of the lymphoid follicles and the surrounding red
pulp, indicating that these tissue types produce high amounts
of carbohydrates, representing a very active region. The chemi-
cal map of the absorption at 1740 cm−1 is attributed to νCvO

esters, phospholipids as well as carbohydrates (Fig. 1(C)).
These observations indicate that the white pulp i.e., lymphoid
follicles, is highly metabolic with a high proliferation rate,
compared to the surrounding red pulp. Specific correlations
with morphological and histological features, however, cannot
be produced with this form of processing, because biological
structures are composed of a variety of complexly constructed
macromolecules. The spectral contributions mainly derive
from three groups of substances: proteins, nucleic acids and
lipids. The protein spectra in the mid-infrared range have
different characteristic bands, whose vibrations can be
assigned to the amino acid side groups69 or to the peptide
backbone.70 The spectroscopic absorption bands of lipids are
the C–H stretching and deformation vibrations of the >CH2

and –CH3 groups, and the ester carbonyl bands and the PO2
−

bands of biological membranes. MIR spectra of nucleic acids

Analyst Paper

This journal is © The Royal Society of Chemistry 2015 Analyst, 2015, 140, 6363–6372 | 6365

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Ju

ly
 2

01
5.

 D
ow

nl
oa

de
d 

on
 8

/1
5/

20
24

 2
:1

1:
50

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5an01072a


are often classified into four spectral ranges: (a) 1780 cm−1 to
1550 cm−1 in-plane vibrations of double bonds of the bases,
(b) 1550 cm−1 to 1270 cm−1 deformation vibrations of the
bases which are coupled with the sugar vibrations, (c)
1270 cm−1 to 1000 cm−1 two strong absorption bands of PO2

−

(asymmetric and symmetric) and (d) 1000 cm−1 to 780 cm−1

vibrations of the sugar–phosphate backbone. Therefore, the IR
spectra of biological samples are characterized by extreme
superposition of many different IR bands. This fact makes it
difficult to directly interpret IR spectra in many cases. Only in
individual cases (e.g., collagen of the connective tissue, and
storage compounds of microorganisms) direct conclusions on
the basis of specific bands from the spectra can be drawn.
Therefore, individual band parameters such as discrete fre-
quency or extinctions are, in most cases, of limited use to
characterize and to identify the biological material. Neverthe-

less, with MIR spectrometry unique information on the mole-
cular structure, mainly for determining the secondary
structure of proteins,71 mutations of nucleic acids72 and per-
oxidation of phospholipids73 can be demonstrated. To fully
decode the heterogeneous samples, multivariate statistical
methods for data evaluation are used, which can discriminate
between healthy versus pathological samples.74,75 Therefore,
MIR data can be used as molecular signatures for determining
the physiological status once the spectral patterns are corre-
lated with biological properties.76 Consequently, different
cluster analyses were performed to fully characterize the range
of spectral variations through the tissue section.

Fig. 1(D) depicts a pseudo-colour image that was con-
structed by using hierarchical cluster analysis (HCA). The dis-
played image represents a six-cluster structure, reproducing
histological features of the measured tissue section. A

Fig. 1 (A) Light microscopy image of a labelled HE-stained tissue section of a sample from a Vav-Bcl2/TACI-Ig mouse spleen. White pulp (white
indication), consisting of lymphoid follicles with B-lymphocytes and follicular dendritic cells and the red pulp, which is rich in blood and vessels, can
be differentiated. (B) MIR imaging result shown in false colour representation. Colours reflect intensities of the selected absorption at 1155 cm−1,
which is commonly attributed to carbohydrates. (C) MIR imaging result shown in false colour representation. Colours reflect intensities of the
selected absorption at 1740 cm−1, which is commonly attributed to νCvO esters, phospholipids as well as carbohydrates. (D) Hierarchical cluster ana-
lysis. (E) K-means clustering image. (F) Spectroscopic image of the fuzzy C-means clustering.
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K-means clustering (KMC) image is presented in Fig. 1(E). The
principal correspondence between the histological image and
the KMC image is obvious; most of the spectral clusters can be
assigned to the histological structures mentioned above. In
Fig. 1(F) the result of fuzzy C-means (FCM) clustering is illus-
trated. Most of the individual colour in this spectroscopic
image can be assigned to specific tissue structures, similar to
the result of the KMC. Clustering analysis allows identification
of tissue structures, but it should be noted, that an additional
discrimination between histological structures has not been
possible so far. Even if the number of clusters were increased
(data not shown), further differentiation between histological
structures could not be achieved.

Results from 4 individual genotype samples by chemical-
maps and MIAs are illustrated in Fig. 2 and 3. The output of
the data analyses illustrates the ability of spectroscopic
imaging to reflect the differences of various phenotypes,
especially between cancer (follicular lymphoma) and reactive
lymphadenopathy (follicular hyperplasia) with a nominal
lateral resolution of 2.65 µm × 2.65 µm per pixel for each spot.
The depicted phenotypes of various genotypes are presented.
Starting from the right, there is normal splenic architecture

from wt (C57BL/6) mice, with the above-mentioned white and
red pulp. The picture to the left (hypoplasia) illustrates dimin-
ished follicles, as a result of the smaller number of B-lympho-
cytes, due to the TACI-Ig expression, leading to B-cell loss, as
published in ref. 53. Hyperplasia means that Vav-Bcl2/TACI-Ig
mice have bigger lymphoid follicles, due to a higher number
of B-cells than wt controls. For Vav-Bcl2 mice it is already
known that they are prone to develop follicular lymphoma, as
displayed histologically and was (like the normal phenotype,
the hypoplasia and the lymphoid hyperplasia) diagnosed by a
pathologist.2,6 The images in Fig. 2(A)–(C) represent chemical
maps. Fig. 2(A) depicts chemical maps generated by integrat-
ing the area under band absorption at 1080 cm−1, which is an
indicator of the >PO2

− groups of nucleic acids and phospho-
lipids. A symmetric phosphate as a distinguishing spectral
marker was first proposed as a feature of stem cells by Walsh
MJ et al.;77 this group later presented a distribution of this
spectral marker associated with cancer stem cells.78 Fig. 2(B)
depicts a chemical map generated by integrating the area
under band absorption at 1155 cm−1, which is commonly
attributed to carbohydrates. The result correlates well with the
morphology of the red and white pulp, indicating that the

Fig. 2 (A)–(C) Infrared spectroscopic chemical-maps obtained for the detection of νPvO symmetric vibrations at 1080 cm−1, of carbohydrates at
1155 cm−1 and of νCvO esters, phospholipids as well as carbohydrates at 1740 cm−1. The spleen samples belong to the following mouse genotypes:
lymphoma (Vav-Bcl2), follicular hyperplasia (Vav-Bcl2/TACI-Ig), follicular hypoplasia (TACI-Ig) and normal (wt).
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B-lymphocytes within the lymphoid follicles produce a high
amount of carbohydrates. The chemical map of the absorption
at 1740 cm−1 is attributed to νCvO esters, phospholipids as
well as carbohydrates (Fig. 2(C)). It is apparent that the signal
intensities at 1740 cm−1 are higher in the hyperplastic and
hypoplastic samples, compared to the lymphoma and normal
samples. This is possible due to the fact that in the hyper-
plastic tissue, cells produce more νCvO esters, phospholipids
as well as carbohydrates, compared to normal. Lymphoma
cells are neoplastic and express, for instance, other or higher
levels of certain cytokines, leading to alterations in the micro-
environment and might influence the effectiveness of chemo-
therapy and subsequently the outcome.79

Results from the before mentioned individual tissue
samples by HCA clustering, KMC clustering and fuzzy
C-means clustering are illustrated in Fig. 3. The output of the
data analyses illustrates the ability of spectroscopic imaging to
reflect the tissue histology of samples. Tissue sections were
measured with a nominal lateral resolution of 2.65 µm × 2.65
µm per pixel for each spot. The imaging results demonstrate
that it is possible to acquire MIR images at a high resolution
and that the results correspond to the tissue structures seen in

the samples. Therefore, it is possible to correlate molecular
signals detected by the used method with the histological fea-
tures exhibited at a high resolution. MIAs were only
implemented on individual MIR imaging data. To directly
compare the spectra of defined ROIs of all different pheno-
types, single spectral and principal component analyses (PCA)
were performed.

Fig. 4(A) displays typical MIR transmission spectra of ran-
domly selected regions obtained from the spleen tissue in the
spectral region from 3900 cm−1 to 850 cm−1. Most prominent
components are the amide A (N–H stretching vibrations of
proteins, ∼3300 cm−1), the C–H stretching vibrations (lipids,
cholesterols and esters, ∼3010 cm−1), the amide I-band (pro-
teins, ∼1620–1695 cm−1), the amide II-band (proteins,
∼1550 cm−1), >CH2 deformation vibrations (∼1468 cm−1) and
the PvO symmetric stretching vibrations of the >PO2− groups
(phospholipids, nucleic acids ∼1250–1220 cm−1). A direct
comparison of the MIR spectra displayed no essential
differences.

For further spectral analysis, principal component analyses
(PCA) were applied to directly compare all different phenotypes
with a statistical approach by using spectra of selected ROIs of

Fig. 3 (A) Hierarchical cluster analyses, (B) K-means clustering images and (C) fuzzy C-means clustering of four individual mouse genotypes with
different phenotypes: lymphoma (Vav-Bcl2), follicular hyperplasia (Vav-Bcl2/TACI-Ig), follicular hypoplasia (TACI-Ig) and normal (wt).
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the white pulp. PCA were performed to fully characterize the
range of spectral variations. With PCA the dimensionality of
MIR microscopy imaging spectra is reduced, while as much
information as possible is retained. The scores of the first
principal components are used to generate meaningful plots
without a detailed understanding of the underlying sample
biochemistry. For the PCA analysis across four different pheno-
type samples, 30 spectra were chosen. The results of spectral
analyses with PCA are illustrated in Fig. 4(B) and (C).

The score plot of the first and the second principal com-
ponent is based on 30 spectra of one specimen. For deploying
PCA models, transmission spectra were converted to log(1/R).
Additional pre-treatments for MIR spectra such as baseline
offset and area normalization were utilized. The following
wavenumber regions were tested for the PCA models:
3650 cm−1 to 850 cm−1, 3650 cm−1 to 3050 cm−1, 3000 cm−1 to
2800 cm−1, 1740 cm−1 to 1550 cm−1 and 1750 cm−1 to
850 cm−1. However, the PCA models indicate that most of the
descriptive information can be found in the region from
1740 cm−1 to 1550 cm−1.

The score plots in Fig. 4(B) and (C) display a 2-D and 3-D
visualization of spectral clusters for the principal component 1
explaining 99% of the total variance and can separate the
different phenotype samples. This statistical strategy allows an
easy feature extraction of several data sets and displays a dis-
tinct clustering according to the spectra obtained from four

individual mouse genotypes with different phenotypes.
However, it could not be determined to which extent this
variation is caused due to qualitative and/or quantitative
alterations.

4. Conclusion

MIR microscopy imaging methods have been widely used to
characterize tissue samples; hence the benefits of this imaging
method are obvious. It is ideally suited for sensitive detection
of changes in the chemistry/biochemistry of tissues and is
optimal for the establishment of a rapid, non-subjective, and
cost-effective tool for diagnosis of cancer.

In the present study, MIR microscopy imaging and multi-
variate image analyses (MIAs) were used to gain deeper insight
into the variations between different mouse phenotypes, par-
ticularly follicular hyperplasia caused by reactive lymphadeno-
pathy and cancer (follicular lymphoma).

We were able to demonstrate, that with the mentioned
sample preparation, measurement settings, and data analyses
strategies, it is possible to get excellent MIR microscopy
imaging results. Univariate MIR imaging results clarify that
defined substance classes such as nucleic acids, phospho-
lipids, carbohydrates, and esters could be imaged semi-quanti-
tatively in different tissue types. Thus, MIR imaging could

Fig. 4 (A) Representative MIR spectra of different phenotype samples. (B)–(C). 2-D and 3-D score plot of MIR spectra in the region from 1740 cm−1

to 1550 cm−1. For the differentiation between the different phenotypes by PCA, 30 spectra were selected from 4 individual phenotype samples. Each
data point represents one spectrum of the respective (colour coded) spleen sample.
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provide information about the molecular structure of the
tissue under investigation. Specific correlations with histo-
logical traits and discrete chemical compounds, however,
cannot be gauged with this form of processing.

Correlation of MIAs with morphological tissue features
obtained by HE staining shows that many characteristics of
the tissue can be visualized in the color cluster images. The
different MIAs dramatically increase the information content
of the IR data-sets and provide additional proof that tissue
changes can be characterized by MIR microscopy imaging.

The best correlation between histopathology and spectral
images was observed by HCA analyses. It is an unsupervised
computational method in the sense, that neither the reference
data, nor any starting conditions are required. By HCA analyses
the number of clusters reproducing the best discrimination is
selected. This could be achieved by terminating the calculations
at a level, where the actual morphology is reproduced. There-
fore, in terms of tissue structure differentiation, HCA clustering
proved to be the best, but also the most calculation intensive
image method, compared to KMC and FCM clustering.

With the help of principal component analyses (PCA)
models, we were able to separate various genotypes in one stat-
istical approach and, ultimately, differentiate between cancer,
hyper- or hypoplastic and normal tissue.

Abbreviations

BAFF B-cell activating factor of the (TNF) family
Bcl2 B-cell lymphoma 2
CAML Calcium-modulator and cyclophilin ligand
CCD Charge coupled device
FCM Fuzzy C-means
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KMC K-means clustering
MIR Mid infrared
MIAs Multivariate imaging analysis
MCT Mercury cadmium telluride
PBS Phosphate-buffered saline
PCA Principal component analyses
ROIs Regions of interest
TACI Transmembrane activator and CAML interactor
Ig Immunoglobulin
TNF Tumor necrosis factor
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