
Daniel Winkelhaus,‡a Michael H. Holthausen,†a Roman Dobrovetskyb and Douglas W. Stephana

The cationic \(N_2^+\)-species \([p-(HC_6F_4)_3PN_3]^+\) (1) featuring a perfluoro-arene phosphonium group serves as a \(N_2^+\)-source in stoichiometric reactions with several Lewis bases (L) allowing for the stepwise formation of \([(L)N_3]^+\) and \([(L)_2N_3]^+\) cations (L = phosphine, carbene) with liberation of \([p-(HC_6F_4)_3P]\). X-Ray diffraction analysis and computational studies provide insight into the bonding in these remarkably stable azido-cations. azides. Herein we describe the synthesis of \([p-(HC_6F_4)_3PN_3]^+\) (1) and its use as a synthon to species of the form \([(L)N_3]^+\) and \([(L)_2N_3]^+\) (L = phosphine, carbene).

Results and discussion

Compound \([p-(HC_6F_4)_3PN_3][B(C_6F_5)_4]\) (1) was readily prepared in quantitative yield by the reaction of \([p-(HC_6F_4)_3PF][B(C_6F_5)_4]\) with \(Me_3SiN_t\) in \(CH_2Cl_2\) (Scheme 1).§ The \(^{31}P\{^1H\}\) NMR spectrum of 1 in \(CD_2Cl_2\) gives rise to a broad singlet resonance (\(\delta(^{13}P) = 17.5\) ppm, \(\Delta P_{1/2} = 30\) Hz). The presence of the \(para\) hydrogen substituents in 1 is crucial as the fully fluorinated derivative \([C_6F_5)_3PF]^+\) is prone to nucleophilic attack at this position.† The formulation of compound 1 was subsequently confirmed by an X-ray crystallographic study (Fig. 1).

The molecular structure of 1 shows a distorted tetrahedral environment about the phosphorus atom with angles at P ranging from 102.3(1)–112.6(1)°. The P(1)–N(1) bond length of 1.651(2) Å is shorter than those observed in azido-substituted phosphonium cations (1.67 Å)∥ and azido-phosphines (1.73 Å),∥ consistent with the electron deficient nature of the phosphonium center and the strongly polarized nature of the P–N bond. The azido moiety shows an N(1)–N(2)–N(3) angle that slightly deviates from the ideal 180° (172.4(2)°) while the N(1)–N(2) (1.260(2) Å) and N(2)–N(3) bond length (1.114(2) Å) are in the expected range for azide substituents. Compound 1 is a rare example of a crystallographically characterized salt of a cationic azido-phosphonium species∥ while several neutral, azido-substituted \(P(mil)\) and \(P(v\) derivatives have been reported to date.∥ Other examples of monocationic nitrogen species, reported in the literature, include diazonium ions,∥∥ the homoletic \([N_3]^+\) of Christe,∥∥ \([N_2F_7]^+\),∥∥ Hünig’s stable triazenium ions \([R_NNR_R^\prime]^+\)∥∥ and amidinium ions of the form \([R_2N][N_3]^+\) (R = H, silyl, alkyl, aryl).

Introduction

A major component of the recent renaissance in p-block chemistry has been the use of neutral, two electron donors like carbenes or phosphines for the stabilization of homoatomic, low valent main group element fragments. Most recently Cummins used an anthracene stabilized P2 for the synthesis of an aromatic \([P,N_3]^+\). Species of the form \((L)_2E_2\) (E = B, C, Si, Ge, Sn, P, As, Sb, L = carbene, phosphine) have been prepared affording ligand stabilization of unique diatomic main group fragments. In addition, the groups of Robinson, Bertrand and Roesky have exploited these donors for isolation of dications and radical cations of type \([\text{[carbene]}_2P_2]^+\) \((E = C, \text{Si}, \text{P}, \text{As}; n = 1, 2)\) while Burford, Weigand, Jones and Grützmacher prepared \([\text{[carbene]}_2P_2]^+\) or bicyclic \([\text{[L]}_2P_4]^+\) species (L = carbene, AsPh3, Ph3P). The latter compound is of special interest since L can be exchanged for more basic donors. A similar donor exchange was reported for \([\text{[Ph}_3P]PPPh_3]^+\) affording \([\text{[carbene]}PPPh_3]^+\). The nature of these and related systems, especially the L-E and E-E bonding, has sparked vigorous debate.\n
Our recent studies of highly electrophilic phosphonium cations (EPCs) have demonstrated that species such as the fluorophosphonium cation \([C_6F_5)_3PF]^+\) exhibit remarkable Lewis acidity and thus act as effective catalysts in a range of Lewis acid mediated transformations. At the same time, we were motivated to probe the utility of these EPCs as synthons for cationic Lewis acids. Herein we describe the synthesis of \([p-(HC_6F_4)_3PN_3]^+\) (1) and its use as a synthon to species of the form \([(L)N_3]^+\) and \([(L)_2N_3]^+\) (L = phosphine, carbene).
singlet resonance at low field ($\delta^{(31)}P = -85.9$ ppm) which is in the typical chemical shift range for an N-substituted trialkylphosphonium derivative. Collectively, these observations indicate the formal transfer of the N_1^*-moiety in 1 to t-Bu$_3$P yielding $[t$-Bu$_3$PN$_3][B(\text{C}_6\text{F}_5)_4]$ (2) which was isolated in 98% yield. The nature of 2 was confirmed by X-ray single crystallography and the metrics were found similar to 1 (see ESI†).

Interestingly, 2 and 1 are very stable and do not show any signs of degradation on heating in $\text{C}_6\text{D}_5\text{Br}$ solution to 100 °C for 24 h. Attempts to independently synthesize 2 from the reaction of $[t$-Bu$_3$PF]$\,[\text{B(\text{C}_6\text{F}_5)_4}]^{19}$ with Me_3SiN_3 failed even after prolonged reaction times at 100 °C in $\text{C}_6\text{D}_5\text{Br}$ solution. This reflects the increased steric demand of the $[t$-Bu$_3$PF]$^-$ cation.

The corresponding reaction of 1 with Ph_3P in CH_2Cl_2 was monitored by 31P$^{(1)}$H NMR spectroscopy revealing the complete consumption of Ph_3P and the liberation of only 0.5 equivalents of $[p$-HC$_6$F$_4]$P, leaving approximately 50% of 1 unreacted. Addition of another equivalent of Ph_3P resulted in its complete consumption. Collectively, this indicates the formation of a bis-adduct $[\text{Ph}_3\text{P}]_2\,[\text{N}_3][\text{B(\text{C}_6\text{F}_5)_4}]$ (3, Scheme 1). While the proposed intermediate $[\text{Ph}_3\text{PN}_3]^-$ was independently synthesized by the reaction of $[\text{Ph}_3\text{PF}]\,[\text{B(\text{C}_6\text{F}_5)_4}]^{19}$ and Me_3SiN_3 (see ESI†), this species was not observed in the reaction of 1 with Ph_3P. This indicates that reaction of $[\text{Ph}_3\text{PN}_3]^-$ with a second equivalent of Ph_3P is rapid, in agreement with Wiberg who described the $[\text{Ph}_3\text{P}]_2[\text{N}_3]^-$ cation in 1967.11 Compound 3 was isolated in high yields (97%). The t-Bu-substituted anallog 4 was obtained from 1 with two equivalents of t-Bu$_3$P or by reaction of 2 with one equivalent of t-Bu$_3$P (Scheme 1). Species 4 was also obtained by reaction of 3 with two equivalents of t-Bu$_3$P with concurrent release of Ph_3P. All methods furnish 4 in high yields (76–99%). Compounds 3 and 4 show 31P$^{(1)}$H NMR resonances at 30.6 and 56.5 ppm that are between the chemical shifts of phosphinimine and N-substituted phosphonium derivatives.11 X-Ray structure determination confirmed the formulations (Fig. 2). The $\text{P}_2\text{N}_2\text{N}_2$-moiety adopts a W-shaped geometry with all five atoms almost located within one plane (largest deviation: 3: 0.013(2) Å for N_2, 4: 0.039(1) Å for N_2). The acute angle of 113.2(1)° in 3 is in the typical range for phosphazides.12 The two P–N–N angles in each compound are 3: 114.5(3)/114.7(3); 4: 118.1(1)/118.9(1)° with the larger angles in 4 reflecting the increased steric congestion. Similarly, the P–N bond lengths of 1.648(3) Å and 1.643(3) Å and 1.675(2) Å and 1.673(2) Å seen in 3 and 4, respectively, range between those of phosphinimine and N-substituted phosphonium derivatives.13 The N–N bonds in 3 and 4 were found to be 1.298(4) Å, 1.309(4) Å and 1.309(2) Å, 1.300(2) Å,14 which are intermediate between single and double bond distances. A similar conformation is observed for several crystallographically characterized organo-phosphazides $\text{R}_m\text{PN}_n\text{R}_m$, formed in the initial step of a Staudinger reaction.15

It is of interest to note that, similar to 1 and 2, 4 is thermally stable and can be heated to 120 °C in $\text{C}_6\text{D}_5\text{Br}$ solution over several days without decomposition. In contrast, compound 3 is not temperature stable, decomposing quantitatively with release of N_2 within 3 h at 100 °C.24 The 31P$^{(1)}$H NMR spectrum shows only one resonance at $\delta^{(31)}P = 21.1$ ppm assignable to
$\text{(Ph}_3\text{P})_2\text{N}[\text{B(C}_6\text{F}_5)_4]$ (Scheme 1). N$_2$ elimination is thought to follow isomerization of the W-shaped 3 to a U-shaped isomer. It is noteworthy that compound 3 was isolated as a mixture of both isomers in a 4:1 ratio. The $^{31}\text{P}[^1\text{H}]$ NMR spectrum of the minor isomer gave two resonances at $\delta([31\text{P}]) = 28.4$ and 11.0 ppm ($J_{PP} = 5.5$ Hz). At elevated temperatures, rapid conversion of the cation 3 to $\text{[(Ph}_3\text{P})_2\text{N}]^+$ was observed. Nonetheless, the ratio of the isomers of 3 is unchanged inferring the rate of N$_2$-loss is comparable to the rate of isomerization of 3. Computations at the wB97XD/def2-TZV level of theory with addition of the conductor-like polarizable continuum solvation model (CPCM) showed only a small energy difference between the W and U-shaped isomers of 3 ($\Delta G_{\text{en}}^{298} = -2.6$ kcal mol$^{-1}$).

Compound 1 also reacts with two equivalents of 1,3-dimesitylimidazolidin-2-ylidene (SIMes) in C$_6$D$_5$Br solution with liberation of (p-H$_2$C$_6$F$_4$)$_3$P as evidenced by the $^{31}\text{P}[^1\text{H}]$ NMR spectrum. The $^{13}\text{C}[^1\text{H}]$ NMR spectrum shows a new resonance for the C-2 carbon
atom at $\delta^{13C} = 162.2$ ppm. Collectively, the NMR data indicate the formation of $[[\text{SIMes}]_3\text{N}_3][\text{B}(\text{C}_6\text{F}_3)_3]$ (6) which was isolated in 70% yield. Interestingly, 6 was the only product obtained from the reaction using a 1 : 1 stoichiometry. This contrasts with the reactivity observed for t-BuP and is likely a result of the low solubility of 1 in bromobenzene. Interestingly, compound 6 was also obtained in high yields by reaction of 3 or $[\text{Ph}_3\text{PN}_3][\text{B}(\text{C}_6\text{F}_3)_3]$ with SIMes in 1 : 2 stoichiometry (see ESI†). Compound 6 is thermally stable even under prolonged heating to 120 °C for several days in C$_6$D$_5$Br solution. The nature of compound 6 was further confirmed by single crystal X-ray diffraction (Fig. 3). The structure features a W-shaped N$_3$-chain terminated by imidazolium features a W-shaped N$_3$-chain terminated by imidazolium. Several days in C$_6$D$_5$Br solution. The nature of compound 6 was further confirmed by single crystal X-ray diffraction (Fig. 3). The structure features a W-shaped N$_3$-chain terminated by imidazolium.

Conclusions

In summary, the EPC $[[p\text{-C}_6\text{F}_4\text{H}_3]\text{PF}][\text{B}(\text{C}_6\text{F}_3)_3]$ is used to prepare the phosphonium ion salt 1 which serves as a precursor for the formal transfer of [N$_3$]$^-$ to other donors affording stable and isolable mono- and bis-adducts of the form [L][N$_3$]$^-$ and [(L)$_2$N$_3$]$^-$.

The reactivity of these species containing terminal and bridging azide-groups is the subject of continuing studies. In addition, the exploration of the reactivity of EPCs as synthetic building blocks for other unusual main group cations is ongoing.

Acknowledgements

D. W. S. gratefully acknowledges the financial support of the NSERC of Canada and the award of a Canada Research Chair. M. H. H. thanks the Alexander von Humboldt Foundation for a Feodor Lynen Research Fellowship.

Notes and references

† Extra precaution must be taken when working with azides in CH$_2$Cl$_2$ solution as they are potentially dangerous and can result in the possible formation of dangerous and explosive diazidomethane.

16 (a) M. Donath, E. Conrad, P. Jerabek, G. Frenking, R. Fröhlich, N. Burford and J. J. Weigand, Angew. Chem.,
Only two examples were crystallographically characterized:

Only two examples were crystallographically characterized:

