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Solids deform and fluids flow, but soft glassy materials, such as emulsions, foams, suspensions, and
pastes, exhibit an intricate mix of solid- and liquid-like behavior. While much progress has been made to
understand their elastic (small strain) and flow (infinite strain) properties, such understanding is lacking
for the softening and yielding phenomena that connect these asymptotic regimes. Here we present a
comprehensive framework for softening and yielding of soft glassy materials, based on extensive
numerical simulations of oscillatory rheological tests, and show that two distinct scenarios unfold
depending on the material's packing density. For dense systems, there is a single, pressure-independent
strain where the elastic modulus drops and the particle motion becomes diffusive. In contrast, for
weakly jammed systems, a two-step process arises: at an intermediate softening strain, the elastic and
loss moduli both drop down and then reach a new plateau value, whereas the particle motion becomes
diffusive at the distinctly larger yield strain. We show that softening is associated with an extensive

Received 13th September 2017, number of microscopic contact changes leading to a non-analytic rheological signature. Moreover, the

Accepted 18th November 2017 scaling of the softening strain with pressure suggest the existence of a novel pressure scale above which
softening and yielding coincide, and we verify the existence of this crossover scale numerically. Our

findings thus evidence the existence of two distinct classes of soft glassy materials — jamming domi-
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The rheology of soft glassy materials is an intricate mixture of
elastic, viscous and plastic behaviors. Oscillatory rheology is
an ideal tool to characterize these materials, as variation of
the driving frequency and driving amplitude allows one to
quantify the relative importance of elastic, viscous and plastic
contributions." Depending on the driving conditions, these
materials exhibit both a solid-like and liquid-like regime: for
vanishingly small strain amplitude, the material’s response is
linear and can be characterized by an elastic storage modulus
and a loss modulus - in solids the former exceeds the latter at
low frequencies and the material behaves elastically. In contrast,
for sufficiently large strain amplitudes the materials yields and
flows. Near the yield strain, the elastic modulus drops and, in
many cases, the loss modulus peaks. What are the rheological
scenarios that connect the small and large strain regimes? What
are the microscopic signatures associated with increased driving
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nated and dense — and show how these can be distinguished by their rheological fingerprint.

strains? Which aspects of these scenarios depend on material
properties, and which aspects are universal? Here we use extensive
numerical simulations of particle-based models of non-Brownian
amorphous solids to disentangle how the pre- and post-yielding
regimes are connected. We evidence that there are two qualitatively
distinct scenarios for the strain dependent response of soft glassy
materials, depending on the rigidity of the jammed state of the
material at rest.

The jamming transition has in recent years been shown
to play an important organizing role for the response of soft
repulsive sphere packings, which are an effective model for
foams, emulsions, suspensions and granular media.>”> First,
there is overwhelming evidence that the distance to the critical
jamming point, as measured by e.g. the confining pressure P,
is the key control parameter governing a packing’s quasistatic,
linear elastic response,®®® and more recent work has extended
these findings to the linear viscoelastic response at finite
frequency.®*'°** Second, the distance to jamming has also
been found to play a key role in organizing the steady state
rheology of a wide range of soft materials."*"” As linear
response and steady state rheology are connected to the limits
of zero and infinite strain amplitude in oscillatory shear, the
distance to jamming can be expected to play a crucial role at
finite strains as well. Moreover, several characteristic scales
that limit the range of linear behavior all scale with the distance

This journal is © The Royal Society of Chemistry 2017
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to jamming: when the pressure is lowered towards the critical point,
the material becomes dominated by nonlinear response,®'"'!
and both the yield stress™®™* and the range of strains that are
free of microscopic contact breaking events®>27¢ all vanish.

To fill in the gap between zero and infinite strain amplitudes
and shed light on the rheological scenarios and microscopic
mechanisms of yielding, we perform simulations of packings
under oscillatory shear at varying strain amplitude y,, pressure
P, and number of particles N, focusing on the low frequency
regime. Macroscopically, we identify not one but two distinct
crossover strain scales. We find that linear response gives way
to softening above a strain scale 7, after which the material’s
response reaches a new plateau before the material yields
at a scale 7,. Unlike prior observations of two-step yielding,*” >
this scenario does not require interparticle attraction. Near
jamming softening and yielding scales differ in their pressure
dependence: while y, is essentially constant, the softening strain
s vanishes linearly with P. Far above jamming the scales merge,
suggesting the existence of a characteristic pressure that distin-
guishes jamming-like and dense systems. The relation between
these rheological phenomena and the microscopic particle
motion is complex. Whereas yielding is associated with the
onset of diffusive particle motion, the relation between softening
and microscopic rearrangements is far more subtle. While
rearrangements destroy strict reversibility in the particles’
trajectories, bulk properties such as the storage and loss moduli
remain linear long after the first rearrangements - leading to a
regime where particles exhibit irregular, trapped motion but the
bulk response appears linear. Bulk softening only becomes
apparent after an extensive amount of contact breaking events;
the sum of many of these singular events leads to non-trivial
power law scaling of the elastic modulus with strain amplitude.

These findings provide a fresh perspective on the physics of
yielding, evidence a characteristic pressure scale that distin-
guishes jamming-dominated systems (such as granular media
and wet foams) and dense systems (such as dry foams), and
suggest that these two qualitatively different classes of soft
glassy materials can be distinguished by their experimentally
accessible rheological fingerprint.

Macroscopic rheology: softening
and yielding

We use oscillatory rheology to show that there are three distinct
flow regimes, which we refer to as the linear response, softened,
and yielding regimes. A time-varying shear strain y = y, sin(wt)
is applied to soft sphere packings consisting of N particles that
are at pressure P when unsheared, and the resulting shear
stress ¢ is measured (see Appendix A). In the linear response
regime, ¢ is proportional to y,, and the in-phase and out-of-
phase components of o/y, are called the storage and loss
moduli G’ and G”, respectively; they characterize elastic stiffness
and viscous damping. For finite strain amplitudes, the stress
response ceases to be purely sinusoidal (see Appendix C), and
the first harmonic terms in the Fourier expansion of ¢ are used
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Fig. 1 Softening and yielding for N = 1024, o = 10~ and P ranging from
10~ (black) to 107 (light green) in two steps per decade. Each data point
corresponds to an ensemble average of at least 25 packings at fixed P and
y. For each packing and value of P, G’ and G” reach a clear plateau value
for small y that we use to define the linear response values G'(0) and
G"(0) (For the variation of the linear response values with P and o, see
Appendix B). To focus on the variation of G’ and G” with strain amplitude,
we plot the rescaled elastic modulus G'/G’(0) and rescaled loss modulus
G"/G"(0) as function of the strain amplitude 7. (@ and b) The elastic and
loss moduli have a clear plateau at low strain amplitudes, before showing
softening at a pressure dependent strain scale ys, and yielding at a larger
strain scale y,. Dashed lines indicate power law decay of the moduli for
large strains with slope —3/2 and —3/4 respectively. (c and d) The softening
transitions in G’ and G” collapse when plotted as function of the rescaled
strain amplitude yo/P. (e) Linear, softened and yielded regimes as function
of the control parameters P and yo. Squares and diamonds indicate yielding
and softening obtained from the data for G’/G’(0) shown in panel (a) (see
Appendix A). The dashed lines are guides to the eye, and indicate that
Py R 107% 7. ~ 107! x P, leading to a crossover pressure scale P, ~ 1072

to define the storage and loss moduli, which now depend on y,.
We focus on data taken at the low frequency w = 10° in units
constructed from the microscopic stiffness and damping
coefficients; in Appendix D we demonstrate that our conclu-
sions are unchanged at the higher frequency 10 2. Moduli are
reported for data recorded after the passage of an initial
transient, which can be identified from the cycle-to-cycle
diffusion statistics (see below).

Our simulations uncover surprisingly rich rheological
scenarios, as shown in Fig. 1la and b, which display the
variation of the rescaled storage modulus G'(y,,P)/G’(0,P) and
the loss modulus G"(y,,P)/G"(0,P) as a function of strain - in
Appendix B we demonstrate that the linear response quantities
scale with pressure and frequency consistent with earlier
predictions.'® Our data evidences three different rheological
regimes. (i) Linear response: for each pressure there is a finite
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strain range for which the moduli are essentially constant and
equal to G'(0) and G"(0), indicative of linear response. (ii)
Softening: surprisingly, for low pressures and intermediate
strains, both moduli fall below their linear response values
but then reach new plateau values. We call this softening, to
distinguish it from yielding, and associate a strain scale ys with
its onset. (iii) Yielding: at sufficiently large strain amplitudes,
the elastic modulus rapidly decays, while the loss modulus
peaks. We refer to this as yielding, with an associated yield
strain y, that does not strongly vary with P. For large strains the
storage and loss moduli fall off rapidly as 1/y4 and 1/y},
respectively, with v/ ~ 1.5 and v/ ~ v//2.3%%

Softening and yielding are distinct phenomena, each with
their unique rheological signature and pressure dependence.
First, the loss modulus goes down at softening, and up at
yielding, signaling a qualitative difference between these two
phenomena. Second, systems at lower pressures clearly soften
at smaller strain amplitude, whereas the yielding strain appears
pressure independent. To characterize the pressure depen-
dence of ys, we replot the data of Fig. 1a and b as a function
of the rescaled strain y,/P in Fig. 1c and d. We find excellent
collapse in the linear response and softening regimes of both
the storage and the loss moduli for P up to 10> Recently,
several works have presented conflicting evidence for the
scaling of the softening transition with pressure,®'®***® and
both y, ~ P and y, ~ P** have been suggested - our data is
inconsistent with an exponent 3/4.

We summarize our findings of a pressure-dependent soft-
ening transition, and a pressure-independent yielding transi-
tion in Fig. le. Here the red dot-dashed line indicates the
softening crossover at s ~ P, the red dashed line indicates
the yielding crossover at yy, and these lines meet at a character-
istic pressure P.. We note that many scaling laws near jamming
break down when P becomes of order 102** and consistent
with this our data suggests that y, ~ 10~ ' and P, ~ 10 .
Whereas such breakdown of scaling can be expected suffi-
ciently far away from any critical point, we suggest that our
data shows that there is a clear crossover pressure scale which
separates the near-jamming and dense regimes; in the latter
the physics is essentially pressure independent, and no longer
controlled by the critical jamming point. Moreover, oscillatory
rheology provides a specific experimental protocol to test which
asymptotic regime is relevant for a given system: the jamming
phenomenology is important when softening and yielding can
be distinguished.

Reversible, trapped and diffusive
dynamics

To shed light on the microscopic signatures of the rheological
softening and yielding transitions, we now probe the microscopic
particle trajectories. Recent years have seen considerable effort
directed towards understanding the transition from reversible to
irreversible particle trajectories under cyclic driving.**™*' With few
exceptions,” this work has been restricted to systems far from
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jamming, where the two step softening/yielding scenario identi-
fied here is absent. In that case the onset of irreversibility is found
to correlate with macroscopic yielding. Here we characterize
particle trajectories by stroboscopically sampling all particles at
zero strain as a function of cycle number n. From these strobo-
scopic trajectories we compute the cycle-to-cycle squared displace-
ments As;®, and the cumulative squared displacements As>
(see Appendix A).

Our data evidences three different dynamical regimes.
(i) Reversible dynamics: particle trajectories at sufficiently small
strain amplitudes are reversible: As,> decays to the noise floor
after an initial transient, and particles trace out ellipses in
space consistent with a strictly linear response (Fig. 2c1).
(if) Trapped dynamics: at intermediate strains the particle
trajectories are trapped: both As;*> and As” reach a finite plateau
at large n. The particle trajectories do not form closed orbits,
but remain bounded (Fig. 2¢2 and ¢3). (iii) Diffusive dynamics:
for high strain amplitudes, As> grows linearly with n and the
particle motion becomes diffusive (Fig. 2c4 and c5).

We have verified (via the total harmonic distortion, see
below) that in the reversible regime no contact changes take
place during the oscillatory driving, and that the transition from
reversible to trapped dynamics occurs when contacts are broken
and created during the strain oscillations. Trapped dynamics is

1 10 1 10
n n
10° [(c1) 20 [(c4) 70 [(c5)
> > >
0 0 ol

S 10°F . —— :
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o 105 417\*‘\\‘
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Fig. 2 Cycle-to-cycle displacements, cumulative displacements and
particle trajectories for a wide range of strain amplitudes for P = 1074,
N = 128, @ = 1073 and yo ranging from 1078 to 10 in three steps per
decade. We highlight datasets for yo = 107® (red), 70 = 10~ (orange),
90 = 1072 (green), yo = 10° (blue) and 7o = 10* (purple). (a) Median cycle-to-
cycle second moment As;? as function of cycle number n for an ensemble
of 33 independent runs. As;? rapidly decreases until it hits the noise floor
for small yo, Asl2 decays to a finite plateau for intermediate 7o, and Asl2 is
essentially constant for large yo. (b) Corresponding median second
moment As? as function of cycle number n. For small and intermediate
0. As? is essentially constant, dominated by the transient in early shear
cycles, while for large yo, As? grows linear with n evidencing diffusive
behavior. Dotted line has slope 1. (cl-cb) Five representative particle
trajectories (after a transient has been removed), for yo = 107 (c1, red),
70 = 107* (c2, orange), o = 1072 (c3, green), 7o = 10° (c4, blue) and yo =
10! (c5, purple). (d) For comparison, we show G'(y0)/G'(0) for P = 1074,
N =128 and o = 107°.

This journal is © The Royal Society of Chemistry 2017
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reminiscent of caging in hard sphere glasses, although there is
no ballistic motion at short times and particles generally remain
in contact with multiple neighbors. We note that the loss of
microscopic reversibility after a single contact change suggests
that the transition from reversible to caged dynamics is a finite
size effect, as the strain needed to change one contact is O(1/N)
in large systems (verified below). Directly obtaining the charac-
teristic strain where the first contact changes from oscillatory
rheology is numerically prohibitive, as it entails scans over
N, P and 7p,. However recent simulations of quasistatically
sheared soft spheres determined the typical strain scale 7. at
which the first contact change occurs and found that it obeys
finite size scaling in the linear response regime:***>*

P P < 1/N?
Yee ™~ (1)

P'2/N P> 1/N>

Our data for contact changes under oscillatory driving is
consistent with this scaling, and we thus conjecture that the
same scaling governs the strain scale where the transition from
reversible to caged dynamics takes place.

The pressure dependence of the transition to diffusive
dynamics can be deduced from the behavior of As;* and As”
as function of n; we find that the transition is essentially
pressure-independent. In Fig. 3a we plot the large n plateau
of As;*> as a function of y, for varying pressures. While the
initial growth of As,?, associated with contact changes, depends
on P - consistent with eqn (1) and observations that contact
breaking near jamming depends on P®**7*® - the asymptotic
value of As,”> becomes independent of P for large 7,. This
increase signals a pressure-independent transition to diffusive
motion, as is further evidenced by inspecting our data for As®
for all pressures, and fitting our data for As* as n”. As Fig. 3b
shows, the scaling exponent o sharply increases with y and
reaches a diffusive (« = 1) regime for large strains in an
essentially pressure-independent manner.

We summarize our picture for the microscopic behaviors in
Fig. 3c, and now discuss the relation with the rheological
behaviors shown in Fig. 1e. Our data fully supports identifying
the transition to diffusive motion with rheological yielding -
both are pressure-independent and their characteristic strains
are close. The correspondence between the onset of diffusion
and yielding is consistent with recent experimental and numerical
findings that focus on concentrated emulsions.*>*> This link is
reminiscent of the Lindemann melting criterion: once the relative
particle motions reach a significant fraction of their separation at
rest, structural information is lost, particles can freely diffuse, and
macroscopic rigidity vanishes. A similar correspondence between
diffusion and yielding also occurs in equilibrium systems,
where the fluctuation-dissipation relation establishes the
relation rigorously.

Surprisingly, the micro transition from reversible to trapped
dynamics and the macroscopic softening are not directly
linked. In fact, the transition from reversible to trapped
dynamics is a finite-size artefact. This follows from the scaling
of y.. with N, which dictates that in the limit of large N, the

This journal is © The Royal Society of Chemistry 2017
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Fig. 3 Onset of diffusive motion for N = 128, w = 1073, and pressures
from 107> (purple) to 3.2 x 1073 (blue) in two steps per decade. (a) Plateau
values for the median cycle-to-cycle second moment, As;?, averaged over
cycle n = 25-30. The characteristic strain of the initial rise of the plateau
values of As;? increases with pressure, but the final rise is independent
from P. (b) We estimate the onset of diffusive motion by fitting our data for
As? as n* (see Appendix A), and plotting the scaling o exponent as function
of y; o = 1 corresponds to diffusion. (c) Proposed state diagram indicating
reversible, trapped and diffusive regimes as function of the control para-
meters P, yo and N. Symbols correspond to the onset of diffusive motion
defined as the strain where « crosses 1; red dashed line is a guide to the eye
at y = 0.14. The dot-dashed lines indicate the prediction from eqn (1) for
the transition from reversible to caged dynamics; here N, > N;. The
regime P < 1/N? and 7o < 1/N? indicates the finite size regime where the
first contact change arises at y.c & P.**7* Outside the finite scaling
regime, 7. ~ VP/N and thus vanishes for large N; hence the reversible
regime disappears in the thermodynamic limit, where only the trapped and
diffusive regimes play a role.

onset strain for trapped dynamics is vanishingly small so that
the reversible regime vanishes. Hence, for large systems, the
transition from reversible to trapped dynamics is irrelevant,
which is reasonable as strict microscopic reversibility should be
absent in the thermodynamic limit. As the critical strain for
softening is independent of N, for large systems there is a wide
parameter range where the microscopic dynamics is caged, but
the rheology is still effectively linear.

Trapped motion and softening near
jamming

In the remainder of this article, we will disentangle the relation
between contact breaking and softening. Both are pressure-
dependent, and both have characteristic strains that vanish
when P — 0—they are thus connected to the jamming transi-
tion. The picture that will emerge is that contact changes have an
O(1/N) effect on G', and occur at strains of order 1/N. Significant
softening occurs after an extensive number of contact change
events have happened, and this leads to a well-defined thermo-
dynamic limit. Finally, the effect on the elastic modulus of

Soft Matter, 2017, 13, 9036-9045 | 9039
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contact breaks is cumulative, so that G’ decays linearly with |y,
thus signifying non-analytic behavior.

We first note that the contact change strain provides a way to
rationalize the linear dependence of the softening strain on P if
we postulate that contact changes are necessary for softening,
SO Js = Ye This is plausible because the shear response of
packings can be mapped directly onto a spring network for
infinitesimal strains. However networks stiffen rather than
soften at finite strains,’® which involve contact changes in
packings but not in networks. We expect the lower bound on
the softening strain will saturate for marginal packings that
would unjam with the loss of just one contact. This marginal
state is reached when P ~ 1/N*>***>"" If we make the ansatz
ys ~ P”, the value of the exponent v is then determined by
requiring 75 ~ y.. when P ~ 1/N*. The result is v = 1, consistent
with the observed scaling of y,.

Returning to numerics, the link between contact changes
and mechanical softening is illustrated in Fig. 4a, which
focuses on a single packing. We detect contact changes via
the sharp increase of anharmonic behavior of the time depen-
dent stress signal, caused by abrupt changes in the contact
stiffness when harmonic contacts open or close, and quantified
by the total harmonic distortion THD: = 3 |o7|/|o/|, where

i>1

we have decomposed the stress signal in a Fourier series with
coefficients o4, 0,,. . .. At a characteristic strain y*, Fig. 4a shows

o Ly e ™
o 107 ! 1
|:l—: 10-4 [ ' .
10° Y S
10 foeoooeoee ; .
o |
102t@ :
107 10°  10° 10° 10°
Yo N
10"
s
< o
K ]
-3 L i 7
10 R TIPS Bt
(c)
10° 10" 10' 10% 10" 10° 10" 10° 10°
NA 7o/P
Fig. 4 (a) Total harmonic distortion and G’ as function of yq for a single

packing at P = 107>, N = 128 and o = 107>, (b) Characteristic strain scales
for contact changes and softening, for P = 107, w = 1073 and N ranging
from 32 to 2048. The mean first contact change strain y* is determined
from the jump in THD (filled circles), while 7, for varying 4 is extracted
from the elastic shear modulus for a range of 4: 4 = 1073 (), 4 = 3.2 x
1073 (oval), 4 =1072(V), 4 =32 x 1072 (), 4 = 107 (<) and 4 = 3.2 x
107! (O). () Scaling collapse for y, (same data as panel (b)). (d) The
deviation from the plateau value of the elastic modulus, 1 — G'/G’(0),
grows linearly with strain (N = 1024, w = 10~%), P ranging from 10~ (black)
to 0.1 (light green) in two steps per decade. For low P, the data collapses
when plotted as function of yo/P.
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a sharp increase in the THD over several orders of magnitude,
accompanied by a small decrease in G’. This corroborates our
expectation that softening can only arise due to contact
changes. Moreover, most of the softening of the storage modulus
happens subsequent to, not at, the first contact break.

To uncover the link between contact changes and softening,
we now explore the role of system size, and simulate oscillatory
rheology for system sizes varying from N = 32 up to N = 2048 at
fixed pressure P = 103, while varying the driving amplitude 7,
over many decades. We found that G’(y,), in particular for small
systems, exhibits significant fluctuations, which requires a
careful procedure to obtain meaningful averages. For each
packing, we therefore define y, as the smallest strain where
the deviation in G’ from linear response, 1 — G'(y)/G’(0) reaches
a value 4, and then take ensemble averages to obtain y,(N,4).

In Fig. 4b we compare the mean values of y* (closed
symbols) - obtained from detecting jumps in the THD - and
74 for a range of 4 and N (open symbols). First, our data shows
that y* indeed decreases with system size, consistent with the
1/N of eqn (1). Second, for very small values of 4, the data for y,
closely approach y*, consistent with the picture that any
appreciable softening only arises after contact changes accu-
mulate. Third, for large N or large 4, 7, becomes independent
of N, evidencing a well defined continuum limit, where soft-
ening is due to an extensive number of contact changes.

As shown in Fig. 4c, all data for y, can be collapsed on a
master curve by plotting y,/4 as function of N4 - data taken at
different pressures shows the same trends (see Appendix D).
This scaling collapse shows, first, that the typical effect of a
single contact change on G’ is ((1/N). Second, the behavior for
NA « 1 is consistent with y,/4 ~ (NA)™", or y4 ~ 1/N: hence,
for small 4 « 1/N, y, scales as, and is close to, y*. Third, the
plateau for NA > 1 confirms the existence of a well defined
continuum limit, where y,, and hence the softening behavior,
becomes independent of N and y, is linear in 4. We conclude
that softening first sets in once contacts start to break, only
becomes significant when many contacts are changing, and is
independent of system size for large N.

A final striking consequence of the softening being caused
by the accumulation of independent contact changes is that the
functional form of G'(y,)/G'(0) is non-analytical. Our picture,
backed up by the various scaling collapses, suggests that
G'(70)/G'(0) should decrease linearly with the strain, or equiva-
lently, that 4 =1 — G'/G'(0) grows linearly with y. In Fig. 4d we
show data for 4 for large systems and a range of pressures,
which confirms this linear deviation of the plateau value of G’
with strain. As 4(y,) needs to be an even function due to
symmetry, this implies non-analytic behavior where 4 ~ |y,].
We note that similar non-analytic behavior has also been
observed for strain stiffening in random spring networks at
the rigidity transition*® - consistent with the usual association
of non-analyticity with a phase transition. In contrast, the non-
analytic behavior found here occurs at a finite distance from
the jamming point, and we suggest that it is inherited from the
purely repulsive contact forces between particles, which are
themselves non-analytic at the point of contact.

This journal is © The Royal Society of Chemistry 2017
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Discussion

Simulating large amplitude oscillatory shear, we have found
evidence for two qualitatively distinct yielding scenarios for
soft glassy solids. In dense systems, such as highly concen-
trated emulsions and Lennard-Jones glasses,*® the macro-
scopic stress-strain response is linear up to the point of
yielding, which occurs at a constant strain y,. In marked
contrast, weakly jammed solids such as wet foams and emul-
sions first soften at a pressure-dependent strain 7y, only to
yield at a larger strain y,. The ratio of y; and y, determines a
characteristic pressure on the order of 102 that marks the
dividing line between these two material classes.

Particle trajectories evidence an intricate link between
microscopic and macroscopic behavior. The particle dynamics
display just one clear transition that separates trapped and
diffusive trajectories, and which corresponds to yielding.
In contrast, softening has no sharp microscopic fingerprint,
but results from the accumulation of an extensive number
of contact changes leading to non-analytic rheological curves.
Our measurements correspond well with recent experiments
in emulsions*® and pastes.”® Softening is also observed in
attractive glasses®® and granular media;*>>® however the char-
acteristic strains scale differently, likely due to attraction,
friction, and/or non-harmonic contact force laws. Our data
for cycle-to-cycle diffusion (Fig. 2a) are strikingly similar to
data from emulsions, which also show a swift rise that
sharpens with increasing P.*

So far, we have focused on the behavior at a single driving
frequency (w = 10™?). However, our data for the characteristic
strains and changes in diffusive behavior obtained at w = 10>
are very close, as we detail in Appendix D. In both cases,
the elastic contributions to the stress are dominant and
well separated from the viscous and (yet smaller) inertial
contributions. This suggests that our scenario describes
a rate independent, low frequency regime. We note that
recent simulations of transient rheology find similarly
rate-independent characteristic strains at these frequencies,®
and that the existence of rate independent characteristic
strains is to be expected above jamming, when the system
is solid.

Our findings clarify the notion of linear response.*”! In suffi-
ciently large systems, vanishingly small strains lead to contact
changes, perfectly reversible trajectories are not to be found, and
linear response in the strict sense, in which the microscopic
equations of motion can be linearized about the initial condition,
is violated as soon as the first contact change occurs.®?*2¢>1°2
However, we have provided conclusive evidence that the breaking
of contacts does not significantly influence the macroscopic
behavior,>''***! leading to a well-defined effective linear response
for macroscopic quantities.
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Appendix A: numerical model

We perform MD simulations of 2D packings submitted to
oscillatory shear. The initial packing configurations are
so-called shear stabilized (SS) packings.***> Unlike algorithms
that relax particles within a fixed box, SS packings are equili-
brated in a purely isotropic stress state; the shear modulus is
guaranteed to be positive, and there are no residual shear
stresses. This is crucial, because packings with residual stress
subjected to oscillatory driving are prone to long transients,
making the use of SS packings crucial for numerical studies of
oscillatory rheology.

The shear is imposed using Lees-Edwards periodic bound-
ary conditions, and Newton’s Laws are integrated using
a velocity-Verlet algorithm modified for velocity dependent
forces. Our packings are composed of N soft spheres of
radii linearly spaced from 1 to 1.4 and mass density
p = 1. The spheres interact through contact elastic repulsion
(amplitude f,; = k6, where J is the overlap between two
particles and k = 1), as well as viscous damping (ﬁ, = —DAV,
where AV is their velocity difference at contact and b = 1).

We measure the steady state stress tensor

1 " 1 ”
Oup = I—/nyrfj + I—/Zmiv,:vf, 2
{ij} i

that develops in response to an imposed shear strain y,,(t) =
7o sin(wt). The first sum is over contacts,f,'j is the sum of elastic
and viscous contact forces between particles i and j, and 7
points between their centers. The second sum gives the kinetic
stress, where m; is mass and ¥; is velocity. In the low-frequency
parameter regimes we explore, the kinetic stress is orders of
magnitude below the viscous and elastic stresses, and the latter
dominates.

We determine G* via the complex ratio of the first harmonic
in the stress and strain signals, carefully checking that
we reach stationarity. As our numerical model is deter-
ministic and well behaved, statistical error bars are set by
numerical noise and generally very small. However, it is well
known that ensembles of finite size jammed systems at fixed
pressure exhibit a considerable spread in quantities such as
the static shear modulus.>>**™** Qur data for G’ and G”, both in
linear response and at finite strain, show concomitantly strong
ensemble fluctuations, and we report mean values (G’(y)/G’(0))
and (G"(y)/G"(0)).

Diffusivity

Our local dissipation law is numerically expensive but crucial
to capture the correct physics,"® and to properly resolve each
oscillatory cycle, a large number of simulation steps are
needed, in particular near jamming. Therefore, these simula-
tions are numerically expensive, and pushing our numerical
capacities, to obtain particle tracks we have simulated
33 realizations of systems of N = 128 particles for each value
of P, I'y and two values of w; for @ = 10~* we have simulated
30 cycles, and for o = 10~?, where transients are longer-lived,
300 cycles.
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For each realization we calculate the second moment
ds*(n,m) = ((x, — x2)* + (y, — y)?), where m, n are cycle
numbers and (-) is the average over the non-rattler particles.
These measures are highly sensitive to rattlers and drift in the
center of mass, which is a Goldstone mode. Before processing
the position data, we first carefully identify the rattling
particles at each time step and remove them from any
analysis, then compute the Goldstone mode and remove it
from the non-rattler positions. Nevertheless, some runs still
exhibit residual drift or rattlers. As the reported second
moments vary over 30 decades, drift makes the main trends
less easy to observe. Therefore we focus on the median of
the distributions of ds*(n,m), in particular the cycle-to-cycle
second moment As,*(n) := [ds*(n — 1,n)] and squared displace-
ments As*(n) := [ds®(0,n)], where square brackets denote the
median. In Appendix D we also show results for the mean,
which show more fluctuations but do not lead to a different
interpretation.

Determination of softening, yielding and diffusive onsets

We determine the data points for softening and yielding
shown in Fig. le as follows. First, from our rheological
data we estimate the strain where G’/G'(0) dips below
0.3 and 0.03 respectively. Second, to obtain an estimate
of the critical strains that does not strongly depend on the
choice of this cutoff, we assume that G'/G'(0) ~ 7 *?, and
determine the strain where G’/G’(0) = 1, which then gives the
hypothetical intersection of the plateau at low strains and
power law decay at larger strains. To determine the onset of
diffusive motion shown in Fig. 3c, we take data for As® as
function of n, and perform linear fits to log(As®) as «log(n),
focusing on 3 < n < 30. We have checked that such fits
are close to the data. The overshoot of « for intermediate
strains is likely due to transients and is not expected to persist
for larger n.

Appendix B: scaling of G*

We report here our numerical results for the linear elastic and
loss moduli, measured at 7, = 10~ *°. Here the stress signal is
well described by a simple harmonic response of the form
0y = G*poexp(iowt) + c.c. In this regime, recent theoretical
arguments predict precise scaling laws for G’ and G” as func-
tion of Pand .'®'* In Fig. 5 we show our rheological data for a
range of pressures and frequencies for a system of N = 1024
particles. Our data is in good agreement with the aforemen-
tioned scaling arguments: (1) all data collapses when plotted as
function of w/P; (2) for small values of w/P, the elastic modulus
G' ~ P'Y?33% and the loss modulus vanishes linearly with o as
G’ ~ o/PY*>'° at large w/P, both G’ and G” exhibit nontrivial
scaling with /&.5*°

We note that we can improve on the quality of the
data collapse when we plot G*/P* vs. w/P?, and find the best
collapse for f# = 0.8, « = 0.45. We do not believe that this
constitutes a significant deviation from the theoretical
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G'/P*, G/P*

olP’

Fig. 5 Scaling collapse of G'/P* and G"/P* when plotted vs. /P, where
o ~ 0.45, p ~ 0.8. The dashed line has slope o/ff. The strain is fixed at
70 = 10719, P ranges from 107° () to 107! (A) in one step per decade, w
ranges from 10~ to 0.46, and N = 1024. Left inset: Unscaled data for G’
(open symbols) and G” (closed symbols). Right inset: Approximate scaling
collapse with o = 1/2, f = 1.

mean field exponents o = 1/2, f = 1 - even linear response
calculations show slight deviations,'® and data in 2D may
suffer from log corrections, as 2 is believed to be the upper
critical dimension for jamming.**> Moreover, our value of f is
strongly influenced by the data at the lowest w, for which
simulations are expensive and we only have a limited number
of oscillation cycles. Furthermore, several effects limit our
scaling range. First, for P > 0.1 we see substantial deviations
from scaling, as is the case for many static properties near
jamming, while for P < 107° finite size effects start to
dominate for our case of N = 1024 particles.®****™*” Second,
for our choice of microscopic parameters, inertial effects
become detectable for v £ 0.05—if we limit our data to a
smaller range of w and P, the collapse becomes better but the
scaling range shrinks.

Appendix C: nonlinearity of response

To illustrate the nonlinearity of the large amplitude oscillatory
shear response, in Fig. 6 we present Lissajous curves

le—6

4
6 0 0 0 0 o

pee0s |~ _a -2\
N=1024 NS - L
L 1e6s

=1 [ 1 -1 0 1 =1 o 1 =1 [ 1 -10 0 10
v le-6 ¥ le-4 ¥ le-2 104 ¥

Fig. 6 Lissajous curves for P = 107 N = 1024 and w = 107>, Averages are
shown as thick curves, and the broader, fainter band indicates the standard
deviation.
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(stress-strain plots parameterized by time) for the same strain
amplitudes presented in Fig. 2c. Anharmonic contributions are
clearly visible for large strain amplitudes, but are by no means
dominant, so that G’ and G” remain meaningful.

Appendix D: robustness of results

To show that the separation of softening and yielding is robust
to changes in particle number and frequency, in Fig. 7 and 8
we show our data for G’ and G” for N = 128 and both = 1073
and o =10~ - all features shown in Fig. 1 for N =1024, v =10
are also present here.

Diffusion

In Fig. 9 we show examples of the median cycle-to-cycle squared
displacements As,?, and the cumulative squared displacements
As® for = 1072, illustrating that all features shown in Fig. 2 for
® =102 are also present here. We note that the jumps visible
in a few datasets are due to the large packing-to-packing
fluctuations in the transition from trapped to diffusive particle

107 [®
10° 10° 10* 10 10° 10
% 7o/P
Fig. 7 Softening and yielding, characterized by the effective elastic mod-
ulus G’ and loss modulus G” as function of strain amplitude 7o, for N = 128,
» = 107% and 9 values of P ranging from 10~> (purple) to 10~ (light green)
in two steps per decade.

2

2

10° 10° 10 10% 10° 10
% 7o/P

Fig. 8 Softening and yielding, characterized by the effective elastic
modulus G’ and loss modulus G” as function of strain amplitude yo, for
N =128, = 1072 and 9 values of P ranging from 10~° (purple) to 107*
(light green) in two steps per decade.
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Fig. 9 Diffusion, particle trajectories, and softening for a wide range of
strain amplitudes, P = 107* N = 128 and » = 1072 In all panels, we
highlight datasets for 7o = 107 (red), yo = 10~ (orange), 7o = 1072 (green),
70 = 0.46 (light blue) and yo = 10 (dark blue). (a) Median intercycle second
moment As,? as function of cycle number n for an ensemble of xxx runs,
for 7o ranging from 1078 to 10 in three steps per decade. As;? rapidly
decreases until it hits the noise floor for small yo, As;? decays to a finite
plateau for intermediate 7o, and As;? is essentially constant for large 7.
(b) Corresponding median second moment As2. For small and intermediate
70, As? is essentially constant, dominated by the transient in early shear cycles,
while for large yo, As® grows linearly with n evidencing diffusive behavior
(dashed line). (c) Five representative particle trajectories (after a transient
has been removed). For yo = 107° (red) the trajectory is elliptical and
reversible. For o = 107* (orange), the trajectory becomes strongly
nonlinear. For yo = 1072 (green) the trajectory is no longer closed but
remains bounded. For yo = 10° (light blue), the particle motion becomes
diffusive, characterized by hoping between different cages. For yo = 10*
(dark blue), the particle makes large excursions between cycles and
diffuses freely. (d) For comparison, we show G'(yo) for P = 1074 N = 128
and o = 1072,

n n

Fig. 10 Mean of cycle-to-cycle squared displacements As;%, and the
cumulative squared displacements As? for P = 107% N = 128 and » =
1073 In all panels, we highlight datasets for yo = 107° (red), yo = 10~*
(orange), yo = 1072 (green), yo = 10° (light blue) and yo = 10! (dark blue).

dynamics. In Fig. 10 and 11 we show the mean cycle-to-cycle
squared displacements As;> and the cumulative squared dis-
placements As” for ® = 10> and @ = 10 *—even though the
mean is more sensitive to fluctuations, in particular for the
smallest squared displacements (notice the large dynamical
range), we stress that all essential features are similar in mean
and median data.
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100

Fig. 11 Mean of cycle-to-cycle squared displacements As,%, and the
cumulative squared displacements As® for P = 107 N = 128 and o =
1072 In all panels, we highlight datasets for 7o = 107° (red), yo = 10~*
(orange), 7o = 1072 (green), 7 = 0.46 (light blue) and 7o = 10 (dark blue).
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